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Valence biases in reinforcement learning 
shift across adolescence and modulate 
subsequent memory
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Abstract As individuals learn through trial and error, some are more influenced by good 
outcomes, while others weight bad outcomes more heavily. Such valence biases may also influence 
memory for past experiences. Here, we examined whether valence asymmetries in reinforcement 
learning change across adolescence, and whether individual learning asymmetries bias the content 
of subsequent memory. Participants ages 8–27 learned the values of ‘point machines,’ after which 
their memory for trial-unique images presented with choice outcomes was assessed. Relative to 
children and adults, adolescents overweighted worse-than-expected outcomes during learning. 
Individuals’ valence biases modulated incidental memory, such that those who prioritized worse- 
(or better-) than-expected outcomes during learning were also more likely to remember images 
paired with these outcomes, an effect reproduced in an independent dataset. Collectively, these 
results highlight age-related changes in the computation of subjective value and demonstrate that a 
valence-asymmetric valuation process influences how information is prioritized in episodic memory.

Editor's evaluation
This paper will be of interest to cognitive and behavioral neuroscientists, behavioral economists, 
and developmental psychologists. The authors provide novel evidence that adolescents, relative to 
children and young adults, are prone to making risk-averse decisions because they are more attuned 
to negative outcomes during learning. The paper presents rigorous computational analyses that 
conclusively support the major claims and advance our understanding of age-related shifts in deci-
sion making.

Introduction
Throughout our lives, we encounter many new or uncertain situations in which we must learn, through 
trial and error, which actions are beneficial and which are best avoided. Determining which behaviors 
will earn praise from a teacher, which social media posts will be liked by peers, or which route to 
work will have the least traffic is often accomplished by exploring different actions, and learning from 
the good or bad outcomes that they yield. Importantly, individuals differ in the extent to which their 
evaluations (Daw et al., 2002; Frank et al., 2004; Gershman, 2015; Lefebvre et al., 2017; Sharot 
and Garrett, 2016) and their memories (Madan et al., 2014, Madan et al., 2017; Rouhani and Niv, 
2019) are influenced by good versus bad experiences. For example, consider a diner who has a deli-
cious meal on her first visit to a new sushi restaurant, but on her next visit, the meal is not very good. 
A tendency to place greater weight on past positive experiences might make her both more likely 
to remember the good dining experience and more likely to return and try the restaurant again. In 
contrast, if the recent negative experience exerts an outsized influence, it may be more easily called 
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to mind and she may forego another visit to that restaurant in favor of a surer bet. In this manner, 
asymmetric prioritization of past positive versus negative outcomes may render these valenced expe-
riences more persistent in our memories and systematically alter how we make future decisions about 
uncertain prospects.

Understanding how experiential learning informs decision-making under uncertainty may be partic-
ularly important during adolescence, when teens’ burgeoning independence offers more frequent 
exposure to novel contexts in which the potential positive or negative outcomes of an action may be 
uncertain. Epidemiological data reveal an adolescent peak in the prevalence of many ‘risky’ behaviors 
that carry potential negative consequences (e.g., criminal behavior [Steinberg, 2013], risky sexual 
behavior [Satterwhite et al., 2013]). Moreover, consistent with proposals that adolescent risk taking 
might be driven by heightened sensitivity to rewarding outcomes (Casey et al., 2008; Galván, 2013; 
Silverman et al., 2015; Steinberg, 2008; van Duijvenvoorde et al., 2017), several neuroimaging 
studies have observed that adolescents exhibit neural responses to reward that are greater in magni-
tude than those of children or adults (Braams et al., 2015; Cohen et al., 2010; Galvan et al., 2006; 
Silverman et al., 2015; Van Leijenhorst et al., 2010). These findings suggest that as adolescents 
learn to evaluate novel situations through trial and error, positive experiences might exert an outsized 
influence on their subsequent actions and choices.

Reinforcement learning (RL) models mathematically formalize the process of evaluating actions 
based on their resulting good and bad outcomes (Sutton and Barto, 1998). In such models, action 
value estimates are iteratively revised based on prediction errors or the extent to which an experi-
enced outcome deviates from one’s current expectation. The magnitude of the resulting value update 
is scaled by an individual’s learning rate. Valence asymmetries in the estimation of action values can 
be captured by positing two distinct learning rates for positive versus negative prediction errors, 
leading to differential adjustment of value estimates following outcomes that are better or worse than 
one’s expectations. Importantly, an RL algorithm with such valence-dependent learning rates esti-
mates subjective values in a ‘risk-sensitive’ manner (Mihatsch and Neuneier, 2002; Niv et al., 2012). 
A learner with a greater positive than negative learning rate will, across repeated choices, come to 
assign a greater value to a risky prospect (i.e., with variable outcomes) than to a safer choice with 
equivalent expected value (EV) that consistently yields intermediate outcomes, whereas a learner with 
the opposite asymmetry will estimate the risky option as being relatively less valuable.

Outcomes that violate our expectations might also be particularly valuable to remember. Beyond 
the central role of prediction errors in the estimation of action values, these learning signals also 
appear to influence what information is prioritized in episodic memory (Ergo et  al., 2020). Past 
studies have demonstrated enhanced memory for stimuli presented concurrently with outcomes that 
elicit positive (Davidow et al., 2016; Jang et al., 2019), negative (Kalbe and Schwabe, 2020), or 
high-magnitude (independent of valence) prediction errors (Rouhani et al., 2018), suggesting that 
prediction errors can facilitate memory encoding and consolidation processes. The common role 
of prediction errors in driving value-based learning and facilitating memory may reflect, in part, a 
tendency to allocate greater attention to stimuli that are uncertain (Dayan et al., 2000; Pearce and 
Hall, 1980). However, it is unclear whether idiosyncratic valence asymmetries in RL computations 
might give rise to corresponding asymmetries in the information that is prioritized for memory. More-
over, while few studies have explored the development of these interactive learning systems, a recent 
empirical study observing an effect of prediction errors on recognition memory in adolescents, but 
not adults (Davidow et al., 2016), suggests that the influence of RL signals on memory may be differ-
entially tuned across development.

In the present study, we examined whether valence asymmetries in RL change across adolescent 
development, conferring age differences in risk preferences. We additionally hypothesized that indi-
viduals’ learning asymmetries might asymmetrically bias their memory for images that coincide with 
positive versus negative prediction errors. Several past studies have characterized developmental 
changes in learning from valenced outcomes (Christakou et al., 2013; Hauser et al., 2015; Jones 
et al., 2014; Master et al., 2020; Moutoussis et al., 2018; van den Bos et al., 2012). However, 
the probabilistic reinforcement structures used in each of these studies demanded that the learner 
adopt specific valence asymmetries during value estimation in order to maximize reward in the task 
(Nussenbaum and Hartley, 2019). For instance, in one study, child, adolescent, and adult participants 
were rewarded on 80% of choices for one option and 20% of choices for a second option (van den 

https://doi.org/10.7554/eLife.64620


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Rosenbaum et al. eLife 2022;11:e64620. DOI: https://doi.org/10.7554/eLife.64620 � 3 of 36

Bos et al., 2012). In this task, a positive learning asymmetry yields better performance than a neutral 
or negative asymmetry (Nussenbaum and Hartley, 2019). Indeed, adults exhibited a more optimal 
pattern of learning, with higher positive than negative learning rates, while children and adolescents 
did not (van den Bos et al., 2012). Thus, choice behavior in these studies might reflect both potential 
age differences in the optimality of RL, as well as context-independent differences in the weighting of 
positive versus negative prediction errors (Cazé and van der Meer, 2013; Nussenbaum and Hartley, 
2019).

In Experiment 1 of the present study, we assessed whether valence asymmetries in RL varied from 
childhood to adulthood, using a risk-sensitive RL task (Niv et al., 2012) in which probabilistic and 
deterministic choice options have equal EV, making no particular learning asymmetry optimal. This 
parameterization allows any biases in the weighting of positive versus negative prediction errors to 
be revealed through subjects’ systematic risk-averse or risk-seeking choice behavior. Each choice 
outcome in the task was associated with a trial-unique image, enabling assessment of whether 
valenced learning asymmetries also biased subsequent memory for images that coincided with good 
or bad outcomes.

To determine whether this hypothesized correspondence between valence biases in learning and 
memory generalized across experimental tasks and samples of different ages, in Experiment 2, we 
conducted a reanalysis of data from a previous study (Rouhani et al., 2018). In this study, a group 
of adults completed a task in which they reported value estimates for a series of images, and later 
completed a memory test for the images they encountered during learning. The original manuscript 
reported that subsequent memory varied as a function of PE magnitude, but not valence. Here, we 
tested whether a valence-dependent effect of PE on memory might be evident after accounting for 
idiosyncratic valence biases in learning.

Results
Experiment 1
Participants (N = 62) ages 8–27 (M = 17.63, SD = 5.76) completed a risk-sensitive RL task (Niv et al., 
2012). In this task, participants learned, through trial and error, the values and probabilities asso-
ciated with probabilistic and deterministic ‘point machines’ (Figure 1A and B). On each trial (183 
trials), participants made a free (two-choice options) or forced (single-choice option) selection of a 

Figure 1. Task structure. (A) Schematic of the structure of a trial in the risk-sensitive reinforcement learning task. (B) The probabilities and point values 
associated with each of five ‘point machines’ (colors were counterbalanced). (C) Example memory trial.
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point machine. Within free-choice trials, ‘risky’ 
trials presented a pair consisting of one prob-
abilistic and one deterministic option, where 
neither option strictly dominated the other and 
evidence of individuals’ subjective values was 
revealed by their choices. On ‘test’ trials, in which 
one option dominated the other, we could assess 
objectively the accuracy of participants’ learning. 
We presented feedback (number of points) from 
each choice on a ‘ticket’ that also displayed a 
trial-unique picture of an object. A subsequent 
memory test allowed us to explore the interaction 
between choice outcomes and memory encoding 
across age (Figure 1C).

Test trial performance
To ensure that participants learned the probabili-
ties and outcomes associated with each machine, 
we first examined performance on test trials, in 
which one option dominated the other. Test trial 
accuracy significantly improved across the task 
(generalized linear mixed-effects model: z = 8.56, 
p<0.001, OR = 2.03, 95%  CI [1.72, 2.38]), with 
accuracy improving from a mean of 0.63 in the 
first block to means of 0.80 and 0.84 in blocks 2 and 3, respectively. There was no main effect of age 
(z = 0.51, p=0.612, OR = 1.06, 95% CI [0.86, 1.30]) or interaction between age and trial number (z = 
0.22, p=0.830, OR = 1.02, 95% CI [0.87, 1.19]; Appendix 1—figure 1A). These results suggest that 
accuracy on this coarse measure of value learning did not change with age in our task.

Explicit reports
Following the learning task, we probed participants’ explicit knowledge about the point machines. 
Consistent with participants’ high accuracy on test trials, accuracy was also high on participants’ 
reports of whether each point machine was probabilistic or deterministic (M = 0.85) and for the point 
values associated with each machine (M = 0.84). Linear regressions suggested that performance on 
these explicit accuracy metrics did not vary with linear age (probabilistic/deterministic response accu-
racy by age: b = –0.02, 95% CI [–0.06, 0.03], t(60) = –0.88, p=0.382, f2 = 0.01, 95% CI [0, 0.13]; point 
value response accuracy by age: b = 0.02, 95% CI [–0.04, 0.07], t(60) = 0.65, p=0.516, f2 = 0.01, 95% CI 
[0, 0.11]).

Response time
We explored whether response time (RT) varied with age during the learning task. We found a signifi-
cant interaction between age and trial number (linear mixed-effects model: t(11279) = –2.10, p=0.036, 
b = –0.02, 95% CI [–0.04, 0]) predicting log-transformed RT. Although RT did not differ by age early 
in the experiment, older participants responded faster than younger participants by the end of the 
experiment.

Decision-making
Importantly, in our task, there were two pairs of machines in which both probabilistic and determin-
istic options yielded the same EV (i.e., 100% 20 points and 50/50% 0/40 points; 100% 40 points and 
50/50% 0/80 points). A primary goal of this study was to examine participants’ tendency to choose 
probabilistic versus deterministic machines when EV was equivalent. On these equal-EV risk trials, 
participants chose the probabilistic option on 37% of trials (SD = 21%). This value was significantly 
lower than 50% (one-sample t-test: t(61) = 4.87, p<0.001, d = 0.62, 95% CI [0.37, 0.95]), suggesting 

Figure 2. Probabilistic choices by age. Probabilistic 
(i.e., risky) choices by age on trials in which the risky 
and safe machines had equal expected value (EV). Data 
points depict the mean percentage of trials where each 
participant selected the probabilistic choice option as 
a function of age. The regression line is from a linear 
regression including linear and quadratic age terms 
(significant quadratic effect of age: b = 0.06, 95% CI [0, 
0.12], t(59) = 2.14, p=0.036, f2 = .08, 95% CI [0, 0.29], N 
= 62). Shaded region represents 95% CIs for estimates.
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that, despite exhibiting heterogeneity in risk pref-
erences, participants as a group were generally 
risk averse.

Next, we tested whether choices of the 
probabilistic machines, compared to choices 
for equal-EV deterministic machines, changed 
with age. The best-fitting model included both 
linear and quadratic age terms (F(1,59) = 4.58, 
p=0.036), indicating that risk taking changed 
nonlinearly with age. Contrary to our hypothesis 
that risk-seeking choices would be highest in 
adolescents, we observed a significant quadratic 
effect of age, such that adolescents chose the 
probabilistic options less often than children or 
adults (quadratic age effect in a linear regres-
sion including both linear and quadratic age 
terms: b = 0.06, 95%  CI [0, 0.12], t(59) = 2.14, 
p=0.036, f2 = 0.08, 95% CI [0, 0.29]; Figure 2; see 
Appendix  1—figure 1 for plots depicting risk 
taking across the task as a function of age). The 
linear effect of age was not significant (b = –0.01, 
95% CI [–0.06, 0.12], t(59) = –0.44, p=0.662, f2 = 
0.01, 95% CI [0, 0.11]). We also conducted a regression using the two-lines approach (Simonsohn, 
2018) and found a significant u-shaped pattern of risk taking with age, where the proportion of prob-
abilistic choices decreased from age 8–16.45 (b = –0.03, z = –1.97, p=0.048) and increased from age 
16.45–27 (b = 0.02, z = 1.98, p=0.048). Age patterns were qualitatively similar when considering the 
subset of trials in which participants faced choice options with unequal EV (i.e., the 0/80 point machine 
vs. the safe 20 point machine; see Appendix 1 and Appendix 1—figure 2 for full results).

Reinforcement learning modeling
To better understand the learning processes underlying individuals’ decision-making, we compared 
the fit of four RL models to participants’ choice behavior. The first was a temporal difference (TD) 
model with one learning rate (α). The second was a risk-sensitive temporal difference (RSTD) model 
with separate learning rates for better-than-expected (α+) and worse-than-expected (α-) outcomes, 
allowing us to index valence biases in learning. The third model included four learning rates (FourLR), 
with separate α+ and α- for free and forced choices, as past studies have found learning may differ as 
a function of agency (Chambon et al., 2020; Cockburn et al., 2014). Finally, the fourth model was a 
Utility model, which transforms outcome values into utilities with an exponential subjective utility func-
tion with a free parameter (ρ) capturing individual risk preferences (Pratt, 1964), updated value esti-
mates using a single learning rate. For all models, machine values were transformed to range from 0 
to 1, and values were initialized at 0.5 (equivalent to 40 points). A softmax function with an additional 
parameter β was used to convert the relative estimated values of the two machines into a probability 
of choosing each machine presented for maximum likelihood estimation.

The RSTD (median Bayesian information criterion (BIC) = 131.93) and Utility (median BIC = 131.06) 
models both provided a better fit to participants’ choice data than both the TD (median BIC = 145.35) 
and FourLR (median BIC = 141.25) models (Appendix  1—figure 5). Assessment of whether the 
RSTD or Utility model provided the best fit to participants’ data was equivocal. At the group level, 
median ΔBIC was 0.87, while at the subject level, the median ΔBIC was 0.33. Thus, neither ΔBIC metric 
provides clear evidence in favor of either model (ΔBIC > 6 ; Raftery, 1995).

To further arbitrate between the RSTD and Utility models, we ran posterior predictive checks and 
confirmed that simulations from both models generated using subjects’ fit parameter values yielded 
choice behavior that exhibited strong correspondence to the real participant data (see Appendix 1—
figure 9). However, data simulated from the RSTD model exhibited a significantly stronger correla-
tion with actual choices (r = 0.92) than those simulated using the Utility model (r = 0.89; t(61) = 
2.58, p=0.012). Because the RSTD model fit choice data approximately as well as the Utility model, 

Figure 3. Asymmetry index (AI) by age. The regression 
line is from a linear regression model including linear 
and quadratic age terms (b = 0.17, 95% CI [0.03, 0.31], 
t(59) = 2.43, p=0.018, f2 = 0.10, 95% CI [0, 0.33], N = 62). 
Data points represent individual participants. Shaded 
region represents 95% CIs for estimates.
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provided a significantly better qualitative fit to the choice data, and yielded an index of valence biases 
in learning, we focused our remaining analyses on the RSTD model (see Appendix 1 for additional 
model comparison analyses and for an examination of the relation between the Utility model and 
subsequent memory data).

We computed an asymmetry index (AI) for each participant, which reflects the relative size of α+ 
and α-, from the RSTD model. Mean AI was –0.22 (SD = 0.50). Mirroring the age patterns observed 
in risk taking, a linear regression model with a quadratic age term fit better than the model with only 
linear age (F(1,59) = 5.88, p=0.018), and there was a significant quadratic age pattern in AI (b = 0.17, 
95% CI [0.03, 0.31], t(59) = 2.43, p=0.018, f2 = 0.10, 95% CI [0, 0.33]; Figure 3). Further, the u-shaped 
relationship between AI and age was significant, with a decrease in AI from ages 8–17 (b = –0.08, z 
= –3.82, p<0.001), and an increase from ages 17–27 (b = 0.05, z = 2.17, p=0.030). This pattern was 
driven primarily by age-related changes in α-, which was greater in adolescents relative to children and 
adults (better fit for linear regression including quadratic term: F(1,59) = 9.04, p=0.004; quadratic age: 
b = –0.09, 95% CI [–0.16, –0.03], t(59) = –3.01, p=0.004, f2 = 0.15, 95% CI [0.02, 0.43]; Appendix 1—
figure 10B). According to the two-lines approach, α- significantly increased from ages 8–18 (b = 0.04, 
z = 3.24, p=0.001) and decreased from ages 18–27 (b = –0.04, z = –3.57, p<0.001). Conversely, there 
were no linear or quadratic effects of age for α+ (all ps>0.24; Appendix 1—figure 10A). Finally, there 
were no significant linear or quadratic age patterns in the β parameter (ps>.15, see Appendix 1 for full 
results; Appendix 1—figure 10C).

Prior work has found that valence biases tend to be positive in free choices, but neutral or negative 
in forced choices (Chambon et al., 2020; Cockburn et al., 2014). While model comparison indicated 
that the FourLR model did not provide the best account of participants' learning process, we none-
theless conducted an exploratory analysis in which we used parameter estimates from the FourLR 
model to test whether learning asymmetries varied as a function of agency in our study. While the α+ 
and AI were both higher for free compared to forced trials, median AIs were negative for both free 
and forced choices (see Appendix 1 for full results; Appendix 1—figure 12).

Memory performance
Next, we examined accuracy during the surprise memory test for images that were presented with 
choice outcomes. Participants correctly identified 54% (SD = 14%) of images presented alongside 
choice feedback (i.e., Hits) and incorrectly indicated that 24% (SD = 15%) of foil images had been 
presented during the choice task (False Alarms). Mean d′ was 0.93 (SD = 0.48). Hit rate did not 
significantly change with linear or quadratic age (ps>0.14). However, false alarm rate significantly 
increased with linear age (linear regression: b = 0.04, 95% CI [0.00; 0.08], t(60) = 2.14, p=0.037, f2 = 
0.08, 95% CI [0, 0.28]; Appendix 1—figure 3A). There was a marginal linear decrease in d′ with age 
(linear regression: b = –0.11, 95% CI [–0.23, 0.01], t(60) = 1.84, p=0.070, f2 = 0.06, 95% CI [0, 0.24]; 
Appendix 1—figure 3B), suggesting that adults performed slightly worse on the memory test than 
younger participants.

Influence of choice context on memory
We next tested whether the decision context in which images were presented influenced memory 
encoding. To explore this possibility, we first tested whether participants preferentially remembered 
images presented with outcomes of probabilistic versus deterministic machines. Participants were 
significantly more likely to remember pictures presented following a choice that yielded probabilistic 
rather than deterministic outcomes (probabilistic: M = 0.56, SD = 0.15; deterministic: M = 0.52, SD 
= 0.15; t(61) = 3.08, p=0.003, d = 0.39, 95% CI [0.13, 0.65]). This result suggests that pictures were 
better remembered when they followed the choice of a machine that consistently generated predic-
tion errors (PEs), which may reflect preferential allocation of attention toward outcomes of uncertain 
choices (Dayan et al., 2000; Pearce and Hall, 1980).

Next, we explored whether valence biases in learning could account for individual variability in 
subsequent memory. In theory, larger-magnitude PEs provide stronger learning signals. Thus, we 
hypothesized that participants would have better memory for items coinciding with larger PEs. We 
also expected that this effect might differ as a function of idiosyncratic valence biases, with partic-
ipants preferentially remembering items coinciding with signed PEs where the sign was consistent 
with the valence bias of their AI. Of note, this model did not explicitly include a variable indicating 
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whether outcomes followed probabilistic or deterministic choices. Rather, whether the choice was 
probabilistic or deterministic was reflected in the PE magnitude variable, which was typically higher 
for probabilistic choices. In a generalized linear mixed-effects model, we predicted memory accuracy 
as a function of AI, PE valence, PE magnitude, and their interaction. We also tested for effects of linear 
and quadratic age, false alarm rate, as a measure of participants’ tendency to generally deem items as 
old, and trial number in the memory task, to account for fatigue as the task progressed (Figure 4A). 
We had no a priori hypothesis about how any effect of valence bias on memory might interact with 
participants’ confidence in their ‘old’ and ‘new’ judgments. Therefore, consistent with prior research 
examining memory accuracy (e.g., Dunsmoor et al., 2015; Murty et al., 2016), we collapsed across 
‘definitely’ and ‘maybe’ confidence ratings for our primary analysis (but see Appendix 1 for an explor-
atory ordinal regression analysis).

As expected, accuracy was significantly higher for those with a higher false alarm rate (suggesting 
a bias towards old responses; z = 4.86, p<0.001, OR = 1.41, 95%  CI [1.23, 1.61]), and accuracy 
decreased as the task progressed (main effect of memory trial number: z = –5.83, p<0.001, OR = 
0.82, 95% CI [0.76, 0.87]). There was a significant effect of unsigned PE magnitude on memory (z = 
4.75, p<0.001, OR = 1.19, 95%  CI [1.11, 1.28]), 
such images that coincided with largerPEs were 
better remembered. There was also a significant 
three-way interaction between PE magnitude, PE 
valence, and AI on memory accuracy (z = 3.45, 
p=0.001, OR = 1.12, 95%  CI [1.05, 1.19]), such 
that people with more positive AIs were more 
likely to remember images associated with larger 
positive PEs (Figure 4B). The converse was also 
true: those with lower AIs were more likely to 
remember images presented concurrently with 
outcomes that elicited higher-magnitude nega-
tive PEs. Ordinal regression results that consid-
ered all four levels of confidence in recollection 
judgments (Supplementary file 1, Appendix 1—
figure 4) yielded consistent results and suggested 
that effects were primarily driven by high-
confidence responses. Notably, neither linear (z 
= 0.32, p=0.750, OR = 1.02, 95% CI [0.89, 1.17]) 

Figure 4. The relation between valence biases in learning and incidental memory for pictures presented with choice outcomes (Experiment 1). (A) 
Results from generalized mixed-effects regression depicting fixed effects on memory accuracy. Whiskers represent 95% CI. (B) Estimated marginal 
means plot showing the three-way interaction between AI, PE valence, and PE magnitude (z = 3.45, p=0.001, OR = 1.12, 95% CI [1.05, 1.19], N = 62). 
Individuals with higher AIs were more likely to remember images associated with larger positive PEs, and those with lower AIs were more likely to 
remember images associated with larger negative PEs. Shaded areas represent 95% CI for estimates. ***p < .001.

Figure 5. Self-reported risk taking by age. Self-
reported risk taking on the Domain-Specific Risk Taking 
(DOSPERT) scale changed nonlinearly with age (linear 
regression: b = –0.42, 95% CI [–0.69,–0.15], t(59) = 
–3.09, p=0.003, f2 = 0.16, 95% CI [0.02, 0.44], N = 62). 
Shaded region represents 95% CIs for estimates.

https://doi.org/10.7554/eLife.64620


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Rosenbaum et al. eLife 2022;11:e64620. DOI: https://doi.org/10.7554/eLife.64620 � 8 of 36

nor quadratic age (z = –0.18, p=0.856, OR = 0.99, 95% CI [0.84, 1.15]) were significant predictors of 
memory, suggesting that AI parsimoniously accounted for individual differences in memory.

To test whether differences in memory for outcomes of deterministic versus probabilistic trials 
might have driven the observed AI × PE magnitude × PE valence interaction effect, we reran the 
regression model only within the subset of trials in which participants made probabilistic choices. Our 
results did not change — we observed both a main effect of PE magnitude (z = 2.22, p=0.026, OR = 
1.11, 95% CI [1.01, 1.23], N = 62) and a significant PE valence × PE magnitude × AI interaction (z = 
2.34, p=0.019, OR = 1.11, 95% CI [1.02, 1.21], N = 62).

Finally, we tested for effects of agency — whether an image coincided with the outcome of a free 
or forced choice — on memory performance. We did not find a significant main effect of agency on 
memory, and agency did not significantly modulate the AI × PE magnitude × PE valence interaction 
effect (see Appendix 1 for full results; Appendix 1—figure 13).

Self-reported risk taking
One possible explanation for our unexpected u-shaped relationship between age and risk prefer-
ences in our choice task is that the adolescents in our sample might have been atypically risk averse. 
To investigate this possibility, we examined the relation between age and self-reported risk taking to 
the Domain-Specific Risk Taking (DOSPERT) scale (Blais and Weber, 2006). A linear regression model 
including quadratic age was a better fit than the model including linear age alone (F(1,59) = 9.55, 
p=0.003). Specifically, consistent with prior reports of increased self-reported risk taking in adoles-
cents, we found a significant inverted u-shaped quadratic age pattern (Figure 5, b = –0.42, 95% CI 
[-0.69, –0.15], t(59) = –3.09, p=0.003, f2 = 0.16, 95% CI [0.02, 0.44]). There was not a significant linear 
age pattern in self-reported risk taking (b = 0.15, 95% CI [–0.09, 0.39], t(59) = 1.27, p=0.208, f2 = 0.04, 
95% CI [0, 0.20]). A two-lines regression analysis indicated that risk taking increased until age 15.29 
(b = 0.23, z = 2.20, p=0.028) and decreased thereafter (b = –0.09, z = –2.03, p=0.042). Despite the 
fact that both choices in our task and self-report risk taking exhibited nonlinear age-related changes, 
there was not a significant correlation between DOSPERT score and risk taking in the task (r = –0.12, 
95% CI [–0.36, 0.13], t(60) = –0.95, p=0.347).

Experiment 2
Next, we assessed the generalizability of the observed effect of valence biases in learning on memory 
by conducting a reanalysis of a previously published independent dataset from a study that used a 
different experimental task in an adult sample (Rouhani et al., 2018). Notably, results from this study 
suggested that unsigned PEs (i.e., PEs of greater magnitude, whether negative or positive) facili-
tated subsequent memory, but no signed effect was observed. Here, we examined whether signed 

Figure 6. The relation between valence biases in learning and incidental memory for pictures presented with trial outcomes (Experiment 2). Reanalysis 
of data from Rouhani et al., 2018. (A) Results from generalized mixed-effects regression depicting fixed effects on memory accuracy. Whiskers 
represent 95% CI. (B) Estimated marginal means plot showing the three-way interaction between AI, PE valence, and PE magnitude (z = 2.19, p=0.029, 
OR = 1.07, 95% CI [1.01, 1.13], N = 305). Individuals with higher AIs were more likely to remember images associated with larger positive PEs, and those 
with lower AIs were more likely to remember images associated with larger negative PEs. Shaded areas represent 95% CI for estimates. *p < .05, ***p < 
.001.
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valence-specific effects might be evident when we account for individual differences in valence biases 
in learning.

Participants (N = 305) completed a Pavlovian learning task in which they encountered indoor and 
outdoor scenes. One type of scene had higher average value than the other. On each trial, an indoor 
or outdoor image was displayed, and participants provided an explicit prediction for the average 
value of that scene type. After the learning task, participants completed a memory test for the scenes.

To quantify valence biases in this task, we fit an ‘Explicit Prediction’ RL model that was similar to 
the RSTD model used in Experiment 1, but was fit to participants’ trial-by-trial predictions rather than 
to choices. Like RSTD, the Explicit Prediction model included α+ and α-, allowing us to quantify each 
participant’s AI based on the relative size of their best-fit α+ and α- parameters. Mean AI was –0.11 
(SD = 0.34). Next, we ran a generalized linear mixed-effects model, as in Experiment 1, to examine 
whether PE valence and magnitude interacted with AI to predict subsequent memory, controlling for 
false alarm rate and memory trial number. Results are reported in Figure 6.

Consistent with the results reported in the original manuscript (Rouhani et al., 2018), as well as 
the findings in Experiment 1, there was a strong main effect of unsigned PE (i.e., PE magnitude) on 
memory (z = 5.09, p<0.001, OR = 1.19, 95% CI [1.12, 1.28]). However, aligned with our results from 
Experiment 1, we also observed a significant three-way interaction between AI, PE magnitude, and 
PE valence (z = 2.19, p=0.029, OR = 1.07, 95% CI [1.01, 1.13]). Qualitative examination of this inter-
action effect suggests that the pattern of results differed slightly from that in Experiment 1. In Exper-
iment 2, differences in memory performance as a function of AI were primarily apparent for images 
coinciding with negative PEs (Figure 6B): those who learned more from negative PEs also had better 
episodic memory for images that coincided with increasingly large negative PEs, while all participants 
appeared to have stronger memory for images coinciding with larger positive PEs. Notably, the inter-
action pattern here mirrors that within the subset of forced trials from Experiment 1 (Appendix 1—
figure 13B) where, as in Experiment 2, participants learned from observed outcomes, but did not 
make free choices. One possibility is that PE magnitude and PE valence enhance memory through 
separate mechanisms, with a universal positive effect of unsigned PEs but a contextually (depending 
on choice agency) and individually variable effect of PE valence.

Discussion
In this study, we examined whether asymmetry in learning from good versus bad choice outcomes 
changed across adolescence, and whether valence biases in RL also influenced episodic memory 
encoding. Specifically, we hypothesized that adolescents would place greater weight on good than 
bad outcomes during learning, a potential cognitive bias that may contribute to the increased risk 
taking during adolescence evident in real-world epidemiological data (Kann et al., 2018). We indeed 
observed nonlinear age differences in valence-based learning asymmetries, but in the direction oppo-
site from our prediction. Adolescents learned more from outcomes that were worse than expected, 
which was reflected in less risk taking relative to children and adults. Within this developmental sample, 
individual differences in learning biases were mirrored in subsequent memory. People who learned 
more from surprising negative versus positive outcomes also had better memory for images that 
coincided with negative outcomes, and vice versa. Although the precise pattern of results differed 
slightly, this relation between idiosyncratic valence biases in RL and corresponding biases in subse-
quent memory was also evident in a second independent sample in a different task (Rouhani et al., 
2018), suggesting that this finding is generalizable. Collectively, these results highlight age-related 
changes across adolescence in the computation of subjective value and demonstrate that an individ-
ually varying valence asymmetric valuation process also influences how information is prioritized in 
memory.

Age-related shifts in learning rate asymmetry were driven primarily by changes in negative, rather 
than positive, learning rates. Whereas negative learning rates changed nonlinearly with age, there 
was no evidence for significant age differences in positive learning rates. This absence of age-related 
change in reward learning may seem counterintuitive given a large literature characterizing height-
ened reward sensitivity in adolescence (for reviews, see Galván, 2013; Silverman et al., 2015; van 
Duijvenvoorde et al., 2016); however, these effects have largely been observed in tasks in which 
learning was not required. Moreover, heightened reactivity to negatively valenced stimuli has also 
been observed in adolescents, relative to children (Master et  al., 2020) and adults (Galván and 
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McGlennen, 2013), and adolescents have been found to exhibit greater sensitivity to negative social 
evaluative feedback than adults (Rodman et al., 2017). While a relatively small number of studies 
have used RL models to characterize age-related changes in valence-specific value updating (Chris-
takou et al., 2013; Hauser et al., 2015; Jones et al., 2014; Master et al., 2020; Moutoussis et al., 
2018; van den Bos et al., 2012), age patterns reported in these studies vary substantially and none 
observed the same pattern of valence asymmetries present in our data. Variability in these findings 
may be due in part to substantial variation in the task reward structures, each of which required 
specific asymmetric settings of learning rates in order to perform optimally (Cazé and van der Meer, 
2013; Nussenbaum and Hartley, 2019). This task variation limits the ability to differentiate age differ-
ences in optimal learning from systematic age differences in the influence of positive versus negative 
prediction errors on subjective value computation (Nussenbaum and Hartley, 2019). In contrast, our 
study used a paradigm in which risky and safe options had equal EV, allowing us to index risk pref-
erences and corresponding valence biases in a context where there was no optimal strategy. Given 
the lack of convergence in the literature to date, further studies characterizing valence asymmetries 
in learning using unconfounded measures will be needed to ascertain how broadly the biases we 
observed generalize to learning contexts with varying reward statistics (e.g., different outcome prob-
abilities or outcomes that are truly negative instead of neutral).

Across two experimental samples, participants’ idiosyncratic tendencies to place greater weight 
on outcomes that elicited either positive or negative prediction errors was, in turn, associated with 
a propensity to form stronger incidental memories for images paired with these outcomes during 
learning. This correspondence between valence biases in evaluation and in memory is consistent with 
past findings. Greater risk-seeking choice behavior has been associated with better memory for the 
magnitude of extreme win outcomes (Ludvig et al., 2018) as well as greater recalled frequency of win 
outcomes (Madan et al., 2014, Madan et al., 2017), whereas risk-averse choices have been associ-
ated with the opposite pattern. Our results extend these findings by linking individual risk preferences 
to an underlying learning algorithm that predicts the valence specificity of corresponding memory 
biases and by demonstrating that these biases extend to episodic features incidentally associated 
with valenced outcomes. Moreover, while several prior studies employing computational analyses of 
learning have variably observed enhanced memory for images coinciding with outcomes that elicit 
positive (Davidow et al., 2016; Jang et al., 2019), negative (Kalbe and Schwabe, 2020), or high-
magnitude (independent of valence) PEs (Rouhani et al., 2018; Rouhani and Niv, 2019), our findings 
suggest that consideration of individual differences in the prioritization of positive versus negative PEs 
may be critical in understanding how these aspects of value-based learning signals relate to memory 
encoding.

Attention likely played a critical role in the observed learning and memory effects. Although our 
study did not include direct measures of attention, there is a large literature demonstrating the critical 
role of attention in both RL (Dayan et al., 2000; Holland and Schiffino, 2016; Pearce and Hall, 1980; 
Radulescu et al., 2019) and memory formation (Chun and Turk-Browne, 2007). Prominent theoret-
ical accounts have proposed that attention should be preferentially allocated to stimuli that are more 
uncertain (Dayan et al., 2000; Pearce and Hall, 1980). In our study, memory was better for items that 
coincided with probabilistic compared to deterministic outcomes. This finding likely reflects greater 
attention to the episodic features associated with outcomes of uncertain choice options. Impor-
tantly, however, our memory findings could not be solely explained via an uncertainty-driven atten-
tion account as the relation between idiosyncratic asymmetric valence biases and memory was also 
evident within the subset of trials with probabilistic outcomes. Thus, our observed memory effects 
may reflect differential attention to valenced outcomes that varies systematically across individuals 
in a manner that can be accounted for by asymmetries in their learning rates. Such valence biases in 
attention have been widely observed in clinical disorders (Bar-Haim et al., 2007; Mogg and Bradley, 
2016) and may also be individually variable within non-clinical populations.

In Experiment 1 of the present study, participants observed the outcomes of both free and forced 
choices. Prior studies have demonstrated differential effects of free versus forced choices on both 
learning and memory (Chambon et al., 2020; Cockburn et al., 2014; Katzman and Hartley, 2020), 
which may reflect greater allocation of attention to contexts in which individuals have agency. Valence 
asymmetries in learning have been found to vary as a function of whether choices are free or forced, 
such that participants tend to exhibit a greater positive learning rate bias for free than for forced 
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choices (Chambon et al., 2020; Cockburn et al., 2014). Here, we did not observe positive learning 
rate asymmetries for free choices, and a model that included separate valenced learning rates for 
free versus forced choices was not favored by model comparison. Studies have also found that subse-
quent memory is facilitated for images associated with free, relative to forced, choices (Katzman 
and Hartley, 2020; Murty et al., 2015). In Experiment 1, there was no significant effect of agency 
on memory. However, in Experiment 2, in which participants provided explicit predictions of choice 
outcomes, but did not make free choices, the qualitative pattern of learning and memory biases 
differed from that observed in Experiment 1, and closely resembled the pattern present within the 
subset of forced-choice trials from that experiment. Namely, in each of these conditions where partic-
ipants were not able to make free choices, all participants, regardless of AI, exhibited better memory 
for images presented with large positive PEs. Thus, while our study was not explicitly designed to test 
for such effects, this preliminary evidence suggests that choice agency may modulate the relation 
between valence biases in learning and corresponding biases in long-term memory, a hypothesis that 
should be directly assessed in future studies.

While one interpretation of our results is that asymmetric value updating influences the prioritiza-
tion of events in memory, recent theoretical proposals (Biderman et al., 2020; Lengyel and Dayan, 
2008; Shadlen and Shohamy, 2016) and empirical findings (Bakkour et al., 2019; Bornstein et al., 
2017; Duncan et al., 2019) suggest a potential alternative account. According to this work, sampling 
of specific valenced episodes from memory can influence decision-making and serve as a different 
way of making choices under uncertainty than the sort of incremental value computation formalized 
in RL models. Under this conceptualization, a tendency to preferentially encode or retrieve past posi-
tive or negative experiences may, in turn, drive risk-averse or risk-seeking choice biases. While our 
task design does not enable clear arbitration between these alternative directional hypotheses, our 
results provide additional evidence of a tight coupling between valuation and episodic memory, and 
further underscore the importance in examining individual differences in valence asymmetries in these 
processes.

Traditional behavioral economic models of choice suggest that risk preferences stem from a 
nonlinear transformation of objective value into subjective utility (Bernoulli, 1954; Kahneman and 
Tversky, 1979), with decreases in the marginal utility produced by each unit of objective value (i.e., 
a concave utility curve) producing risk aversion. Our present study was motivated by the insight that 
such risk-averse, or risk-seeking, preferences can also arise from an RL process that asymmetrically 
integrates valenced prediction errors (Mihatsch and Neuneier, 2002; Niv et al., 2012). In Experiment 
1, we fit both a traditional behavioral economic model with exponential subjective utilities as well 
as a model with valenced learning rates. Notably, there was a very close correspondence between 
learning asymmetries derived from the valenced learning rate model and the risk preference param-
eter from the utility model, and model comparison indicated that these models provided comparably 
good accounts of participants’ choice data. Thus, future research will be needed to arbitrate between 
utility and valenced learning rate models of decisions under risk. However, a potential parsimonious 
account is that a risk-sensitive learning algorithm could represent a biologically plausible process for 
the construction of risk preferences (Dabney et al., 2020), in which distortions of value are produced 
through differential subjective weighting of good and bad choice outcomes (Mihatsch and Neuneier, 
2002; Niv et al., 2012).

Contrary to our a priori hypothesis, and to epidemiological (Kann et al., 2018; Steinberg, 2013) 
and theoretical (Casey et al., 2008; Luna, 2009; Steinberg, 2008) work suggesting that adolescence 
is a period of increased risk taking, we found that adolescents took fewer risks than children or adults 
in our task. While at first glance these results might appear anomalous, within the same sample, we 
found that adolescents reported greater real-world risk taking than both children and adults. This 
lack of correspondence between task-based and self-reported indices of risk taking is consistent with 
previous findings in adults (Radulescu et al., 2020), and suggests that these two measures reflect 
separable constructs. Past empirical studies assessing developmental changes in risky choice in labo-
ratory tasks have observed varied results (Defoe et al., 2015; Rosenbaum et al., 2018; Rosenbaum 
and Hartley, 2019), but highlight two potential features of tasks that may elicit heightened adoles-
cent risk taking. Adolescents may be more likely to take risks in tasks that require learning about risk 
through experience versus explicit description (Rosenbaum et al., 2018), and in which the probabi-
listic negative outcomes are rare (e.g., the Iowa Gambling Task; Bechara et al., 1997), qualities that 
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are also true of many real-world risk-taking contexts. While our task involved experiential learning, 
risky choices resulted in rewarding outcomes on half of the trials and non-win outcomes on the other 
half. Thus, undesirable outcomes were not rare and there were no true negative outcomes. High-
lighting the important influence of such contextual features on decision-making across development, 
a recent study found that adolescents were more prone than adults to ‘underweight’ rare outcomes 
in decision-making relative to their true probabilities, conferring a greater propensity to take risks in 
situations where rare outcomes are unfavorable (Rosenbaum et al., 2021). Collectively, these find-
ings suggest that specific details of an experimental design may influence the age-related patterns 
of risk taking observed in laboratory tasks (Rosenbaum and Hartley, 2019) and suggest that greater 
ecological validity of task designs might be best achieved by mirroring the key statistical properties of 
real-world decision contexts of interest.

The present findings raise the suggestion that, for a given individual, valence asymmetries in value-
based learning might become more negative from childhood into adolescence, and more positive 
from adolescence into young adulthood. However, an important caveat is that such patterns of devel-
opmental change cannot be validly inferred from cross-sectional studies, which are confounded by 
potential effects of cohort (Schaie, 1965). Past studies have demonstrated that valence asymme-
tries in RL are indeed malleable within a given individual, exhibiting sensitivity to the statistics of 
the learning environment (e.g., the informativeness of positive versus negative outcomes; Pulcu and 
Browning, 2017) as well as to endogenous manipulations such as the pharmacological manipulation 
of neuromodulatory systems (Michely et al., 2020). Future longitudinal studies will be needed to 
definitively establish whether valence biases in learning exhibit systematic age-related changes within 
an individual over developmental time.

Adolescence is conventionally viewed as a period of heightened reward-seeking, begging the 
question of why adolescents might exhibit the strongest negative valence bias in learning and memory. 
Theoretical consideration of the adaptive role of valence asymmetries may provide a parsimonious 
resolution to this apparent contradiction (Cazé and van der Meer, 2013). Somewhat counterintuitively, 
greater updating for negative versus positive prediction errors (i.e., a negative valence bias) yields 
systematic distortions in subjective value that effectively increase the contrast between outcomes 
in the reward domain (e.g., a participant with a negative learning asymmetry will represent the risky 
80- and 40-point machines as being more different from each other than a participant with a positive 
learning asymmetry), facilitating optimal reward-motivated action selection. This tuning of learning 
rates is particularly beneficial in environments in which potential rewards are abundant (Cazé and van 
der Meer, 2013), which may be true during adolescence when social elements of the environment 
acquire unique reward value (Blakemore, 2008; Nardou et al., 2019). While negative valence biases 
may be adaptive for reward-guided decision-making, a propensity to form more persistent memories 
for negative outcomes may also contribute to adolescents’ heightened vulnerability to psychopa-
thology (Lee et al., 2014; Paus et al., 2008). A recent study using computational formalizations found 
that adults who were biased toward remembering images associated with negative, relative to posi-
tive, prediction errors also exhibited greater depressive symptoms (Rouhani and Niv, 2019). More-
over, negative biases in real-world autobiographical memory are a hallmark of depression and anxiety 
in both adolescents (Kuyken and Howell, 2006) and adults (Dillon and Pizzagalli, 2018; Gaddy and 
Ingram, 2014). Future research should examine how valence biases in learning and memory, as well 
as the reward statistics of an individual’s real-world environment, relate to vulnerability or resilience to 
psychopathology across adolescent development. Finally, given an extensive literature demonstrating 
the pronounced influence of neuromodulatory systems on both valence biases in RL (Cox et al., 2015; 
Frank et al., 2004; Frank et al., 2007; Michely et al., 2020) and value-guided memory (Lisman and 
Grace, 2005; Sara, 2009), future studies might examine how developmental changes within these 
systems relate to the age-related shifts in valence biases observed here.

Materials and methods
Experiment 1
Participants
Sixty-two participants ages 8–27  years were included in our final sample (mean age = 17.63, SD 
= 5.76, 32 females). Nine additional participants completed the study but were removed from the 
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sample due to poor task performance (described further below). This sample size is consistent with 
prior studies that used age as a continuous predictor and have found significant age differences in 
decision-making (e.g., Decker et al., 2015; Potter et al., 2017; van den Bos et al., 2015). All partic-
ipants had no previous diagnosis of a learning disorder, no current psychiatric medication use, and 
normal color vision according to self- or parent report.

Risk-sensitive RL task
In the present study, participants completed a risk-sensitive RL task adapted from Niv et al., 2012 in 
which participants learned, through trial and error, the values and probabilities associated with five 
‘point machines’ (Figure 1A). Three machines were deterministic and gave their respective payoffs 
100% of the time (Figure 1B). Two machines were probabilistic (or risky) and gave their respective 
payoffs 50% of the time and zero points the other 50% (Figure 1B). Importantly, EV could be decon-
founded from risk as there were two pairs of machines in which both probabilistic and deterministic 
options yielded the same EV (i.e., 100% 20 points and 50/50% 0/40 points; 100% 40 points and 
50/50% 0/80 points). We presented each choice outcome on a ‘ticket’ that also displayed a trial-
unique picture of an object. A subsequent memory test allowed us to explore the interaction between 
choice outcomes and memory encoding across age. The task was programmed in MATLAB Version 
R2017a (The MathWorks, Inc, Natick, MA).

All participants completed a tutorial that involved detailed instructions and practice trials with 
machines that had the same probability structure as the machines they would encounter in the later 
task (i.e., one machine always gave 1 point, the other gave 0 point on half of trials and 2 points on 
the other half). Then, participants completed the RL task, which included 183 trials. There were 66 
total ‘risky’ choices between probabilistic and deterministic machines. 42 of these risky trials involved 
choices between machines with equal EV, while 24 trials required choices between the probabilistic 
0/80 machine and the deterministic 20 point machine. Participants also experienced 75 single-option 
‘forced’ trials (15 for each of the five machines) to ensure each participant learned about values and 
probabilities associated with all of the machines. During forced trials, only one machine appeared 
on the screen, and the participant pressed a button to indicate the location of the machine (left or 
right). Finally, there were 42 test trials in which one machine’s value had absolute dominance over the 
other, with all outcomes of one option being greater than or equal to all outcomes of the other option 
(e.g., 100% chance of 40 points versus 50% of 40 points and 50% of 0 points). Test trials allowed us 
to gauge participants’ learning and understanding of the task. We excluded nine participants who 
did not choose correctly on at least 60% of test trials in the last 2/3 of the task (four children ages 
8–9, three adolescents ages 14–16, and two adults ages 24–25). The trials were divided into blocks 
with 1/3 of the trials in each block, and after each block, participants could choose to take a short 
break. Unbeknownst to participants, trials were pseudo-randomized, such that 1/3 of each type of trial 
was presented in each block of the task, with the order of trial types randomized within each block. 
Outcomes of risky machines were additionally pseudo-randomized so that within each series of eight 
choices from a given risky machine, four choices resulted in a win and four resulted in zero point, in a 
random order.

On each trial, participants were asked to make a choice within 3  s after the machines were 
presented. If they chose in time, the outcome of the choice was presented on a ‘ticket’ along with a 
randomly selected, trial-unique picture of an object for 2 s (Figure 1A). If they did not respond in time, 
the words ‘TOO SLOW’ were presented, without a picture, for 1 s before the task moved to the next 
trial. Across all participants, only 37 (out of 11,346) total trials were missed for slow responses, with a 
maximum of 7 missed trials for one participant.

After completing the choice task, participants were probed for their explicit memory of points 
associated with each machine. For every machine, a participant was first asked, “Did this machine 
always give you the same number of points, or did it sometimes give 0 points and sometimes give 
you more points?” If the participant indicated that the machine always gave the same number 
of points, they were asked, “How many points did this machine give you each time you chose 
it?” Otherwise, they were asked, “How many points did this machine give you when it did not 
give 0 points?” To respond to this second question, participants selected from all possible point 
outcomes presented in the task (0, 20, 40, 80). There was no time limit for responding to these 
questions.
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Next, participants completed a surprise memory test, in which all 183 images presented during 
the task and 183 novel images were presented in random order (Figure 1C). Images corresponding 
to the few choice trials that were missed due to slow responses were recategorized as novel. Ratings 
were on a scale from 1 (definitely saw during the task) to 4 (definitely did not see during the task), and 
participants had unlimited time to indicate their responses. All images were obtained from the Bank 
of Standardized Stimuli (BOSS; Brodeur et al., 2010; Brodeur et al., 2014) and were selected to be 
familiar and nameable for the age range in our sample. For each participant, half of the set of photos 
was randomly chosen to be presented during the task and half were assigned to be novel images for 
the memory test.

Self-reported risk taking
To assess the predictive validity of our findings for real-world risk taking, participants completed the 
DOSPERT scale (Blais and Weber, 2006). The DOSPERT indexes participants’ likelihood of taking 
risks in five domains: monetary, health and safety, recreational, ethical, and social. We computed 
the mean self-reported likelihood of risk taking across all behaviors on the DOSPERT as a measure 
of real-world risk taking. Age-appropriate variants of the DOSPERT were administered to children 
(8–12 years old), adolescents (13–17 years old), and adults (ages 18 and older) (Barkley-Levenson 
et al., 2013; Somerville et al., 2017; van Duijvenvoorde et al., 2016).

Reasoning assessment
We administered the Vocabulary and Matrix Reasoning sections of the Wechsler Abbreviated Scale of 
Intelligence (WASI; Wechsler, 2011), which index verbal cognition and abstract reasoning, to ensure 
that these measures were not confounded with age within our sample. WASI scores did not vary by 
linear or quadratic age (ps>.2). Thus, we did not include this measure in subsequent analyses.

Procedure
Participants first provided informed consent (adults) or assent and parental consent (children and 
adolescents). Next, participants completed the risk-sensitive RL task and memory test, followed by 
the DOSPERT questionnaire and the WASI. Participants were paid $15 for completing the experiment, 
which lasted approximately 1 hr. Although participants were told that an additional bonus payment 
would be based on the number of points they earned in the risk-sensitive RL task, all participants 
received the same $5 bonus payment. The study protocol was approved by the New York University 
Institutional Review Board.

Analyses
Reinforcement-learning models
Four RL models were fit to participants’ choices in the task.

TD model
We fit a TD learning model (Sutton and Barto, 1998), in which the estimated value of choosing a 
given machine (QM) is updated on each trial (t) according to the following function: QM(t + 1) = QM(t) + 
α * δ(t), in which δ(t) = r(t) – QM(t) is the prediction error, representing how much better or worse the 
reward outcome (r) is than the estimated value of that machine. δ is scaled by a learning rate α, a free 
parameter that is estimated separately for each participant.

RSTD model
The RSTD model is similar to the TD model but includes two separate learning rates for prediction 
errors of different signs. Specifically, when δ is positive, the value of the chosen machine is updated 
according to the equation: QM(t + 1) = QM(t) + α+ * δ(t). When δ is negative, the chosen machine’s 
value is updated as QM(t + 1) = QM(t) + α- * δ(t). Including two learning rates allows the model to be 
sensitive to the risk preferences revealed by participants’ choices across the probabilistic and deter-
ministic (‘risky versus safe’) choice pairs in the paradigm (Niv et al., 2012). For a given individual, 
if α+ is greater than α-, Q-values of the machines with variable outcomes will be greater than those 
of deterministic machines with equal EV, and the individual will be more likely to make risk-seeking 
choices. Conversely if α- is greater than α+, the Q-values of the risky machines will be lower than their 
EVs, making risk-averse choices more likely. To index the relative difference between α+ and α-, we 
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computed an AI as AI = (α+ - α-)/(α+ + α-), where an AI > 0 reflects greater weighting of positive relative 
to negative prediction errors, whereas an AI < 0 reflects greater relative weighting of negative predic-
tion errors (Niv et al., 2012).

FourLR model
In our task, participants made both free and forced choices. Past research suggests that valence biases 
in learning may differ as a function of choice agency (Chambon et al., 2020; Cockburn et al., 2014). 
To test this possibility, we assessed the fit of a FourLR model, which was the same as the RSTD model 
except that it included four learning rates instead of two, with separate α+ and α- parameters for free 
and forced choices.

Utility model
As a further point of comparison with the TD, RSTD, and FourLR models, we estimated a utility model 
that employed the same value update equation as the TD model, QM(t + 1) = QM(t) + α * δ(t). However, 
δ was defined according to the equation δ(t) = r(t)ρ – QM(t), in which the reward outcome is exponen-
tially transformed by ρ, which represents the curvature of each individual’s subjective utility function 
(Pratt, 1964). ρ < 1 corresponds to a concave utility function, which yields risk aversion as a result of 
diminishing sensitivity to returns (Tversky and Kahneman, 1992). In contrast, ρ > 1 corresponds to a 
convex utility function that yields risk-seeking behavior.

In all models, Q-values were converted to probabilities of choosing each option in a trial using 
the softmax rule, PM1 = eβ*Q(t)M1/(eβ*Q(t)M1+ eβ*Q(t)M2), where PM1 is the predicted probability of choosing 
Machine 1, with the inverse temperature parameter β capturing how sensitive an individual’s choices 
are to the difference in value between the two machines. Notably, outcomes of the forced trials were 
included in the value updating step for each model. However, forced trials were not included in the 
modeling stage in which learned values are passed through the softmax function to determine choice 
probabilities as there was only a single-choice option on these trials.

Model fitting
Prior to model fitting, outcome values were rescaled between 0 and 1, with 1 representing the 
maximum possible point outcome (80). We fit all RL models for each participant via maximum a poste-
riori estimation in MATLAB using the optimization function fminunc. Q-values were initialized at 0.5 
(equivalent to 40 points). Bounds and priors for each of the parameters are listed in Table 1. There was 
no linear or quadratic relationship between BIC and age in any of the models (all ps>0.1).

Table 1. Bounds, priors, and recoverability for parameters in each model.

Model Parameter Bounds Prior Recoverability

TD α 0,1 Beta(2,2) 0.84

 �  β 0.000001, 30 Gamma(2,3) 0.88

RSTD α+ 0,1 Beta(2,2) 0.79

 �  α- 0,1 Beta(2,2) 0.88

 �  β 0.000001, 30 Gamma(2,3) 0.90

FourLR α+ free 0,1 Beta(2,2) 0.79

 �  α- free 0,1 Beta(2,2) 0.89

 �  α+ forced 0,1 Beta(2,2) 0.76

 �  α- forced 0,1 Beta(2,2) 0.78

 �  β 0.000001, 30 Gamma(2,3) 0.90

Utility α 0,1 Beta(2,2) 0.75

 �  β 0.000001, 30 Gamma(2,3) 0.88

 �  ρ 0, 2.5 Gamma(1.5,1.5) 0.88

Priors for α and β were based on those used in Niv et al., 2012.
TD, temporal difference; RSTD, risk-sensitive temporal difference; LR, learning rate.
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Parameter and model recovery
For each model, we simulated data for 10,000 subjects with values of each parameter drawn randomly 
and uniformly from the range of possible parameter values. Next, we fit the simulated data using 
the same model. We tested for recoverability of model parameters by correlating the parameter 
that generated the data with the parameters produced through model fitting. These correlations 
are displayed in Table  1. All parameters for TD, RSTD, FourLR, and Utility models showed high 
recoverability.

To examine the identifiability of the TD, RSTD, FourLR, and Utility models, we generated simulated 
data using each model and fit all four of the models, including those that were not used to generate 
the data to each simulated dataset (e.g., we fit all the TD-generated subjects with the TD model as 
well as the RSTD, FourLR, and Utility models). We then used BIC, a quality-of-fit metric that penalizes 
models for additional parameters, to assess whether the generating model was also the best-fitting 
model for each subject. Recoverability was reasonable for all models except the least-parsimonious 
FourLR model (Table 2). Aside from the subjects generated by the FourLR model, for all pairwise 
comparisons between generating and comparison models, the majority of simulated subjects were 
best fit by the generating model. The RSTD-simulated subjects who were better fit by the TD model 
were those who had less extreme AI values (Appendix 1—figure 7), and thus could be more parsi-
moniously captured by a model with a single learning rate. We also found that RSTD model param-
eters were reasonably well recovered across the range of AI observed in our empirical sample (see 
Appendix 1—figure 8).

Values in this table indicate the proportion of participants simulated by the generating model who 
are best fit by the generating model in a pairwise comparison with each alternative model.

Statistical analyses
Statistical analyses were performed in R version 4.0.2 (R Development Core Team, 2016) with a 
two-tailed alpha threshold of p<0.05. For tests of trial-wise effects, we ran linear mixed-effects regres-
sion (lmer) or generalized linear mixed-effects regression (glmer) models (lme4 package; Bates et al., 
2015), which included participant as a random effect, and estimated random intercepts and slopes for 
each fixed effect. We used the ‘bobyqa’ optimizer with 1 million iterations. Trial number was included 
in lmer and glmer regression models. All independent variables were z-scored. We began with this 
maximal model, which converged for all analyses except one, for which we systematically reduced the 
complexity of the model until it converged (Barr et al., 2013; see Appendix 1). In RT analyses, we 
removed responses that were less than 0.2 s (n = 22, out of 11,309 total trials, with a maximum of 9 
for one participant) and log-transformed RT prior to running regressions. To test for linear effects of 
age, we included z-scored age in regression models. Potential quadratic age effects were assessed by 
adding a squared z-scored age term in a regression model. We used the anova function to arbitrate 
between these regression models and report only linear age effects if the addition of quadratic age 
did not significantly improve model fit. To probe whether a quadratic age effect qualifies as u-shaped, 
we used the two-lines approach (Simonsohn, 2018), which algorithmically determines a break point 
in the distribution and tests whether regression lines on either side of the break point have significant 
slopes with opposite signs.

Table 2. Model recovery.

Comparison model

 �   �  TD RSTD FourLR Utility

 � Generating model

TD - 0.98 1.00 0.97

RSTD 0.57 - 0.99 0.65

FourLR 0.50 0.31 - 0.39

Utility 0.58 0.76 0.99 -

TD, temporal difference; RSTD, risk-sensitive temporal difference; LR, learning rate.

https://doi.org/10.7554/eLife.64620


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Rosenbaum et al. eLife 2022;11:e64620. DOI: https://doi.org/10.7554/eLife.64620 � 17 of 36

Reporting
For one-way and paired t-tests, we report t-statistics, p-values, and Cohen’s d with 95% confidence 
intervals (CIs; using the function cohens_d in the rstatix package [one-way t-test] or the effectsize 
package [paired t-test]).

For linear regressions, we report unstandardized regression coefficients, t-statistics, and p-values. 
We also report Cohen’s f2 with 95% CIs, a standardized effect size measure (Cohen, 1992) computed 
by squaring the output of the function cohens_f in the effectsize package.

For multilevel models, we report test statistics (t for linear mixed-effects models and z for general-
ized linear mixed-effects models), p-values, and unstandardized effect sizes with 95% CIs (unstandard-
ized coefficients for linear mixed-effects models, and odds ratios for generalized linear mixed-effects 
models).

Experiment 2
Next, we looked for evidence that valence biases in learning influence memory in a previously 
published independent dataset (Rouhani et al., 2018). Notably, results from this study suggested 
that unsigned PEs (i.e., PEs of greater magnitude whether negative or positive) facilitate subsequent 
memory, but no signed effect was observed. Here, we examined whether signed valence-specific 
effects might be evident when we account for individual differences in learning.

Briefly, adult participants completed a Pavlovian learning task (i.e., participants did not make 
choices and could not influence the observed outcomes) in which they encountered indoor and 
outdoor scenes. One type of scene had higher average value than the other. On each trial, an indoor 
or outdoor image was displayed, and participants provided an explicit prediction for the average 
value of that scene type. After the learning task, participants completed a memory test for the scenes. 
A detailed description of the experimental paradigm can be found in the original publication (Rouhani 
et al., 2018).

In order to derive each participant’s AI, we fit an ‘Explicit Prediction’ RL model to the participants’ 
estimation data (see Appendix 1 for more details on our model specification and fitting procedure). 
Similar to our RSTD model, this model included separate learning rates for trials with positive and 
negative PEs.

Importantly, the RSTD model and the Explicit Prediction model differed in that the RSTD model 
included a β parameter, while the Explicit Prediction model did not. In Experiment 1, this extra 
parameter allowed us to use the softmax function to convert the relative estimated values of the two 
machines into a probability of choosing each machine presented, which we then compared to partici-
pants’ actual choices during maximum likelihood estimation. In contrast, in Experiment 2, participants 
explicitly reported their value predictions (and did not make choices), so the model’s free parameters 
were fit by minimizing the difference between the model’s value estimates and participants’ explicit 
predictions.
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Appendix 1
Experiment 1
Learning and risk taking by age group and block

Appendix 1—figure 1. Choices as a function of block and age group. (A) Mean accuracy on test trials 
(approximately seven per participant per block). (B) Mean risk taking for equal expected value (EV) 
trials (seven per participant per block). (C) Mean risk taking for unequal-EV trials (four per participant 
per block).

Unequal-EV choices of probabilistic machines
On trials where participants faced risky and safe choice options with unequal EV (i.e., the 0/80 
point machine vs. the safe 20 point machine), age patterns were similar to those for equal-EV trials. 
Specifically, there was a significant quadratic age effect on probabilistic, risky decision-making (b 
= 0.09, 95% CI [0.01, 0.16], t(59) = 2.21, p=0.031, f2 = 0.08, 95% CI [0, 0.30]). The two-lines test 
showed that unequal-EV risk taking significantly decreased from ages 8–17 (b = 0.04, z = –2.77, 
p=0.006), and marginally increased from ages 17–27 (b = 0.03, z = 1.74, p=0.081).

Appendix 1—figure 2. Probabilistic choices for unequal-expected value (EV) risk trials. Probabilistic 
(i.e., risky) choices by age on trials with unequal-expected value (EV) risky and safe machines, with a 
choice between the 0/80 probabilistic machine and the deterministic 20-point machine. Data points 
depict the mean percentage of trials where each participant selected the probabilistic choice option 
as a function of age. Regression line is from the glmer model including linear and quadratic age 
terms. Shaded region represents 95% CIs for estimates.

https://doi.org/10.7554/eLife.64620
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Memory performance by age, PE valence, and asymmetry index

Appendix 1—figure 3. Memory performance across age. (A) False alarm rate as a function of age. 
As reported in the article, false alarm rate increased with age (p=0.037). (B) D’ as a function of age. As 
reported in the article, there is a marginal linear decrease in d’ with age (p=0.070).

Multilevel model fitting
The maximal multilevel model did not converge when we tested for the three-way interaction 
between PE valence, PE magnitude, and AI predicting memory accuracy. We systematically 
reduced the model until we found a model that converged (Barr et al., 2013). The maximal model 
that converged is:

Memory Response ~ Age_Z + Age_Z^2+ Memory Trial Number + False Alarm Rate+ AI * PE 
Valence * PE Magnitude + (1+ PE Magnitude + Memory Trial Number || SubjectNumber)

Ordinal modeling of memory data
Our multilevel models of memory data collapsed across confidence ratings (e.g., ‘Definitely old’ 
and ‘Maybe old’), a convention widely adopted in manuscripts examining memory accuracy effects 
(e.g., Dunsmoor et al., 2015; Murty et al., 2016). As an exploratory analysis, we ran an ordinal 
model using the clmm function in the ordinal R package (Christensen, 2019), which allowed us 
to test for an AI × PE Valence × PE Magnitude interaction effect using participants’ uncollapsed 
memory responses as the dependent variable (1 = definitely new, 2 = maybe new, 3 = maybe old, 
and 4 = definitely old).

Regression results are reported in Appendix 1—table 1 (see Supplementary file 1). Importantly, 
the results from the ordinal regression were not meaningfully different from results collapsed across 
confidence ratings. In particular, the AI × PE Valence × PE Magnitude interaction was significant 
in the ordinal regression. The three-way interaction is plotted in Appendix 1—figure 4. Here, 
probabilities of each memory response are plotted as a function of PE valence and magnitude 
separately for AI = –0.8 (top panels), AI = 0 (middle panels), and AI = 0.8 (bottom panels). 
Consistent with the results reported in the main text, the likelihood of a ‘definitely old’ response 
was highest for those in those with low AI for images that coincided with high-magnitude negative 
PEs (top-left panel) and those with high AIs for images that coincided with high-magnitude positive 
PEs (bottom-right panel).

https://doi.org/10.7554/eLife.64620
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Appendix 1—figure 4. Ordinal regression analysis of incidental memory judgments (Experiment 
1). Results from an ordinal regression demonstrating that incidental memory accuracy for pictures 
presented with choice outcomes varies as a function of PE valence, PE magnitude, and asymmetry 
index (AI) without collapsing across response confidence levels. The probability of each memory 
response is plotted separately for three different AI levels (top: AI = –0.8; middle: AI = 0; bottom: AI = 
0.8) as a function of PE valence, PE magnitude.

BIC distributions

Appendix 1—figure 5. BIC distributions for all four models tested.

RSTD vs. TD model fit as a function of asymmetry index
The RSTD model fit the data of subjects with more extreme AI values substantially better than the 
TD model (Appendix 1—figure 6). The difference in model fit was smaller for those with AIs close 
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to 0, reflecting the redundancy of a model including two learning rates when the learning rates are 
similar.

Appendix 1—figure 6. Relative BIC as a function of asymmetry index (AI). The difference between 
risk-sensitive temporal difference (RSTD) and temporal difference (TD) model fit (BIC) for all 
participants in Experiment 1. Values below 0 indicate a better fit by the RSTD model.

RSTD vs. TD reinforcement learning model recovery
In the main text methods, we described our model recovery analysis, where we simulated 10,000 
‘subjects’ using each model and fit the simulated data using the generating model, and all 
alternative models. Appendix 1—figure 7 shows relative RSTD and TD model fit (BIC) model fit 
for subjects generated by the RSTD model, as a function of AI. For simulated subjects with a more 
extreme AI, the RSTD model provided a substantially better fit. For those with AIs closer to 0 (i.e., 
when α+ is similar to α-), RSTD and TD models perform similarly.

Appendix 1—figure 7. Relative BIC as a function of asymmetry index (AI) for participants simulated 
by the risk-sensitive temporal difference (RSTD) model. The difference between risk-sensitive 
Appendix 1—figure 7 continued on next page
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temporal difference (RSTD) and temporal difference (TD) model fit (BIC). The difference in model fit 
(BIC) between the risk-sensitive temporal difference (RSTD) and temporal difference (TD) models for 
10,000 subjects simulated using the RSTD model. Values below 0 indicate a better fit by the RSTD 
model.

RSTD model recovery as a function of asymmetry index
We tested whether parameter recovery differed as a function of individual differences in the 
propensity to make deterministic choices. This question was of particular interest because those 
who tended to make deterministic choices were less likely to choose risky machines, and therefore 
were less likely to experience high-magnitude PEs (for a related discussion, see the ‘Utility and 
subsequent memory’ section below, along with Appendix 1—figure 11F). To this end, we tested 
whether parameter recovery and model fit (BIC) varied as a function of AI. Importantly, AI is highly 
correlated with risk taking, so this analysis allowed us to test for potential differences in parameter 
recoverability for participants who more frequently chose the deterministic point machines 
(i.e., those with low AI). To this end, we divided the simulated participants into AI quartiles and 
examined parameter recovery and model fit in each AI quartile. We found that the parameters 
were reasonably well recovered at all levels of AI (Appendix 1—figure 8A–C).

Appendix 1—figure 8. Parameter recovery at different levels of Asymmetry Index (AI). Parameter 
recovery for simulated participants at low (AIs ranging from –0.94 to –.0374), medium-low (AIs ranging 
from –0.373 to –0.07684), medium-high (AIs ranging from –0.07683 to 0.2501), and high (AIs ranging 
from 0.2502 to 0.97) levels of AI. (A) α+ recovery. (B) α- recovery. (C) β recovery. (D) BIC.

However, parameter recoverability varied across levels of AI, somewhat counterintuitively. In 
particular, recovery of the α+ parameter was relatively poorer for the simulated participants in the 
high-AI quartile (Appendix 1—figure 8A) and α- recoverability was relatively poorer for those in 
the low-AI quartile (Appendix 1—figure 8B). Taken together, these patterns suggest that learning 

Appendix 1—figure 7 continued
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rate parameters are relatively less well recovered for individuals with higher AIs (i.e., who made 
more risk-seeking choices).

This differential recoverability as a function of AI stems from the interactions between subjects’ 
risk preferences and the set of risky choice trials presented in our task. There were two types of 
risky trials in our task: equal-EV (0/40 vs. 20, or 0/80 vs. 40) and unequal-EV (0/80 vs. 20). This 
particular combination of equal- and unequal-EV risk trials led to differential resolution in the 
estimation of valenced learning rates as a function of AI. Positive learning rates for risk-averse 
participants could be estimated more accurately because those who were very risk averse (and thus 
had a much larger α- than α+) might choose both the safe 40-point option and the safe 20-point 
option over the 0/80 machine, whereas those who were less risk averse might prefer the safe 40 to 
the 0/80, but the 0/80 over the safe 20. In contrast, those with high positive AI are likely to choose 
the risky option on every equal and unequal-EV trial, so the ability to distinguish precisely between 
different levels of α+ for those with high AI is diminished. Our model fit results provide further 
evidence that this lower α+ recoverability in individuals with high AIs stems from this aspect of our 
task structure (Appendix 1—figure 8D). Despite the model’s imprecise α+ estimation for these 
high-AI subjects, the model was able to predict behavior well (i.e., BIC was low), likely because 
these participants are likely to take risks on all equal and unequal-EV risk trials, regardless of their 
precise α+ level.

This increase in parameter recovery for those participants with low compared to high AI runs 
counter to the notion that smaller PEs may drive worse recovery in these low-AI participants. 
Although it is true that PEs were smaller for those with relatively lower AIs (see Appendix 1—
figure 11F), our design required these low-AI participants to experience high-magnitude PEs from 
risky choices on some trials. Specifically, in our task, participants encountered forced trials, where 
participants were required to choose specific machines, which were sometimes risky, and test 
trials (where one option dominated the other), and the dominating option was sometimes risky. 
Thus, including these forced and test trials may have facilitated our ability to recover learning rates 
in those with low AI, while also providing opportunities for participants to sufficiently learn and 
demonstrate their knowledge of machine outcomes and probabilities.

Despite these differences in parameter recoverability at different levels of AI within this 
experimental paradigm, there are several reasons why we do not believe that these results 
are problematic for interpreting the current results. First, these simulations were generated by 
sampling uniformly from the range of learning rate and temperature parameters observed in our 
empirical sample. Thus, these simulated participants can take on AI levels that are not actually 
represented within our empirical sample. Indeed, 81% of fit AI values observed in our empirical 
sample fall within the lower three quartiles of AI values for this simulation, for which parameter 
recoverability was higher. Moreover, the recoverability estimates in this simulation dramatically 
overrepresent participants with low levels of decision noise relative to our empirical sample, which 
distorts these estimates of recoverability to be lower than what would actually be obtained for our 
empirical sample of participants (e.g., when we exclude any simulated participants with decision 
noise <2, which captures the vast majority of participants in our sample, recoverability of r values 
all increase by ~.05).

Posterior predictive check
We ran a posterior predictive check on both RSTD and Utility models. We simulated 100 subjects 
for every real participant’s empirically derived parameters, using both the Utility model and the 
RSTD model, and took the mean proportion of risks across all 100 simulated subjects for each 
model. The quadratic age pattern in (simulated) risk taking for equal EV trials was significant for 
both RSTD- and Utility-simulated data (RSTD: Appendix 1—figure 9B, b = 0.05, 95% CI [0, 0.10], 
t(59) = 2.16, p=0.035, f2 = 0.08, 95% CI [0, 0.29]; Utility: Appendix 1—figure 9D, b = 0.05, 95% CI 
[0.01, 0.10], t(59) = 2.29, p=0.026, f2 = 0.09, 95% CI [0, 0.31]). Additionally, choices derived from 
both RSTD and Utility model simulations using each participant’s best-fit parameter estimates were 
highly correlated with actual choices (RSTD: r = 0.92, 95% CI [0.87, 0.95], t(60) = 18.14, p<0.001; 
Utility: r = 0.89, 95% CI [0.83, 0.93], t(60) = 15.25, p<.001). However, the correlation between 
simulated and actual choices was significantly stronger for participants simulated using the RSTD 
model compared to the Utility model (t(61) = 2.58, p<0.012). Thus, it appears that the RSTD model 
provides a better qualitative fit to the choice data compared to the Utility model.

https://doi.org/10.7554/eLife.64620
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Appendix 1—figure 9. Posterior prediction check results. Relationship between choices of the risky 
(probabilistic) option in real versus simulated data for (A) the risk-sensitive temporal difference (RSTD) 
model and (C) the Utility model. Relationship between risky choices and the corresponding real 
participant age for (B) RSTD-simulated and (D) Utility-simulated participants.

Age patterns in RSTD parameters
As reported in the main text, the relation between AI and age appears to be driven by quadratic 
age patterns in α- (b = –0.09, 95% CI [–0.15, –0.03], t(59) = –3.01, p=0.004, f2 = 0.15, 95% CI [0.02, 
0.43]; Appendix 1—figure 10B). The relation between linear age and α+ was not significant (b = 
–0.02, 95% CI [–0.07, 0.03], t(60) = –0.85, p=0.401, f2 = 0.01, 95% CI [0, 0.13]; Appendix 1—figure 
10A). Additionally, the relation between age and β was not significant (b = 0.56, 95% CI [–0.22, 
1.33], t(60) = 1.44, p=0.156, f2 = 0.03, 95% CI [0, 0.19]; Appendix 1—figure 10C).

https://doi.org/10.7554/eLife.64620
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Appendix 1—figure 10. Age patterns in risk-sensitive temporal difference (RSTD) model parameters. 
Age-related change in (A) α+, (B) α-, and (C) β parameter estimates from the RSTD model.

https://doi.org/10.7554/eLife.64620
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Appendix 1—figure 11. Relationship between parameter estimates and PEs derived from the risk-
sensitive temporal difference (RSTD) and Utility models. (A) Relationship between asymmetry index 
(AI) and Rho. (B) PEs for all participants, colored by the mean proportion of risk taking in the task. 
Purple dots are PEs from risk-seeking participants, while green dots are from risk-averse participants. 
(C) PEs for an example risk-seeking participant. (D) PEs for an example risk-averse participant. 
(E) Mean PE magnitudes, z-scored within the full sample, and then averaged within-subject, ordered 
by increasing Rho. (F) Mean PE magnitudes, z-scored within the full sample and then averaged within-
subject, ordered by increasing AI.

Utility and subsequent memory
We examined whether PEs and choice biases indexed by the Utility model could explain the 
memory data similar to the observed relation between subsequent memory and PEs and valence 
biases derived from the RSTD model reported in the main text. To this end, we first assessed 
the relationship between RSTD and Utility model parameters. We found that AI, derived from 
the RSTD parameter estimates, and ρ from the Utility model were highly correlated (r = 0.95, 
p<0.001; Appendix 1—figure 11), suggesting that they provided comparable individual difference 
measures.

However, due to the nonlinear transformation of outcome values within the Utility model, the 
two models yield very different value estimates and PEs. PE magnitudes derived from the Utility 
model also vary widely across participants. This pattern is clear in Appendix 1—figure 11B, in 
which we have plotted the PEs across all participants from both the RSTD and Utility models. The 
dot color represents proportion risk taking. The purple dots are PEs from risk-seeking participants, 
while green dots are from risk-averse participants, with lighter dots representing people who 
took risks on about half of trials and darker dots representing those whose risk taking deviated 
more from equal numbers of risky and safe choices. Because of the nonlinear Utility function, 
Utility PE magnitudes are much higher for risk-seeking participants (for whom ρ > 1) versus risk-

https://doi.org/10.7554/eLife.64620
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averse participants (for whom ρ < 1). In contrast, PE magnitudes from the linear RSTD model 
are necessarily constrained between 0 and 80 and are thus more uniformly distributed across 
participants regardless of risk preference. Appendix 1—figure 11 displays the relationship 
between PEs from Utility and RSTD models from example risk-seeking (Appendix 1—figure 
11C) and risk-averse (Appendix 1—figure 11D) participants. The participant represented in 
Appendix 1—figure 11C chose the risky option on 60% of trials in which the EVs of risky and safe 
options were equal. This participant’s ρ estimate from the Utility model was 2.5, and the RSTD AI 
was 0.56. In contrast, the participant in Appendix 1—figure 11D took risks on 24% of equal-EV 
risk trials and had a corresponding ρ of 0.56 and AI of –0.45. The PEs from the two models are 
quite different in both absolute and relative scale. For the risk-seeking participant, the nonlinear 
transformation of outcome values means that Utility PEs reached magnitudes over 50,000, while 
RSTD PEs could only reach a maximum magnitude of 80.

We next tested whether the ρ parameter and PEs derived from the Utility model could account 
for subsequent memory in the same manner that we observed for the RSTD model. As ρ and AI 
are so highly correlated, any difference in explanatory ability of the two models would necessarily 
stem from differences in the ability of their distinct PE dynamics to capture trial-by-trial variability 
in subsequent memory. In contrast to the RSTD results, we did not find a significant three-way 
interaction between ρ, PE magnitude, and PE valence (using the PEs derived from the Utility 
model; z = 1.06, p=0.291, OR = 1.18, 95% CI [0.87, 1.60]).

This absence of an effect likely stems from the large variability in PE magnitude across 
participants within the Utility model (Appendix 1—figure 11E) than the RSTD model 
(Appendix 1—figure 11F). Under the Utility model, risk-seeking participants (high ρ) experience 
much larger magnitude PEs, while PEs for risk-averse participants are smaller in magnitude. Thus, 
within the multilevel model, high ρ participants have not only greater means but also greater 
variance in their PEs, leading to an inherent prediction that risk-seeking participants should 
experience the strongest PE-dependent memory modulation. However, in our prior analysis using 
the RSTD model, valence biases in the effects of PE sign and magnitude on subsequent memory 
were evident in both risk-seeking and risk-averse participants. This suggests that only the linear 
values within the RSTD model can adequately capture this pattern.

The effect of agency on learning
Prior studies have demonstrated that learning asymmetries can vary as a function of whether 
choices are free or forced, such that participants tend to exhibit a greater positive learning 
rate bias (α+ > α-) for free choices and either no bias or a negative bias (α+< α-) in forced choices 
(Chambon et al., 2020; Cockburn et al., 2014). To understand whether our participants exhibited 
different learning biases in free and forced trials, we implemented an additional reinforcement 
learning model with four learning rates (FourLR). Here, we used separate α+ and α- for forced and 
free choices. Although this least-parsimonious model provided a better fit to the choice data than 
the TD model, it performed worse than both the Utility and RSTD models at both the group and 
participant level.

Free- and forced-choice learning rates and asymmetry indices are plotted in Appendix 1—
figure 12. Consistent with prior findings (Chambon et al., 2020; Cockburn et al., 2014), we found 
that α+ was significantly higher in free (median = 0.22) compared to forced (median = 0.14) choices 
(Wilcoxon signed-rank test: V = 1338, p=0.011). In contrast, α- was not significantly different in free 
(median = 0.35) vs. forced (median = 0.32) choices (Wilcoxon signed-rank test: V = 794, p=0.202). 
We computed separate AIs for free and forced choices, and found that AI was significantly higher 
for free (median = –0.12) compared to forced (median = –0.39) choices (Wilcoxon signed-rank test: 
V = 1377, p=0.005). Although α+ and AI were higher in free versus forced trials, median AIs were 
negative for both free and forced choices. Therefore, in this study, we did not observe positive 
learning rate asymmetries for free choices.

https://doi.org/10.7554/eLife.64620
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Appendix 1—figure 12. Learning parameters for free and forced choices. (A) Negative learning 
rates, (B) positive learning rates, and (C) asymmetry indices from the FourLR model are plotted as a 
function of choice type (free or forced).

The effect of agency on memory
Prior research has also found better subsequent memory for memoranda associated with free 
versus forced choices (Katzman and Hartley, 2020; Murty et al., 2015). The present study was 
not designed to test the effects of agency on memory. The purpose of our forced-choice trials was 
to ensure all participants had similar opportunities to learn probabilities and outcomes associated 
with each probabilistic and deterministic point machine, regardless of their risk preferences. 
However, to test whether memory was different for items that appeared with outcomes of free 
versus forced choices, we ran two additional glmer models. First, we ran the most complex model 
included in the original manuscript (the model predicting memory accuracy that tested for a PE 
valence × PE magnitude × AI interaction, and also included linear and quadratic age and memory 
trial number), adding a predictor that indicating whether the image appeared after a free or 
forced choice. Memory did not vary as a function of choice agency (z = –0.44, p=0.664, OR = 0.99, 
95% CI: [0.95,1.04]).

As a final test for a potential agency benefit on memory, we tested whether the three-way PE 
Valence × PE Magnitude × AI interaction predicting memory performance varied as a function of 
whether the choice was forced or free (i.e., we tested for a four-way PE Valence × PE Magnitude 
× AI × choice agency interaction). The four-way interaction was also not significant (p=0.136). To 
further explore whether agency had any apparent qualitative effect, we plotted the (three-way 
interaction effect – PE Valence × PE Magnitude × AI) separately for free versus forced choice 
trials (Appendix 1—figure 13). Strikingly, we found that for free-choice trials (Appendix 1—
figure 13A), which comprised the majority of trials, the interaction looks qualitatively similar to 
the overall three-way interaction effect across all trials that we report in the main text (Figure 4B, 
shown in Appendix 1—figure 13C). However, for forced trials (Appendix 1—figure 13B), memory 
performance for images that coincided with positive PEs did not appear to be modulated by 
AI. This pattern is similar to the memory effect observed in Experiment 2 (Figure 6B, shown in 
Appendix 1—figure 13D), in which participants provided explicit predictions of outcomes, but did 
not make choices. This qualitative similarity suggests that memory for surprising high-magnitude 
positive outcomes may be equivalently facilitated for all individuals in situations where they do not 
have agency, regardless of their idiosyncratic biases in learning.

https://doi.org/10.7554/eLife.64620
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Appendix 1—figure 13. Learning biases and subsequent memory as a function of agency. (A) PE 
Valence × PE Magnitude × AI for free choices. (B) PE Valence × PE Magnitude × AI for forced trials. 
(C) PE Valence × PE Magnitude × AI for Experiment 1 (Figure 4B). (D) PE Valence × PE Magnitude × 
AI for Experiment 2 (Figure 6B). Note that the interaction effect for forced choices (B) resembles that 
in Experiment 2 (D) where participants were not asked to make choices.

Experiment 2
To test for generalizability of our finding that learning biases affect what information is encoded 
in subsequent memory, we ran a modified version of our analysis from Experiment 1 on a 
previously published dataset (Rouhani et al., 2018). There were 383 adult participants in 
the dataset, each of whom completed one of the three experiments reported in the original 
manuscript.

Pavlovian learning and memory task
In this study, participants completed a Pavlovian learning and memory task where they learned, 
through trial and error, about the average value of indoor and outdoor scene images. On each 
trial, participants viewed a scene image and provided an estimate for the average value of that 
image category, after which they were shown the true value of that image. After completing 
learning trials, participants completed a memory test for half of the scenes presented during 
learning and an equal number of new images.

There were three different versions of the task that varied in the number of trials and the 
variability of the outcome distributions. Each participant completed only one of the three versions. 
As the differences between the versions of the task were minimal, we modeled the data of 
participants of all three task variants as a single sample. A detailed explanation of the methods can 
be found in the original manuscript (Rouhani et al., 2018).

Reinforcement learning model
We fit an Explicit Prediction temporal difference reinforcement learning model to the estimation 
data. This model was similar to our RSTD model from Experiment 1, in that it included 
separate learning rates for trials with positive (α+) and negative (α-) prediction errors with priors 
(Beta(1.2,1.2)) on both parameters. In this model, the value of each image category (i) on each trial 
(t) was estimated as Vi(t + 1)=Vi(t) + α+ * δ(t) when δ > 1 and Vi(t + 1)=Vi(t) + α- * δ(t) when δ < 1. 
Each participant’s AI was calculated as in Experiment 1: AI = (α+ - α-)/(α+ + α-).

https://doi.org/10.7554/eLife.64620
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Model fitting
Participants’ estimates and trial outcomes were rescaled between 0 and 1 prior to model fitting. 
Image category values were initialized at 0.5. We regressed model image value estimates on 
participants’ actual estimates and minimized the negative log likelihood of that regression result 
for each participant using the optimization function fminunc in MATLAB.

Assessment of model fit and exclusions for poor model fit
We computed estimated value on each trial using the best-fitting parameter. We computed the 
correlation between the model’s value estimates and actual value estimates from participants’ 
task experience as a metric of the quality of fit of the model to participants’ data. The mean 
correlation was 0.42 (SD = 0.34). For 78 participants, there was either a negative correlation 
between model-derived and actual value estimates or the negative log likelihood of their data 
using the best-fit parameters was positive, or both, indicating that the model did not fit the data 
well. Because our analysis relies on trial-by-trial PEs estimated using best-fit model parameters, 
we removed participants from the dataset who were poorly fit by the model according to either 
model fit metric. However, we conducted a sensitivity analysis including all participants, below, to 
ensure that these exclusions did not drive any observed effects in the restricted sample. The mean 
correlation between estimated and actual PEs for the remaining 305 participants was 0.54 (SD = 
0.22).

Multilevel model fitting
The maximal model did not converge. As in Experiment 1, we reduced the model until we found a 
model that converged (Barr et al., 2013). The maximal model that converged is:

Memory Response~ Memory Trial Number + False Alarm Rate + AI * PE Valence * PE 
Magnitude + (1+ PE Valence + PE Magnitude + Memory Trial Number || SubjectNumber)

Below, we also report a sensitivity analysis that includes all participants, regardless of model fit. 
The model that converged when all participants were included is:

Memory Response~ Memory Trial Number + False Alarm Rate + AI * PE Valence * PE 
Magnitude + (1+ PE Magnitude + Memory Trial Number || SubjectNumber)

Model parameters and asymmetry index
Distributions of learning-rate parameters from our model, as well as the distribution of our AI 
metric, are plotted in Appendix 1—figure 14. These distributions include all participants who 
were included in the analysis in the main text.

Appendix 1—figure 14. Distributions of parameters from the Explicit Prediction model. Distributions 
for (A) α+, (B) α-, and (C) asymmetry index (AI) in Experiment 2.

Sensitivity analysis with all participants
To determine whether the observed relation between AI and memory was influenced by 
participant exclusions, we ran a sensitivity analysis fitting the multilevel model that included all 383 
participants, including those poorly fit by our RL model (Appendix 1—figure 15). The three-way 
interaction between AI, PE valence, and PE magnitude predicting memory accuracy was marginally 
significant (z = 1.80, p=0.072, OR = 1.05, 95% CI [1.00, 1.11]; Appendix 1—figure 15B). In this 
model, there was also a significant two-way interaction between AI and PE valence (z = 2.83, 
p=0.005, OR = 1.08, 95% CI [1.02, 1.14]). Both the three-way and two-way interaction effects are 
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consistent with our hypothesis that individual’s valence biases during learning (i.e., AI) modulate 
the relationship between PE valence and memory: those with negative learning biases had better 
memory for images that coincided with negative PEs and vice versa (Appendix 1—figure 15C). As 
in both Experiment 1 and in the analysis reported in the main text, there was a highly significant 
main effect of PE magnitude (z = 5.30, p<0.001, OR = 1.18, 95% CI [1.11, 1.26]).

Appendix 1—figure 15. Experiment 2 sensitivity analysis. Generalized linear mixed-effects regression 
results demonstrating incidental memory accuracy for pictures presented during learning as a 
function of PE valence, PE magnitude, including participants poorly fit by the RL model. (A) Fixed-
effects results. Whiskers represent 95% CI. (B) Estimated marginal means plot showing the marginally 
significant three-way interaction between asymmetry index (AI), PE valence, and PE magnitude. 
Shaded areas represent 95% CI for estimates. (C) Estimated marginal means for significant two-way 
interaction between AI and PE valence. Whiskers represent 95% CI. **p < .01, ***p < .001.
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