Distinct population code for movement kinematics and changes of ongoing movements in human subthalamic nucleus

  1. Dennis London  Is a corresponding author
  2. Arash Fazl
  3. Kalman Katlowitz
  4. Marisol Soula
  5. Michael Pourfar
  6. Alon Mogilner
  7. Roozbeh Kiani  Is a corresponding author
  1. New York University, United States
  2. NYU Langone Health, United States

Abstract

The subthalamic nucleus (STN) is theorized to globally suppress movement through connections with downstream basal ganglia structures. Current theories are supported by increased STN activity when subjects withhold an uninitiated action plan, but a critical test of these theories requires studying STN responses when an ongoing action is replaced with an alternative. We perform this test in subjects with Parkinson's disease using an extended reaching task where the movement trajectory changes mid-action. We show that STN activity decreases during action switches, contrary to prevalent theories. Further, beta oscillations in the STN local field potential, which are associated with movement inhibition, do not show increased power or spiking entrainment during switches. We report an inhomogeneous population neural code in STN, with one sub-population encoding movement kinematics and direction and another encoding unexpected action switches. We suggest an elaborate neural code in STN that contributes to planning actions and changing the plans.

Data availability

All raw and processed data has been uploaded to Dryad. DOI: 10.5061/dryad.2jm63xsq2

The following data sets were generated

Article and author information

Author details

  1. Dennis London

    Center for Neural Science, New York University, New York, United States
    For correspondence
    dennis.london@nyulangone.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8134-2683
  2. Arash Fazl

    Center for Neuromodulation, Department of Neurosurgery, NYU Langone Health, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kalman Katlowitz

    Neuroscience Institute, NYU Langone Health, New York, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Marisol Soula

    Neuroscience Institute, NYU Langone Health, New York, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Pourfar

    Center for Neuromodulation, Department of Neurosurgery, NYU Langone Health, New York, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alon Mogilner

    Center for Neuromodulation, Department of Neurosurgery, NYU Langone Health, New York, NY, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roozbeh Kiani

    Center for Neural Science, New York University, New York, United States
    For correspondence
    roozbeh@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0614-6791

Funding

Simons Collaboration on the Global Brain (542997,543009)

  • Roozbeh Kiani

McKnight Scholar Award

  • Roozbeh Kiani

Pew Scholarship in the Biomedical Sciences

  • Roozbeh Kiani

National Institutes of Mental Health R01 (MH109180-01)

  • Roozbeh Kiani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nicole C Swann, University of Oregon, United States

Ethics

Human subjects: Subjects signed informed consent including consent to publish. The study protocol was approved by the NYU School of Medicine Office of Science and Research Institutional Review Board. Study ID: S16-01855

Version history

  1. Preprint posted: November 12, 2020 (view preprint)
  2. Received: November 13, 2020
  3. Accepted: September 14, 2021
  4. Accepted Manuscript published: September 14, 2021 (version 1)
  5. Version of Record published: October 8, 2021 (version 2)

Copyright

© 2021, London et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,755
    views
  • 193
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dennis London
  2. Arash Fazl
  3. Kalman Katlowitz
  4. Marisol Soula
  5. Michael Pourfar
  6. Alon Mogilner
  7. Roozbeh Kiani
(2021)
Distinct population code for movement kinematics and changes of ongoing movements in human subthalamic nucleus
eLife 10:e64893.
https://doi.org/10.7554/eLife.64893

Share this article

https://doi.org/10.7554/eLife.64893

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.