Abstract rules drive adaptation in the subcortical sensory pathway

  1. Alejandro Tabas  Is a corresponding author
  2. Glad Mihai
  3. Stefan Kiebel
  4. Robert Trampel
  5. Katharina von Kriegstein
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. Technische Universität Dresden, Germany

Abstract

The subcortical sensory pathways are the fundamental channels for mapping the outside world to our minds. Sensory pathways efficiently transmit information by adapting neural responses to the local statistics of the sensory input. The longstanding mechanistic explanation for this adaptive behaviour is that neural activity decreases with increasing regularities in the local statistics of the stimuli. An alternative account is that neural coding is directly driven by expectations of the sensory input. Here we used abstract rules to manipulate expectations independently of local stimulus statistics. The ultra-high-field functional-MRI data show that abstract expectations can drive the response amplitude to tones in the human auditory pathway. These results provide first unambiguous evidence of abstract processing in a subcortical sensory pathway. They indicate that the neural representation of the outside world is altered by our prior beliefs even at initial points of the processing hierarchy.

Data availability

Derivatives (beta maps and log-likelihood maps, computed with SPM) and all code used for data processing and analysis are publicly available in https://osf.io/f5tsy/.

The following data sets were generated

Article and author information

Author details

  1. Alejandro Tabas

    Research Group: Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    alejandro.tabas@tu-dresden.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8643-1543
  2. Glad Mihai

    Research Group: Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Stefan Kiebel

    Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Trampel

    Research Group: Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Katharina von Kriegstein

    Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7989-5860

Funding

H2020 European Research Council (SENSOCOM (647051))

  • Katharina von Kriegstein

Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg

  • Alejandro Tabas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the Ethics committee of the Medical Faculty of the University of Leipzig, Germany (ethics approval number 273/14-ff). All listeners provided written informed consent and received monetary compensation for their participation.

Copyright

© 2020, Tabas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,320
    views
  • 499
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alejandro Tabas
  2. Glad Mihai
  3. Stefan Kiebel
  4. Robert Trampel
  5. Katharina von Kriegstein
(2020)
Abstract rules drive adaptation in the subcortical sensory pathway
eLife 9:e64501.
https://doi.org/10.7554/eLife.64501

Share this article

https://doi.org/10.7554/eLife.64501

Further reading

    1. Neuroscience
    Olga Kepinska, Josue Dalboni da Rocha ... Narly Golestani
    Research Article

    This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals’ phonological repertoire. Using data from over 200 participants exposed to 1–7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants’ degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).

    1. Neuroscience
    Sara A Nolin, Mary E Faulkner ... Kristina Visscher
    Research Article

    The brain is organized into systems and networks of interacting components. The functional connections among these components give insight into the brain's organization and may underlie some cognitive effects of aging. Examining the relationship between individual differences in brain organization and cognitive function in older adults who have reached oldest old ages with healthy cognition can help us understand how these networks support healthy cognitive aging. We investigated functional network segregation in 146 cognitively healthy participants aged 85+ in the McKnight Brain Aging Registry. We found that the segregation of the association system and the individual networks within the association system [the fronto-parietal network (FPN), cingulo-opercular network (CON) and default mode network (DMN)], has strong associations with overall cognition and processing speed. We also provide a healthy oldest-old (85+) cortical parcellation that can be used in future work in this age group. This study shows that network segregation of the oldest-old brain is closely linked to cognitive performance. This work adds to the growing body of knowledge about differentiation in the aged brain by demonstrating that cognitive ability is associated with differentiated functional networks in very old individuals representing successful cognitive aging.