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Abstract Individual animals vary in their behaviors. This is true even when they share the same 
genotype and were reared in the same environment. Clusters of covarying behaviors constitute 
behavioral syndromes, and an individual’s position along such axes of covariation is a representa-
tion of their personality. Despite these conceptual frameworks, the structure of behavioral covaria-
tion within a genotype is essentially uncharacterized and its mechanistic origins unknown. Passing 
hundreds of inbred Drosophila individuals through an experimental pipeline that captured hundreds 
of behavioral measures, we found sparse but significant correlations among small sets of behaviors. 
Thus, the space of behavioral variation has many independent dimensions. Manipulating the phys-
iology of the brain, and specific neural populations, altered specific correlations. We also observed 
that variation in gene expression can predict an individual’s position on some behavioral axes. This 
work represents the first steps in understanding the biological mechanisms determining the struc-
ture of behavioral variation within a genotype.

Introduction
Individuals display idiosyncratic differences in behavior that often persist through time and are robust 
to situational context. Some persistent individual behavioral traits commonly occur in correlated 
groups and can therefore be said to covary. Behavioral ethologists have long understood that types of 
human and animal personalities often fall on multivariate axes of variation. A five-dimensional model 
(Goldberg, 1993) known as The Big Five personality traits is frequently used by psychologists to 
describe the range of human personality, and a similar model has been used to describe personality in 
fish (Réale et al., 2007). For example, human propensity for behaviors such as assertiveness, talkative-
ness, and impulsiveness is collectively described as extraversion and is thought to be anticorrelated 
with behaviors such as passivity, shyness, and deliberateness, all behaviors associated with introver-
sion (Matthews et al., 2003).

In animal species, correlated suites of behaviors are described as behavioral syndromes. Aggres-
sive behaviors such as fighting over mates or food are frequently correlated with exploratory behav-
iors such as foraging and social interaction. Correlated aggressive and exploratory behaviors have 
been observed in insects (Jeanson and Weidenmüller, 2014), arachnids (Johnson and Sih, 2007), fish 
(Huntingford, 1976), and birds (van Oers et al., 2004). The prevalence of behavioral correlation in 
so many species suggests that covariation is likely a universal feature of behavior. Although correlated 
individual differences in behavior are commonly observed, the structure and mechanisms of behav-
ioral covariation are not well understood. Typically, where an individual lands on these behavioral axes 
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is thought to be established by a deterministic confluence of genetic and environmental effects. But 
there is increasing evidence that substantial individual behavioral variation is rooted in intragenotypic 
variation (Honegger and de Bivort, 2018; Akhund-Zade et al., 2019). The extent to which intrage-
notypic behavioral variation is organized into syndromes or axes is essentially uncharacterized.

Substantial variation in specific behavioral measures, even in inbred lines raised in standardized 
conditions, has been observed in several clonal animals, including geckoes (Sakai, 2018), amazonian 
mollies (Bierbach et al., 2017), and aphids and nematodes (Schuett et al., 2011; Stern et al., 2017). 
Genetic model systems hold particular promise for the mechanistic dissection of this variation, and 
intragenotypic variability (IGV) in behavior has been characterized in mice (Freund et  al., 2013), 
zebrafish (Bierbach et al., 2017), and Drosophila. In flies, IGV of many behaviors has been studied, 
including phototaxis (Kain et al., 2012), locomotor handedness and wing-folding (Buchanan et al., 
2015), spontaneous microbehaviors (Kain et al., 2013; Todd et al., 2017), thermal preference (Kain 
et al., 2015), and object-fixated locomotion (Linneweber et al., 2020). Mechanistic studies of these 
behavioral phenomena have addressed two major questions: (1) what biological mechanisms underlie 
the magnitude of behavioral variability (e.g., genetic variation [Ayroles et al., 2015] or neural state 
variation [Kain et al., 2012; Buchanan et al., 2015]), and (2) what specific differences within individual 
nervous systems predict individual behavioral biases (Linneweber et al., 2020; Mellert et al., 2016). 
The mechanistic basis of individuality is an exciting new field, but no study to date has focused on 
characterizing the large-scale variance-covariance structure of IGV in behavior.

Behavioral correlations within a genotype could arise through a number of biological mechanisms 
including cell-to-cell variation in gene expression or individual differences in neural circuit wiring or 
synaptic weights. For example, stochastic variation during developmental critical windows has the 
potential to impart lasting differences between individuals in the absence of conspicuous genetic or 
environmental differences. Any such differences affecting nodes common to multiple behaviors in 
neural or molecular pathways may result in correlated shifts in behavior. Here, we study this directly by 
focusing on the correlation structure of behavioral variation when genetic and environmental variation 
are minimized.

This is an important biological question for several reasons. The structure of intragenotypic behav-
ioral variability (1) will shape the distribution and kinds of personalities that a population of organisms 
displays, even when they have matched genomes and environments, (2) is the product of stochastic 
biological outcomes, and its organization reveals how stochasticity drives variation, (3) constrains the 
evolution of behavior and adaptive phenotypic strategies like bet-hedging (Hopper, 1999), (4) is 
a relatively uncharacterized component of neural diversity and its manifestations in behavior and 
disease, and (5) may shed light on how the nervous system orchestrates behavior as a whole. In flies, 
we have a suitable experimental system for directly characterizing this structure as we can produce 
large numbers of individuals with nearly identical genomes, reared in the same environment, and 
collect many behavioral measures per individual. We performed this experiment in wild-type inbred 
flies as well as wild-type outbred flies and collections of transgenic lines manipulating neural activity. 
This approach let us contrast the structure of intragenotypic behavioral variability in animals where 
the source of variability is, respectively, stochastic fluctuations, genetic differences + stochastic fluctu-
ations, and systematic perturbations of the nervous system + stochastic fluctuations. We found that in 
all cases, behavioral variation has high dimensionality, that is, many independent axes of variation. The 
addition of variation from genetic differences and neural perturbations did not fundamentally alter 
this qualitative result, suggesting that stochastic fluctuations and genetic differences may structure 
behavior through common biological mechanisms.

Results
High-dimensional measurement of individual behaviors
The first step in revealing the structure of behavioral variation within a genotype was to devise an 
experimental pipeline that produced a data set of many (200+) individual flies, with many behavioral 
measurements each. We developed a number of behavioral assays, measuring both spontaneous 
and stimulus-evoked responses of individual flies, which could be implemented in a common exper-
imental platform (Figure 1A; Werkhoven et al., 2019). This instrument features an imaging plane, 
within which flies moved in arenas of various geometries. Fly position was tracked with digital cameras 
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Figure 1. Decathlon experimental design and structure of intragenotypic behavioral variation. (A) Schematic of the imaging rig used for most Decathlon 
experiments. (B) Schematics of the behavioral assays, illustrating the geometry of the arenas and stimulus structure. (C) Timeline of the Decathlon 
experiment. Colors indicate the assays conducted on each day, half-black half-white blocks indicate the circadian assay and storage in 96-well plates. (D) 
Timelines of the three Decathlon experiments, indicating the randomized order of assays 2–8. (E) Full correlation matrix of all raw behavioral measures 
taken in the Decathlon. Colored blocks indicate blocks of measures we thought a priori might be correlated (outer blocks, text labels). Inner blocks 
indicate assay. (F) Example scatter plots associated with measure correlations. Points are individual flies. Line is the best fit (principal component [PC]1 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.64988


 Research article﻿﻿﻿﻿﻿ Genetics and Genomics | Neuroscience

Werkhoven et al. eLife 2021;10:e64988. DOI: https://​doi.​org/​10.​7554/​eLife.​64988 � 4 of 32

using diffused infrared illumination invisible to the flies. Visual stimuli were presented to the animals 
using DLP projectors or LEDs embedded in the arena walls. We implemented six assays (Supplemen-
tary file 1) in this style, assessing (1) spontaneous walking in circular arenas, (2) preference to rest in 
brighter or dimmer positions (in an environment of spatially structured illumination), (3) preference 
to rest in brighter or dimmer light levels (in a fictive, temporally modulated light environment), (4) 
optomotor responses to rotating visual stripes, (5) spontaneous left-right decision making in Y-mazes, 
and (6) phototaxis in Y-mazes, where flies are given a choice of walking toward or away from a lit LED 
(Figure 1B).

To these assays, we added three more, assessing (7) odor sensitivity in linear chambers (Claridge-
Chang et al., 2009; Honegger et al., 2020) in which half of the compartment is filled with an aversive 
odorant, (8) spontaneous behavior, acquired via high-resolution 100 Hz video and suitable for pixel-
based unsupervised classification (Berman et al., 2014), and (9) circadian activity and spontaneous 
locomotion in 96-well plates with access to food. Each of these assays produced multiple behav-
ioral measures for each individual fly. For example, flies behaving in the phototactic ‘LED Y-maze’ 
(assay 6) are performing phototaxis and exploratory locomotion but yield several different behavioral 
measures, including the number of choices made by passing through the choice point of the Y-maze 
(a measure of total activity), the fraction of turns that are to the right, the fraction of turns that are 
toward the lit LED, the number of pauses in which the animal did not move, the average duration 
of pauses, etc. Thus, the total collection of behavioral measures across all assays per fly was quite 
large (up to 121), constituting a diverse, inclusive characterization of individual behavior. Each assay 
has a particular measure that captures the behavior it is primarily designed to assess (e.g., the frac-
tion of turns toward the lit LED in the LED Y-maze). In control experiments, we confirmed that these 
primary measures are consistent across days within an individual (Figure 1—figure supplement 1; 
i.e., they reflect persistent idiosyncrasies [Kain et al., 2012; Buchanan et al., 2015; Kain et al., 2015; 
Honegger et al., 2020]).

In order to obtain all of the behavioral measures from each experimental animal, we combined our 
behavioral assays in a serial experimental pipeline lasting 13 consecutive days (Figure 1C), gener-
ally with one unique assay per day and continuous circadian imaging (assay 9) between assays. This 
pipeline begins with 3-day-old flies being loaded into the 96-well circadian imaging plates. Using a 
common behavioral platform as much as possible and storing flies between experiments in 96-well 

of these points), gray region is the 95%  confidence interval of the fit, as determined by bootstrap resampling. (G) Distilled correlation matrix in which 
all correlated measures represent unexpected relationships. Meaningful correlations in this matrix can be found outside the within-a-priori-group on-
diagonal blocks. (H) Example scatter plot from the distilled correlations. Plot elements as in (F). (I) Scree plot of the ranked, normalized eigenvalues, that 
is, the % variance explained by each PC, of the distilled behavior matrix, versus PC #. (J) Connected components spectrum (see text and Figure 1—
figure supplement 10) for the distilled correlation matrix. Height of bars indicates organization at that dimensionality. (K) Points corresponding to 
individual flies nonlinearly embedded using t-SNE from the 121-dimensional full matrix to two dimensions. (L) Points corresponding to behavioral 
measures nonlinearly embedded using t-SNE from the 384-dimensional space of flies to two dimensions. Colors indicate groups of measures we 
expected a priori to be related.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Persistence of primary behavioral measures across assays.

Figure supplement 2. Genomic sequencing to confirm isogeny of Berlin-Kiso.

Figure supplement 3. Decathlon behavioral measure distributions.

Figure supplement 4. Schematic of the Decathlon analysis pipeline.

Figure supplement 5. Simulated comparison of matrix-infilling methods.

Figure supplement 6. Correlation of correlation matrix values between inbred-1 vs. inbred-2 and shuffled matrices.

Figure supplement 7. Principal component analysis (PCA) of a priori groups.

Figure supplement 8. Distribution of correlation coefficients and p-values in the full and distilled correlation matrix.

Figure supplement 9. Measure loadings for the handedness and activity a priori groups.

Figure supplement 10. Measure loadings for various a priori groups.

Figure supplement 11. Correlations among the principal components (PCs) of switchiness and clumpiness.

Figure supplement 12. Connected components spectra for determining dimensional organization: simulated data examples.

Figure 1 continued
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plates made maintaining the errorless identity of flies over the whole 13 -day experiment substan-
tially easier. Starting on day 3, daily assays began. On each day, flies were lightly anesthetized on an 
ice-chilled plate and aspirated, maintaining their identity, into the assay arrays. After the assay was 
completed (typically after 2 hr of recording), flies were again lightly anesthetized and returned to 
96-well plates for renewed circadian imaging. On the first such day, flies were loaded into an array 
of circular arenas and imaged for total activity (in a version of assay 1). At this point, the most active 
192 flies were retained for further testing. In preliminary experiments, we found that flies that were 
inactive at the beginning of the pipeline were very unlikely to produce substantial amounts of data 
over the rest of the pipeline. With the addition of this activity-screening assay, the total number of 
experiments was 10, and as each fly ‘competes’ in all 10 events, we refer to the entire pipeline as a 
Decathlon.

It is possible that the assay order has some effect on the recorded behavioral measures. So we 
randomized the assay order between Decathlon implementations as much as possible (Figure 1D), 
subject to two restrictions: activity screening was always the first assay, and high-resolution imaging 
for unsupervised analysis (assay 8) was always the last assay. (This assay has lower throughput, and 
3 days were required to complete all 168 remaining flies. If this assay were performed earlier in the 
pipeline, it might introduce heterogeneity across subsequent assays.) When each fly completed its 
run through all Decathlon assays (i.e., over the 3 days of assay 8 imaging), it was flash-frozen in liquid 
nitrogen for RNA sequencing.

Behavioral variability among inbred flies has high dimensionality and 
sparse pairwise correlations
To collect data that would reveal the structure of behavioral variation within a genotype, we conducted 
two Decathlons using highly inbred, nearly isogenic flies derived from the wild-type strain Berlin-K 
(BSC#8522; Nöthel, 1981). We confirmed that this strain was, indeed, highly isogenic with genomic 
sequencing of individual animals, finding  ~75  SNPs in the population across the entire genome 
(Figure 1—figure supplement 2). 115 flies completed the first Decathlon, and 176 the second. 
While we aimed to collect 121 measures per fly, a portion of values were missing, typically because 
flies did not meet assay-specific activity cutoffs. The sample sizes achieved for each assay and the 
distributions of all raw measures are given in Figure  1—figure supplement 3. For subsequent 
analyses, it was sometimes necessary to have a complete data matrix (see Figure 1—figure supple-
ment 4 for a schematic of all analysis pipelines). We infilled missing values using the alternating 
least-squares method, which, as judged by analyses of toy ground truth data, performed better 
than mean-infilling (Figure  1—figure supplement 5). For the sake of maximal statistical power, 
we wanted to merge the data sets from the two Berlin-Kiso Decathlons. The correlation matrices of 
these two data sets were not identical, but were substantially more similar than expected by chance 
(Figure  1—figure supplement 6), implying that while there were inter-Decathlon effects, much 
of the same structure was present in each and merging them was justified. To do this, we z-score-
normalized the data points from each arena array/batch (within each Decathlon) across flies, thus 
eliminating any arena, assay, and Decathlon effects and enriching the data for contrasts between 
individuals. A grand data matrix was made by concatenating these batches (382 individuals × 121 
behavioral measures).

The full correlation matrix of this Berlin-Kiso data set is shown in Figure 1E. It contains a substantial 
amount of structure, indicating that large groups of behavioral measures covary. But the covariance 
of many pairs of measures in the matrix is not surprising. For example, almost all our assays generate 
some measure of locomotor activity (meanSpeed in circular arenas, number of turns in Y-mazes, mean-
Speed in the olfactory tunnels, etc.), and one might expect that especially active flies in one assay will 
be especially active in another assay. Additional unsurprising structure in this matrix comes in identical 
measures recorded in each of the 11–13 circadian assays each fly completed. But, even in this first 
analysis, surprising correlations were evident. For example, flies with higher variation in the inter-turn 
interval in the olfactory assay (‘clumpiness’ in their olfactory turning) exhibited higher mean speed in 
the circadian assays, and flies with higher variation in inter-turn intervals in the Y-maze (clumpiness in 
their Y-maze turning) exhibited lower mutual information in the direction of subsequent turns in the 
Y-maze (‘switchiness’ in their Y-maze handedness; Figure 1F. See below and Buchanan et al., 2015; 
Akhund-Zade et al., 2019) for more about these measures.

https://doi.org/10.7554/eLife.64988
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To produce an exhaustive list of such non-trivial correlations, we distilled the grand correlation 
matrix to a smaller matrix (the ‘distilled matrix’; Figure 1G) in which two kinds of interesting rela-
tionships were revealed: (1) uncorrelated dimensions among measures for which we had a prior 
expectation of correlation (e.g., if meanSpeed in circular arenas is found to be uncorrelated with 
meanSpeed in olfactory tunnels), and (2) correlated dimensions among measures for which we had 
no prior expectation of correlation. Relationships of the former class were identified by enumerating, 
before we ran any correlation analyses, groups of measures we expected to be correlated (‘a priori 
groups’; Figure 1E and G). See Supplementary file 2 and Supplementary file 3 for a breakdown 
of the measures included in each a priori group and their respective inclusion criteria. We looked 
for surprising independence within such groups by computing the principal components (PCs) of 
data submatrices defined by the grouping (e.g., for the ‘activity’ a priori group, by running principal 
component analysis (PCA) on the data set consisting of 382 individual flies, and 57 nominal measures 
of activity). We then replaced each a priori group submatrix with its projection onto its statistically 
significant PCs, as determined by a reshuffling analysis (see Materials and methods, Figure 1—figure 
supplement 7). Some a priori groups largely matched our expectations, with relatively few uncor-
related dimensions among many measures (e.g., the gravitaxis group that had 10 measures and only 2 
significant PCs), while others exhibited relatively many uncorrelated dimensions (e.g., the clumpiness 
group that had five measures and five significant PCs; see Figure 1—figure supplement 7 for all a 
priori group PCAs).

With a priori group submatrices represented in their respective significant PCs, the grand data matrix 
now contained 38 behavioral measures. Every significant correlation between behavioral measures at 
this point represents an unexpected element of structure of behavioral variation (Figure 1G). Given 
the high dimensionality of the full data set and the complex structure of the behavioral measures in 
the distilled correlation matrix, we created an online data browser (http://​decathlon.​debivort.​org) to 
explore the data and compare the alternative correlation matrices. The first impression of the distilled 
correlation matrix is that it is sparse. Most behavioral measures are uncorrelated or weakly correlated, 
suggesting that there are many independent dimensions of behavioral variation. However, 176 pairs 
of behaviors were significantly correlated at a false discovery rate (FDR) of 38%, and the distribution 
of p-values for the entries in this matrix exhibits a clear enrichment of low values (Figure 1—figure 
supplement 8), indicating an enrichment of significant correlations. As an example, flies with high 
values in the first PC of the phototaxis a priori group tend to have high values in the second PC of 
the activity level a priori group. As another example, the third switchiness PC is positively correlated 
with the second clumpiness PC (Figure 1H; a relationship that is likely related to the positive correla-
tion between the Y-maze hand clumpiness and Y-maze hand switchiness, Figure  1F). Interpreting 
the loadings (Figure 1—figure supplements 9 and 10) of these PCs indicates that this is a correla-
tion between olfactory tunnel turn direction switchiness and olfactory tunnel turn timing clumpiness. 
We detected a substantial number of correlations between different dimensions of switchiness and 
clumpiness (Figure 1—figure supplement 11), suggesting that there are multiple couplings between 
these suites of traits.

Stepping back from specific pairwise correlations, we examined the overall geometry of behavioral 
variation. The full matrix contained 22 significant PCs, with PCs 1–3 explaining 9.3, 6.9, and 5.8%  of 
the variance, respectively (the distilled matrix contained 16 significant PCs, with PCs 1–3 explaining 
13.8, 10.0, and 7.7%  of the variance, respectively; Figure 1I). But the amount of variance explained 
across PCs does not provide the full picture of how many dimensions of variation are present in a 
data set. A correlation matrix can be organized at different scales/hierarchically, so there need not 
be a single number that characterizes dimensionality. As an intuitive example, data filling a volume 
shaped like a frisbee is organized largely in two dimensions. Data shaped like a rugby ball is somewhat 
one-dimensional, not particularly two-dimensional, and somewhat three-dimensional. An approach is 
needed that can characterize such continuous variation in organization across dimensionalities, partic-
ularly the possibility that the data are not structured tidily in a single dimensionality.

We developed a ‘connected components spectrum’ analysis that characterizes the continuously 
varying degree of organization of a correlation matrix from dimensionality 1 to d, the total dimen-
sionality of the data. Briefly, we thresholded the absolute value of the correlation matrix at values 
ranging from 1 to d, and, treating these matrices as adjacency matrices, determined the number of 
connected components, recording how often n connected components were observed. See Materials 

https://doi.org/10.7554/eLife.64988
http://decathlon.debivort.org
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and methods and Figure 1—figure supplement 12. These connected components spectra can be 
interpreted as follows: peaks at dimensionality = 1 indicate that all measures are coupled in a network 
of at least weak correlations; peaks at dimensionality = d indicate that all measures are to some degree 
uncorrelated; peaks in between these values indicate intermediate scales of organization. Multiple 
peaks are possible because these kinds of organization are not mutually exclusive. The connected 
components spectrum (Figure 1J) of the distilled Decathlon data set had peaks at 1 and d (Li and 
Durbin, 2009). There was also evidence for structure over the full range of intermediate dimension-
alities. Overall, the organization is one of predominantly uncorrelated behaviors, with sparse sets of 
behaviors correlated with continuously varying strengths.

To assess how individual flies are distributed in behavior space, we embedded them from the 
384-dimensional space into two dimensions using t-SNE (van der Maaten and Hinton, 2008). There 
appear to be no discrete clusters corresponding to ‘types’ of flies. Instead, variation among flies appears 
continuously distributed around a single mode (Figure 1K). The same is true for an embedding of flies 
as represented in the distilled matrix (Figure 4—figure supplement 3D). We also embedded behav-
ioral measures as points from the 121-dimensional space of flies into two dimensions (Figure 1L). This 
confirmed that while our intuition for which sets of measures would be similar (the a priori groups) was 
right in many cases, measures we thought would be similar were often dissimilar across flies, and some-
times measures we did not anticipate being similar were (e.g., phototaxis and activity level).

Behaviors that covary among individuals tend to be patterned similarly 
in time and across the body
With data from the second Decathlon, we characterized the structure of variation in a set of behav-
iors that was potentially exhaustive for one behavioral condition (free walking/motion in a 2D arena; 
Figure 2A). High-speed, high-resolution video was acquired for flies simultaneously in each of two 
rigs. Over 3 days, we acquired 13.5 GB of 200 × 200 px 100 Hz videos centered on each fly as they 
behaved spontaneously over the course of 60 min. These frames were fed into an unsupervised anal-
ysis pipeline (Berman et al., 2014) that computed high-dimensional representations of these data in 
the time-frequency domain before embedding them in two dimensions and demarcating boundaries 
between 70 discrete modes of behavior (Figure 2B). The behavior of each fly was thus represented as 
one of 70 values at each frame. Flies exhibited a broadly similar probability distribution of performing 
each of these behaviors (Figure 2C), though there were conspicuous differences among individual 
patterns of behavior (Figure 2D).

The correlation matrix of behavioral modes identified in the unsupervised analysis was highly 
structured (Figure 2E; like the correlation matrix of the rest of the Decathlon measures, Figure 1E), 
appearing to be strongly organized in 10 or fewer dimensions, with some evidence of organization 
in higher dimensions (Figure 2F). Correlations between behavioral modes identified by unsupervised 
clustering and measures from the other Decathlon assays were generally weaker than correlations 
within these categories, but were nevertheless enriched for significant relationships (Figure  2—
figure supplement 1). For this analysis, there was no equivalent of a priori groups of behavioral 
measures as measures were not defined prior to the analysis. But, in examining sample movies of 
flies executing each of the 70 unsupervised behavioral modes (Videos 1–4), it was clear that highly 
correlated behavioral modes tended to reflect variations on the same type of behavior (e.g., walking) 
or behaviors performed on the same region of the body (e.g., anterior movements including eye and 
foreleg grooming; Figure 2G). In other words, individual flies that perform more eye grooming tend 
to perform more of other anterior behaviors. There were some correlations between behaviors imple-
mented by disparate parts of the body. For example, flies that spent more time performing anterior 
grooming also spent more time performing slow leg movements (Figure 2G). The overall similarity 
of covarying behaviors was confirmed by defining groups of covarying behaviors and observing that 
they were associated with contiguous regions of the embedded behavioral map (Figure 2G). That is, 
behaviors whose prevalence covaries across individuals have similar time-frequency patterns across 
the body. Moreover, these clusters of covarying, contiguously embedded behaviors exhibited similar 
temporal transitions; behaviors that covary across individuals tend to precede specific sets of subse-
quent behaviors (Figure 2H). Thus, there appear to be couplings between the dimensions of behav-
ioral variation across individuals, the domains of the body implementing behavior, and the temporal 
patterning of behaviors.

https://doi.org/10.7554/eLife.64988
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Thermogenetic neural perturbation alters the correlations between 
behaviors
To (1) confirm that the Decathlon experiments revealed biologically meaningful couplings between 
behaviors and (2) probe biological mechanisms potentially giving rise to behavioral correlations, we 
treated correlations in the Decathlon matrices as hypotheses to test using data from a thermoge-
netic neural circuit perturbation screen (Skutt-Kakaria et al., 2019). Specifically, we focused on the 
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Figure 2. Correlation structure of unsupervised behavioral classifications. (A) Schematic of the four camera imaging rig used to acquire single fly videos. 
(B) Overview of the data processing pipeline from single fly videos to behavioral probability maps. (C) Sample individual behavior mode probability 
density functions (PDFs visualized in an embedded t-SNE space). Discrete regions correspond to watersheds of the t-SNE embedding. (D) Sample 
individual PDFs mapped to locations in t-SNE space. Discrete regions correspond to watersheds of the t-SNE embedded probability densities. (E) 
Correlation matrix (top) for individual PDFs with rows and columns hierarchically clustered. Colored blocks indicate labels applied to classifications 
post hoc. Example scatter plots (bottom) of individual behavioral probabilities. Points correspond to probabilities for individual flies. Line is the best fit 
(principal component [PC]1 of these points), gray region is the 95%  confidence interval of the fit, as determined by bootstrap resampling. (F) Connected 
components histogram of the thresholded PDF correlation matrix (see Materials and methods). (G) Discrete behavioral map with individuals zones 
colored by post hoc labels as in (E). (H) Transition probability matrix for behavioral classifications. Entries in the ith row and jth column correspond to 
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The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Correlation of Decathlon assay and unsupervised behavioral measures.

https://doi.org/10.7554/eLife.64988
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many correlations between measures of turn 
timing clumpiness and turn direction switchiness 
(Figure 1H and S8). Before the Decathlon experiment, we had no reason to think these measures 
would be correlated, as one describes higher-order structure in the timing of locomotor turns (clump-
iness), and the other describes higher-order structure in the direction of sequential turns (switchiness). 
Our prediction derived from the Decathlon was that if perturbing a circuit element caused a change in 
clumpiness it would tend to also cause a change in switchiness in a consistent direction. We looked for 
such correlated changes when we inactivated or activated neurons in the central complex (Figure 3—
figure supplement 1A–C), a cluster of neuropils involved in locomotor behaviors (Buchanan et al., 
2015; Ofstad et al., 2011; Kottler et al., 2019) and heading estimation (Seelig and Jayaraman, 
2015; Green et al., 2017; Kakaria and de Bivort, 2017). We used a set of Gal4 lines (Wolff and 
Rubin, 2018), each of which targets a single cell type and that tile the entire protocerebral bridge 
(a central complex neuropil; see Supplementary file 4), to express Shibirets (Kitamoto, 2001) or 
dTRPA1 (Hamada et al., 2008), thermogenetic reagents that block vesicular release and depolarize 
cells, respectively. As controls, we used flies heterozygous for the Gal4 lines and lacking the effector 
transgenes.

Flies with these genotypes were loaded into Y-mazes for behavior imaging before, during, and after 
a temperature ramp from the permissive temperature (23 °C) to the restrictive temperature (32 °C for 

Video 1. Examples of a mode of walking behavior as 
identified by the unsupervised analysis, from movies of 
single flies, made up of successive frames classified as 
the same behavior. Colored dots indicate whether flies 
are outbred (NEX; red) or inbred (Berlin-Kiso; blue).

https://elifesciences.org/articles/64988/figures#video1

Video 2. Examples of a mode of wing grooming 
behavior as identified by the unsupervised analysis, 
from movies of single flies, made up of successive 
frames classified as the same behavior. Colored dots 
indicate whether flies are outbred (NEX; red) or inbred 
(Berlin-Kiso; blue).

https://elifesciences.org/articles/64988/figures#video2

Video 3. Examples of a mode of head grooming 
behavior as identified by the unsupervised analysis, 
from movies of single flies, made up of successive 
frames classified as the same behavior. Colored dots 
indicate whether flies are outbred (NEX; red) or inbred 
(Berlin-Kiso; blue).

https://elifesciences.org/articles/64988/figures#video3

Video 4. Examples of a mode of abdomen flexing 
behavior as identified by the unsupervised analysis, 
from movies of single flies, made up of successive 
frames classified as the same behavior. Colored dots 
indicate whether flies are outbred (NEX; red) or inbred 
(Berlin-Kiso; blue).

https://elifesciences.org/articles/64988/figures#video4

https://doi.org/10.7554/eLife.64988
https://elifesciences.org/articles/64988/figures#video1
https://elifesciences.org/articles/64988/figures#video2
https://elifesciences.org/articles/64988/figures#video3
https://elifesciences.org/articles/64988/figures#video4
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dTRPA1 and 29 °C for Shibirets) (Figure 3—figure supplement 1A). At the permissive temperature, 
we observed significant negative correlations in the average line clumpiness and switchiness of control 
and dTrpA1 expressing lines (Figure 3—figure supplement 1D and E). This suggests that the mech-
anisms that couple variation in switchiness and clumpiness within a genotype may also be at play 
across genotypes. Surprisingly, at the restrictive temperature, we saw significant positive correlations 
between clumpiness and switchiness in all three experimental treatments: control (Gal4/+), Gal4/
Shibirets, and Gal4/dTRPA1 lines. That this correlation appeared in controls suggests that temperature 
alone can selectively alter the function of circuit elements regulating both clumpiness and switchi-
ness, effectively reversing their coupling. The dTrpA1- and Shibirets-expressing lines also showed this 
reversal, but to a lesser extent, suggesting that perturbing neurons in the central complex can block 
temperature-induced changes in the coupling of clumpiness and switchiness.

Individual gene expression variation correlates with individual 
behaviors
That thermogenetic manipulation can disrupt correlations between behavioral measures suggests 
that specific patterns of neural activity underlie the structure of behavioral variation. Such physiolog-
ical variation could arise in stochastic variation in gene expression (Lin et al., 2016) in circuit elements. 
To test this hypothesis, we performed RNA sequencing on the heads of the flies at the end of the 
first Decathlon experiment (Figure 3A). We used Tm3′seq (Pallares et al., 2020) to make 3′-biased 
libraries for each individual animal. We quantified the expression of 17,470 genes in 101 individual 
flies. The expression profiles were strongly correlated across individuals (Figure 3B), but there was 
some significant variation across individuals (Figure 3C). To assess whether this variation was mean-
ingful with respect to behavioral variation, we trained linear models (over 625,000 in total) to predict 
an individual’s behavioral measures from its transcriptional idiosyncrasies. Specifically, we fit simple 
linear models for each of our 97 behavioral measures as a function of the 6642 most highly expressed 
genes. The median model had an r2 value of 0.008% and 5% of models predicted behavior at r2 > 
0.135. Behavioral measures varied greatly in their number of significant (p<0.05) gene predictors 
(Figure 3D), ranging from 147 to 1172 genes.

After identifying genes that were predictive of each behavioral measure, we assessed whether 
they shared functional characteristics (Figure  4—figure supplement 1A) using KEGG pathway 
enrichment analysis (Mootha et al., 2003; Kanehisa and Goto, 2000; Yu et al., 2012). We inde-
pendently performed KEGG enrichment analysis on each gene list to identify functional categories 
of genes overrepresented for any particular behavioral measure compared to the background list 
of 6642 genes. Of this background, 1982 genes (30%) were associated with one or more KEGG 
pathways. Across all behaviors, we found that 37 KEGG pathways were significantly enriched in the 
genes that predicted individual behavioral measures (Figure 3E, Figure 4—figure supplement 1, 
Supplementary file 5). Many of these pathways were significantly enriched compared to shuffled 
controls and were enriched in multiple behavioral measures (Figure 3F). We included features in 
the online Decathlon Data Browser to explore gene-behavior correlations (searching either by 
gene or by behavior) as well as KEGG pathway-behavior correlations. We repeated this experi-
ment and analysis on flies of the second Decathlon experiment and found that the significance of 
pathway enrichments was highly correlated (r = 0.87; Figure 3G), with 43 and 73% of significant 
KEGG pathways in the first and second Decathlon experiments (respectively) shared in the other 
experiment.

Genes related to cellular respiration, protein translation, and phototransduction were significantly 
enriched for multiple behavioral measures, a result that was highly robust to bootstrap resampling. 
Cellular respiration was the most common enrichment, significant in 11 of 97 behavioral measures, 
suggesting that variation in metabolic rate may be predictive of variation in many behaviors. Indeed, 
metabolic function was a common link between significant categories, with a total of 24 of 37 being 
related to metabolism. We also found 11 pathways (including two highly enriched categories: ribo-
some and proteasome) associated with protein turnover. While most enriched pathways were related 
to basic cellular processes, others (Hedgehog signaling, Wnt signaling, insect hormone biosynthesis, 
SNARE vesicular transport, and phototransduction) suggested roles for development and neuronal 
function in individual behavioral variation.

https://doi.org/10.7554/eLife.64988
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Behavioral variability has a similar structure in inbred and outbred lines
If transcriptomic differences predict individual behavioral differences within a genotype, then the 
structure of behavioral variability might be very different in outbred populations, where transcriptomic 
differences are (presumably) much more substantial. We tested this by conducting a Decathlon exper-
iment on outbred flies (n = 192) from a synthetic genetic mapping population (Long et al., 2014). 
These animals were from a high (~100)-generation intercross population (‘NEX’; seeded in the first 
generation by eight kinds of F1 heterozygotes produced by round-robin cross from eight inbred wild 
strains). A distilled correlation matrix of behavioral measures (Figure 4A) was produced by the same 
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Figure 3. Correlation between individual transcriptomes and behavioral biases. (A) Steps for collecting transcriptomes from flies that have completed 
the Decathlon. (B) Data matrix of individual head transcriptomes. Rows are individual flies (n = 98). Columns are 17,470 genes sorted by their mean 
expression across individuals. The dashed line indicates the mean expression cutoff at 10 reads per million (RPM), below which genes were excluded 
from analysis. (C) Scree plots of the logged % variance explained for ranked principal components of gene expression variation, for observed (red) and 
shuffled (black) data. Shaded region corresponds to 95% CI as calculated by bootstrap resampling. (D) Performance heatmap (-log p) of linear models 
predicting the behavior of individual flies from single-gene expression. Colored bars (left) indicate a priori group identity of behavioral measures 
(rows). Bar graphs show the number of significant (p<0.05) models for each gene (top) and behavior (right). (E) Heatmap showing the probability 
across bootstrap replicates of a KEGG pathway being significantly enriched in the list of predictive genes for a given behavior. (F) Bar plot showing the 
average across bootstrap replicates of the maximum (across behaviors) negative log adjusted p-value of all enriched KEGG pathways. Color indicates 
results from observed (gray) or shuffled control (black) data. (G) Average maximum adjusted -log p-value for enriched KEGG pathways common to all 
Decathlon iterations. Pathway labels (right) are ordered by batch 3 (outbred) -log adjusted p-value.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effect of thermogenetic neural perturbation on clumpiness and switchiness.

https://doi.org/10.7554/eLife.64988
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method as above. At first glance, it appears qualitatively similar to the distilled correlation matrix 
from inbred animals (Figure 1G). This impression was confirmed in more formal comparisons of the 
structure of behavior in inbred and outbred populations. In inbred and outbred populations, (1) indi-
viduals do not fall into discrete clusters, as determined by t-SNE embedding of individuals as points 
(Figure 4B). Moreover inbred and outbred flies appear to lie on the same manifold in behavioral 
measure space; (2) behavioral measures cluster according to their membership in a priori groups simi-
larly in outbred (Figure 4C) and inbred (Figure 1L) populations; (3) the distribution of percent variance 
explained by PC was similar (Figure 4D); and (4) there is a similar connected components spectrum, 
with substantial distribution of behavioral biases across the full d dimensions and a sparse network 
of correlations coupling behaviors over a continuum of dimensionalities (Figure 4E). In addition to 
the Decathlon assay measurements, we also recorded high-speed, high-resolution videos of outbred 
flies for unsupervised classification and co-embedded their postural behavior modes with those of 
inbred flies. Correlated clusters of unsupervised behavior modes from outbred flies corresponded 
broadly to the clusters mapped to anatomical regions in inbred flies (Figure 4—figure supplement 
1). We further conducted transcriptomic sequencing and analysis on the heads of these outbred flies 
and found that, similar to the inbred flies, their behaviors were broadly correlated to gene expression 
(Figure 4—figure supplement 2, Figure 4—figure supplement 3). The percent of significant path-
ways overlapping between pairs of inbred and outbred Decathlon experiments was similar to that of 
pairs of inbred Decathlon experiments, ranging from 38% to 64%.

After determining that the overall structure of behavioral variation in inbred and outbred popula-
tions is similar, we asked whether it was also similar in specific correlations. There appears to be some 
similarity at this level (Figure 4F); the correlation coefficient between the inbred and outbred popu-
lations in the pairwise correlations between behavioral measures is statistically significant (p=0.001), 
but low in magnitude (r = 0.11). Examining specific pairs of scatter plots, it is clear that the correla-
tions between specific behaviors are sometimes the same between the inbred and outbred animals, 
but sometimes not (Figure 4G, Figure 4—figure supplement 4). A caveat in interpreting apparent 
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Figure 4. Structure of behavioral variation in outbred flies. (A) Distilled correlation matrix for outbred NEX flies. Colored blocks indicate a priori 
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of the ranked, normalized eigenvalues, that is, the % variance explained by each principal component (PC), of the distilled covariance matrix, versus 
PC #. (E) Connected components spectra for outbred and inbred correlation matrices (see Materials and methods). (F) Scatter plot of the distilled 
matrix correlation coefficients for inbred and outbred flies. Points correspond to distilled matrix measure pairs. (G) Example scatter plots of distilled 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation structure of outbred unsupervised behavior classifications.

Figure supplement 2. Correlation between individual transcriptomes and behavioral biases.

Figure supplement 3. Correlation between individual transcriptomes and unsupervised behavioral measures.

Figure supplement 4. Comparison of inbred and outbred correlations.

https://doi.org/10.7554/eLife.64988
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differences between the inbred and outbred matrices is that two qualities are different between the 
animals used in the respective experiments: the degree of genetic diversity, but also (necessarily) the 
genetic background of the flies.

Behavioral variability has high dimensionality regardless of the 
mechanistic origins of variation
Lastly, we examined how the correlation structure of behavior compared between sets of flies with 
variation coming from different sources. Specifically, we looked at four data sets: (1) the BABAM 
data set (Robie et al., 2017), in which measures were acquired from groups of flies behaving in open 
arenas, and variation came from the thermogenetic activation of 2381 different sets of neurons (the 
first-generation FlyLight Gal4 lines Jenett et al., 2012); (2) a Drosophila Genome Reference Panel 
(DGRP; Mackay et  al., 2012) behavioral data set, in which measures were acquired in behavioral 
assays similar to the Decathlon experiments (sometimes manually, sometimes automatically), and vari-
ation came from the natural genetic variation between lines in the DGRP collection; (3) a DGRP phys-
iological data set, in which measures are physiological or metabolic (e.g., body weight and glucose 
levels) and variation came from the natural genetic variation between lines in the DGRP collection; 
and (4) the split-Gal4 Descending Neuron (DN) data set (Cande et al., 2018) in which measures came 
from the same unsupervised cluster approach as Figure 2, and variation came from the optogenetic 
activation of specific sets of descending neurons projecting from the brain to the ventral nerve cord 
(Namiki et al., 2018). We analyzed these data sets with the same tools we used to characterize the 
structure of behavioral variation in the Decathlon experiments.

All of these data sets show substantial structure in their correlation matrices (Figure  5A and 
Figure 5—figure supplement 1). The BABAM and especially the DN correlation matrices contain 
numerous high correlation values, indicative of strong couplings between behaviors under these 
neuronal manipulations. The DGRP correlation matrices, especially the DGRP behavioral matrix, look 
more qualitatively similar to the Decathlon matrix, with lower, sparser correlations. This suggests that 
behavioral variation has coarsely similar structure whether variation arises intragenotypically (e.g., 
through stochastic variation in transcription; Figures 3B and 1J), intergenotypically among outbred 
individuals (Figure  4E), or intergenotypically among inbred lines derived from wild populations 
(Figure 5A2). A caveat of this conclusion is that sparse correlation matrices can arise either from true, 
biological independence of behavioral measures or from measurement error.

The connected components spectra of these matrices (Figure 5B) are similar in offering evidence of 
organization over a wide range of dimensionalities, including high dimensionalities. Only the BABAM 
spectrum has no power at the dimensionality of its raw count of measurements. The BABAM and DN 
spectra have a single predominant peak (at dimensionality = 1), suggesting that most measures belong 
to a single network of at least weak couplings. This is especially true in the BABAM data and is more 
true in the optogenetic experimental animals than controls in the DN data. The DGRP physiology data 
exhibits weak peaks at dimensionality = 1 and d, but also peaks at ~25 and 37 dimensions, suggesting 
that intergenotypic variation in physiology may have an intrinsic dimensionality in that range. Alterna-
tively, since these data sets comprise multiple studies, organization at this dimensionality may reflect 
batch effects or multiple related measurements within studies. The spectrum of the DGRP behavior 
data looks similar to that of the Decathlons, with peaks at dimensionality = 1 and d, and evidence for 
structure over the full range of intermediate dimensionalities. There is also a peak at ~27 dimensions, 
which may also correspond to study-level effects. Ultimately, we found no evidence for low-dimensional 
organization in either DGRP data set. The distribution of individual lines in the space of DGRP behavior 
(and physiology) measures appears to be distributed single mode (Figure 5C2 and C3), like individual 
flies in the Decathlon (Figure 1K). In contrast, there is some organization of individual lines in the 
BABAM and DN data sets, likely reflecting neuronal perturbations affecting multiple circuit elements 
mediating the same behavior(s) (e.g., multiple lines targeting the same neuropil). Measures fall into 
clusters in all of these data sets except the DGRP behavioral measures (Figure 5D), which appear 
distributed around a single mode, perhaps reflecting the high dimensionality of behavior itself.

Discussion
Individuals exhibit different behaviors, even when they have the same genotype and have been reared 
in the same environment. These differences might covary or lie on a manifold of specific geometry in 

https://doi.org/10.7554/eLife.64988
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behavioral variation space, but the structure of intragenotypic behavioral variation is uncharacterized. 
We designed a pipeline of 10 behavioral assays (Figure 1), which collectively yielded up to 121 behav-
ioral measures per individual animal. We also used unsupervised clustering to identify an additional 
70 measures per individual based on a time-frequency analysis of high-resolution video of the flies 
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Figure 5. Analysis of Drosophila behavioral covariation in other non-isogenic populations. (A) Correlation matrices of previously published data 
sets. Rows correspond to analyses performed on each data set. From left to right, the data sets (columns) are as follows: line averages of supervised 
behavioral classifications following thermogenetic inactivation in the fly olympiad screen (Robie et al., 2017), line averages of behavioral phenotypic 
data from wild-type inbred lines in the Drosophila Genomic Reference Panel (DGRP) database, line averages of physiological phenotypic data from the 
DGRP database, line averages of the fold change in unsupervised behavioral classifications following optogenetic activation of descending neurons 
(Cande et al., 2018). (B) Connected components spectra for each correlation matrix (see Materials and methods). Color in the rightmost plots (B–D) 
indicates either control (Gal4 driver only) or experimental animals (Gal4 × dTrapA1). (C) Points corresponding to lines nonlinearly embedded using t-
SNE from the D-dimensional raw measure space to two dimensions (from left to right, d = 871, 31, 77, 151). (D) Points corresponding to lines nonlinearly 
embedded using t-SNE from the n-dimensional raw measure space to two dimensions (from left to right, n = 2083, 169, 169, 176).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Structure of behavioral variation in non-Decathlon data sets.
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behaving spontaneously (Figure 2). These measures were the fly-specific rates of exhibiting each of 
the 70 unsupervised behavioral modes. All in all, across three 15- day Decathlon experiments, we 
collected 191 behavioral measures from 576 flies. This allowed us to produce a full correlation matrix 
of the behavioral measures exhibited by inbred animals grown in the lab (Figure 1E).

There is a well-developed theoretical framework for understanding the multivariate correlation 
structure of phenotypes. In quantitative genetics, G-matrices characterize the variance and covariance 
structure of phenotypes (be they behavioral, physiological, morphological) stemming from genetic 
differences among individuals or strains (Mackay, 2009; Bruijning et al., 2020). These representa-
tions allow the quantitative prediction of responses to selection and constrain the combinations of 
phenotypes individuals can exhibit. As such, these representations are a key part of predicting the 
future trajectories of evolution. Just as the phenotypic variance can be parsed into genetic variance, 
environmental variance, GxE interaction variance, etc., covariance can be similarly dissected (Char-
mantier et al., 2014; Berdal and Dochtermann, 2019). For example, the classic model of phenotypic 
variance VP = VG + VE has a direct phenotypic covariance analogue: CovP = CovG + CovE. The last term 
(CovE) is further broken down into temporary environmental covariances and permanent environ-
mental covariances (CovPE) that endure for the duration of observations (similar to our measurements 
of individual behavioral bias). In flies, we have the potential to directly measure CovPE by rearing 
inbred animals in standardized lab environments, profiling their individual biases over a wide range 
of behavioral measures, and directly quantifying the variance and covariance of behavioral bias. This 
is significant for quantitative geneticists because a meta-analysis of behavioral traits indicates that 
across behaviors ~23%  of variance can be attributed to heritable factors (Dochtermann et al., 2019). 
This means that environmental factors, which include both deterministic effects and stochastic intrag-
enotypic effects, explain ~77%  of behavioral variance. Thus, characterizing the structure of CovPE will 
contribute to closing a significant gap in our understanding of the basis of behavioral diversity.

For ethologists and behavioral neuroscientists, this work yields a view of the geometry of intrageno-
typic behavioral variation, which can be thought of as an emergent product of developmental biolog-
ical processes and the dynamic interaction of neural activity and animals’ environment. From the full 
behavioral matrix, we made a so-called ‘distilled’ matrix in which any significant correlation indicates 
a surprising new relation between behaviors (Figure 1G and Figure 1—figure supplement 11). This 
form of the data minimizes duplicated measures of the same behavior, allowing us to cleanly analyze 
the geometry of behavioral variation. We found that behavioral measures were largely uncorrelated 
with each other, but small sets of behaviors were significantly correlated to varying degrees. This 
sparse correlation structure means that behavioral variation cannot be readily compressed to a small 
number of dimensions. Moreover, a single number cannot fully characterize the dimensional organi-
zation of a correlation matrix; so we developed a spectral approach (based on a connected compo-
nents analysis of thresholded correlation matrices) that examined the degree of organization across all 
possible dimensionalities in the data (Figures 1J, 2F, 4E and 5B, Figure 1—figure supplement 12). 
This approach revealed organization across intermediate dimensionalities corresponding to correla-
tions of varying strength between sparse sets of behaviors (Figure 1F and H and Figure 1—figure 
supplement 12). Embedding data points corresponding to individual flies from the high-dimensional 
space of individual biases into two dimensions produced a broad distribution around a single mode 
(Figure 1K), implying that there are no discrete types of flies.

One of the specific, surprising correlations we discovered was between ‘clumpiness’ and ‘switch-
iness’ (Figure 1F, H and Figure 1—figure supplement 11, Figure 3—figure supplement 1). These 
are slightly abstract, higher-order behavioral measures, corresponding respectively to the burstiness 
of turn/action/decision timing and the degree of independence between consecutive binary choices. 
We had no a priori reason to expect these measures would be correlated since one pertains to the 
structure of actions in time and one pertains to the persistence of trial-to-trial biases. However, their 
linkage may reflect a shared role in controlling the higher-order statistics of exploration. Sequences 
of behavior with clumps of bouts (either in time or in space) might contribute to fat-tailed distribu-
tions of dispersal that are advantageous over Brownian motion for foragers in environments of sparse 
resources (Bartumeus et al., 2002). Variation in switchiness and clumpiness across individuals might 
therefore reflect variation in multibehavioral navigational strategies, perhaps as part of bet-hedging 
evolutionary strategy (Hopper, 1999; Kain et al., 2015). From a perspective of biological mechanism, 
the correlation between these two behaviors (or other pairs we discovered) could be established 
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during development. Individual wiring (Mellert et al., 2016; Linneweber et al., 2020) or physiolog-
ical variations in neurons that mediate more than one behavior could impart coupled changes to all 
such behaviors.

If such an explanation accounts for the correlation of clumpiness and switchiness, there may be 
shared neural circuit elements in the circuits controlling decision timing and decision bias. We tested 
this idea in a thermogenetic screen of circuit elements in the central complex, a brain region where 
heading direction is represented (Seelig and Jayaraman, 2015) in a ring-attractor circuit (Kakaria 
and de Bivort, 2017). We found that increasing the temperature changed the sign of the correla-
tion between switchiness and clumpiness (Figure 3—figure supplement 1D and E), suggesting that 
changes to brain physiology can alter correlation structure, though these effects might instead be 
caused by any of the many changes in neural state that accompany a temperature change. Indeed, we 
also found that the effector-inducing temperature manipulation alone concomitantly changed clump-
iness and switchiness in some lines. This suggests that potentially subtle alterations of circuit physi-
ology (e.g., temperature shifts [Haddad and Marder, 2018] well within physiological limits) can affect 
the function of circuit elements governing multiple behaviors.

We included behavioral assays in the Decathlon pipeline under a number of constraints. The 
assays had to be high throughput, both in the number of flies that could be assayed and in measures 
being automatically acquired. Flies had to survive at high rates, and the measures had to be stable 
over multiple days (Figure 1—figure supplement 1), because the whole experiment lasted 15 days. 
Because not all behavioral measures showed robust stability for this duration (all showed at least 
some day-to-day stability), the distilled Decathlon matrices likely represent an underestimate of the 
behavioral couplings exhibited over short periods (and perhaps an overestimate of lifelong couplings 
as flies can live more than a month). In the end, we employed a number of spontaneous locomotion 
assays and simple stimulus-evoked assays like odor avoidance and phototaxis.

Light responses were measured in a number of assays (Supplementary file 1), specifically the 
LED Y-maze (Werkhoven et al., 2019; in which flies turned toward or away from lit LEDs in a rapid 
trial-by-trial format), the spatial shade-light assay (in which flies chose to stand in lit or shaded regions 
of an arena that only changed every 4 min), and temporal shade-light (in which the same luminance 
levels were used as the previous assay, but a fly experienced them by traveling into virtual zones that 
triggered the illumination of the whole arena at a particular luminance) (Figure 1B). These assays were 
potentially redundant, and we included this cluster of phototaxis assays in part as a positive control. 
However, the three phototactic measures we thought would be correlated a priori were, in fact, 
uncorrelated, each being represented in the distilled correlation matrix (Figure 1G). This may reflect 
flies using different behavioral algorithms (Krakauer et al., 2017), implemented by non-overlapping 
circuits, to implement these behaviors. Indeed, a lack of correlation between behavioral measures was 
the typical observation. This also suggests that we have not come close to sampling the full dimen-
sionality of intragenotypic behavioral variation; if we were able to add more measurements to the 
experiment, they too would likely be uncorrelated.

To address potential biases in our sampling of assay and measure space, we performed an unsuper-
vised analysis (Berman et al., 2014; Cande et al., 2018) of flies walking spontaneously in arenas. This 
approach has the potential to identify all the modes of behavior exhibited in that context. Moreover, 
because the unsupervised algorithm is fundamentally a clustering algorithm, it does not necessarily 
return a definitive number of clusters/behavioral modes (with more data, it can find increasingly more 
clusters). Because we can also extract second-order behavioral measures from this approach, such as 
Markov transition rates between modes, this approach has the potential to yield a huge number of 
measures. In the end, we were conservative in the number of measurements we chose to work with, 
matching it to the same order of magnitude as the number of flies we tested. The correlation matrix 
for the unsupervised behavioral measures featured stronger correlations than the distilled Decathlon 
matrices (Figure 2E). Yet it had a similar connected components spectrum, indicating many dimen-
sions of variation and that not all behavior modes had been sampled (Figure 2F).

Interestingly, the blocks of structure in the correlation matrix aligned, to some extent, with the 
blocks of structure in the Markov transition matrix of these behavioral measures. This suggests that 
behaviors mediated by non-overlapping circuits (those that vary independently across individuals) 
more rarely transition to each other over time. Conversely, behaviors mediated by overlapping 
circuitry are likely to follow each other sequentially. This may reflect the influence of internal states 
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(Calhoun et al., 2019), with an internal state jointly determining what subset of overlapping neurons 
drives behaviors that are appropriate to string together in succession (e.g., Seeds et al., 2014). We 
did not assess the day-to-day persistence of behavioral modes identified in the unsupervised anal-
ysis, so the observed variation across flies could reflect moods rather than permanent personalities. 
Indeed, Hernández et al., 2020 find that high-level clusters in unsupervised modes identified through 
an information bottleneck analysis of the behavioral transitions that occur over many minutes align 
with clusters in the cross-individual covariance matrix. This suggests either that individuality observed 
in approximately hours -long video recordings reflects approximately hours -long transient states or, 
alternatively, that the structure of days-long or lifelong variation mirrors that of hours-long varia-
tion. The latter may be particularly plausible, given that previous studies that measured spontaneous 
microbehaviors using supervised (Kain et al., 2013) and unsupervised (Todd et al., 2017) approaches 
over repeated tests found substantial day-to-day correlations.

We investigated whether individual variation in transcript abundance would predict individual 
behavioral variation (Figure 3). At the end of the Decathlon, flies were flash-frozen and their heads 
were RNA sequenced. We fit linear models for thousands of gene-behavior measure pairs to iden-
tify a set of genes that predict behavioral variation. Some measures had many gene predictors, 
while others had none. Gene function enrichment analysis revealed that variation in the expression 
of genes involved in respiration and other kinds of metabolism predicted variation in many behav-
ioral measures. Genes involved in neuronal and developmental processes were also enriched among 
predictors of individual behavior. These two functional categories are likely linked as there are strong 
causal couplings between metabolism and neural activity (Mann et al., 2020). Variation in behavioral 
measures without expression correlates may not have mechanistic origins in transcriptional variation, 
or the genes that do determine these behaviors may be not expressed in adults, expressed at low 
levels, or expressed in too few cells to detect in bulk head tissue.

Increasing transcriptional variation by adding genetic variation had the potential to change the 
correlation structure of behavioral measures. To our surprise, the distilled correlation matrix of outbred 
flies was qualitatively similar to that of our original inbred Decathlon (Figure 4). Both outbred and 
inbred matrices were dominated by independent axes of variation and sparse correlations between 
axes, with rough agreement in the specific pairwise correlations between these two data sets. These 
two data sets may have differed in their absolute variances (while appearing qualitatively similar in 
their covariances), but the normalization steps we took to resolve inter-Decathlon and assay batch 
effects precluded easy assessment of this possibility. That outbred and inbred variation had quali-
tatively similar structures raises the possibility that the same kinds of biological fluctuations underlie 
behavioral variation in populations of each of these kinds. The high dimensionality of the inbred 
and outbred matrices suggests that behaviors can evolve largely independently of one another (i.e., 
without pleiotropic constraint) either via plastic mechanisms within a genotype or by natural selection 
in a genetically diverse population.

We finally examined the structure of behavioral variation in collections of flies where variation 
came from three additional sources: thermogenetic activation of 2205 sets of neurons across the 
brain (Robie et al., 2017), optogenetic activation of 176 sparse populations of descending neurons 
connecting the brain to the motor centers of the ventral nerve cord (Cande et al., 2018), and variation 
in genotype across ~200 inbred strains derived from wild flies (Mackay et al., 2012). Overall, all of 
these data sets exhibited high degrees of independence in their behavioral measures, though there 
is some variation from one data set to the next. This variation could arise from several non-biological 
sources, including differing extents of collecting multiple measures from the same experiment, which 
can inflate correlations due to coupled noise; differences in the number of repeated or numerically 
coupled measures; batch effects from combining studies conducted in different labs at different 
times; and varying signal-to-noise ratios in the measurements. The structure of behavioral variation 
in the neural activation data sets was somewhat different from that of inbred and outbred flies, with 
a dimensionality smaller than that of the number of measures, and substantially more organization 
in lower dimensionalities (Figure 5A and B). These data sets also showed clustering of individual 
flies in behavior space (Figure 5C). Behavioral variation across the inbred strains derived from wild 
flies was organized qualitatively similarly to the variation across individual flies in inbred and outbred 
populations, again suggesting that the biological fluctuations across genotypes mirror those within a 
genotype as respects the coordination of behavior.
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This work represents the most complete characterization to date of the structure of behavioral vari-
ation within a genotype. We found that there are no discrete types of flies, and there are many inde-
pendent dimensions of behavioral variation. Moreover, the similar organization of biological variation 
within and among genotypes suggests that fluctuations in the same biological processes underpin 
behavioral variation at both of these levels. Elucidating the causal molecular and genetic fluctuations 
underpinning intragenotypic variation and covariation will be a challenging and illuminating future 
research direction.

Materials and methods
Software
All software for analysis and figures in this paper as well as documentation are available at http://​
lab.​debivort.​org/​structure-​of-​behavioral-​variability/. Static DOI for this code is available athttps://​doi.​
org/​10.​5281/​zenodo.​4110049. Actively maintained versions of the analysis software are available at 
https://​github.​com/​de-​Bivort-​Lab/​decathlon (copy archived at swh:1:rev:6c9e338db6f03e42bbbb2e-
2afa0cfd52162e7772; de Bivort, 2021a).

MARGO (animal tracking and stimulus delivery software): https://​github.​com/​de-​Bivort-​Lab/​margo 
(copy archived at swh:1:rev:fe61a873494e464d2a3ee48f67e885eb95359e0a, de Bivort, 2021b).

Decathlon Data Browser (interactive web application for exploring data): .http://​decathlon.​
debivort.​org.

Data
Data such as behavioral measures, unsupervised embedding PDFs, RNAseq read counts, and 
formatted versions of the BABAM, DGRP phenotypic, and DN screen data are available at http://​
lab.​debivort.​org/​structure-​of-​behavioral-​variability/. Static DOI for these data in addition to the unsu-
pervised classification embedding time series data is available at https://​doi.​org/​10.​5281/​zenodo.​
4110049. Our raw tracking data from the assays covers ~600 flies over 12 days of continuous tracking 
at between 3 and 60 Hz and are greater than 50 GB in size. Our unsupervised classification videos 
comprise ~144 million frames of uncompressed video data and are greater than 8 TB in size. For these 
reasons, we have not posted the rawest forms of the data to online repositories and instead offer 
them upon request by external hard drive.

Fly strains
All Decathlon experiments were performed on virgin female fruit flies derived from inbred wild-type 
Berlin-K (BSC# 8522) isogenic flies or custom outbred flies (NEX) (REFEF). Prior to Decathlon testing, 
a lineage of Berlin-K isogenic flies (Berlin-Kiso) were selected for robustness from a pool of inbred 
lineages as the result of a short screen designed to mimic the stresses of the Decathlon assay battery. 
All inbred lineages tested were derived from three wild-type strains: Berlin-K (BK), Canton-S (CS), and 
Oregon-R (OR). For each wild-type strain, six virgin females were dispensed into separate vials and 
paired with a single male fly to establish separate lineages. Parental flies were removed from their vials 
after 2 days to separate them from their progeny. For all successive generations after the first gener-
ation, the six virgin females were picked from the three vials (two from each) with the highest number 
of progeny to select for fecundity and overall ease of maintenance. Virgins were then dispensed 
into separate vials with full sibling males for inbreeding. After 13 generations of inbreeding, this way 
the resulting lineages (six total for each strain) were screened for overall activity level via behavioral 
testing on the Y-maze assay in cohorts of 120 flies from each lineage. For each strain, the lineage 
with the highest number of choices (turns) in the Y-maze from was kept for further testing to improve 
overall sampling in behavioral experiments, resulting in a single lineage from each strain: Berlin-Kiso, 
Canton-Siso, and Oregon-Riso.

To screen robustness to the stresses of multiple days of behavioral testing such as periodic food 
deprivation and repeated cold anesthetization, cohorts of 96 flies from the resulting inbred lines were 
singly housed and repeatedly tested on the Y-maze assay over a 3 -day period. Berlin-Kiso and Canton-
Siso were selected as the lines with lowest and second lowest (respectively) mortality after 3 days of 
testing. To potentially introduce hybrid vigor and reduce the deleterious effects of inbreeding, four F1 
hybrid inbred strains were generated by crossing each combination of parental sex and inbred strain 
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(e.g., ♂ Berlin-Kiso × ♀ Canton-Siso, ♀ Berlin-Kiso × ♂ Canton-Siso, etc.) and screened for mortality in the 
3 -day experiment described above. Contrary to our expectation that increased heterozygosity in the 
F1 hybrid lines would result in more robust flies and lower mortality, F1 flies displayed intermediate 
mortality and activity level (choice number) between Berlin-Kiso and Canton-Siso parentals. Thus Berlin-
Kiso flies were ultimately selected for the Decathlon screen.

Fly handling
Parental flies and Decathlon flies (prior to individual housing) were raised on CalTech formula corn-
meal media under 12 hr/12 hr light and dark cycle in an incubator at 25 °C and 70%  humidity. A 
single cohort of virgin Decathlon flies were collected over an 8 hr period (10 AM to 6 PM) and stored 
in group housing up to a maximum of 288 flies. On the following day, flies were anesthetized using 
carbon dioxide (CO2) and were aspirated into custom multiwell plates for individual housing (FlySorter 
LLC, Seattle, WA) on cornmeal media. Individually housed flies were stored in a custom imaging box 
for circadian activity measurements (circadian chamber) on a 12 hr light and dark cycle (10 AM to 10 
PM), which was housed inside of an environmentally controlled room at 23 °C and 40%  humidity. 
Food media was replaced and individual housing trays were cleaned every 2 days while flies were in 
behavioral testing to keep food moisturized and prevent microbial buildup.

Following the start of Decathlon (3  days post-eclosion), flies were removed from the circadian 
chamber each day for behavioral testing between 11 AM and 2 PM. Prior to all behavioral experiments 
(excluding olfaction), flies were cold anesthetized by transferring individual housing plates and food 
trays to an ice-chilled aluminum block in a 4 °C for 10 min. This time was the minimum time required 
to reliably induce chill coma in most flies given the mass and low thermal conductivity of the cornmeal 
media separating the flies and the chill block. Once anesthetized, flies were individually transferred 
via aspiration to room temperature custom behavioral arenas (without food) where they quickly awoke 
(typically 1–10 s) after transfer. After all flies were transferred, they were given an additional 20 min to 
recover prior to behavioral testing. Flies were then tested in custom behavioral platforms, lasting as 
little as 15 min (olfaction only) and as much as 2 hr (typical). Following testing, flies were returned to 
individual housing via aspiration either directly (olfaction only) or after re-anesthetizing by transferring 
the custom behavioral arenas to an ice-chilled aluminum block for 10 min. Once all flies were returned, 
the individual housing plates were returned to the circadian chamber between 2 and 5 PM.

Custom behavioral experiments
Assay fabrication
Unless otherwise specified, all tracking was conducted in custom imaging boxes constructed with 
laser-cut acrylic and aluminum rails. Schematics of custom behavioral arenas and behavioral boxes 
were designed in AutoCAD 2014 (AutoDesk). Arena parts were laser-cut from black and clear acrylic 
and were formed as stacked layers joined with Plastruct plastic weld. Arena floors were made from 
sandblasted clear acrylic and arena lids were made from custom-cut clear eighth inch acrylic. Sche-
matics for behavioral boxes and behavioral arenas can be found on the de Bivort Lab schematics 
repository (https://​github.​com/​de-​Bivort-​Lab/​dblab-​schematics). Illumination was provided by dual-
channel white and infrared LED array panels mounted at the base (Part BK3301, Knema LLC, Shreve-
port, LA). Adjacent pairs of white and infrared LEDs were arrayed in a 14 × 14 grid spaced 2.2 cm 
apart. White and infrared LEDs were wired for independent control by MOSFET transistors and a 
Teensy 3.2 microcontroller. Two sand-blasted clear acrylic diffusers were placed in between the illumi-
nator and the behavioral arena for smooth backlighting.

For circadian experiments, flies were housed and imaged in individual fly storage units (FlyPlates) 
from FlySorter, LLC. Circadian imaging boxes consisted of a small (6" × 6" × 18") enclosed behavioral 
box with a dual-channel LED illuminator on a 12:12 hr light and dark cycle programmatically controlled 
via MARGO behavioral tracking software (https://​github.​com/​de-​Bivort-​Lab/​margo). A heat-sink was 
affixed to the underside of the illuminator panel (outside of the box), and fans were used to ensure the 
interior of the boxes remained consistent with the temperature of the environmental room.

The olfactory sensitivity assay was performed in a custom behavioral chamber modeled on 
Claridge-Chang et  al., 2009. The apparatus consisted of 15 parallel tunnels constructed from 
Accura 60 plastic using stereolithography (In’Tech Industries) fabrication. Stainless steel hypo 
tubing (Small Parts) was used to connect the apparatus with (ID: 0.7 mm). Odorized or clean air 
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was delivered via Teflon odor tubes to inlet ports at each end of the tunnel and streams vented 
to the room through exhaust ports in the center forming a sharp choice zone. An active vacuum 
was not applied to the exhaust ports, and the tunnels operated close to atmospheric pressure 
throughout the experiment. A clear acrylic lid was clamped in place above the apparatus to ensure 
an air-tight seal during odor presentation. Air dilutions could be made independently for each side 
of the apparatus. A custom 15-way PEEK manifold was used on each side to split the odorized 
flow equally between 15 tunnel inlets. A final valve (SH360T041; NResearch) was used immediately 
upstream of each manifold to quickly switch between pure dehumidified air and the odorized 
stream.

Phototactic stimuli were delivered with a custom 12" × 12" PCB designed in Express PCB CAD soft-
ware and manufactured by ExpressPCB. Briefly, the PCB was designed to power and independently 
control 216 white light LEDs (11.34 mW ± 4.3 μW at 20 ma) geometrically arranged to match the 
maze arm ends of an array of Y-shaped behavioral arenas. LED intensity control was provided over 
USB via board interface with a Teensy 3.2 microcontroller and constant current driver boards (Adafruit 
24-Channel TLC5947 LED Driver). Holes in the footprint shape of each individual arena were custom 
cut into the PCB with water jet cutter to provide infrared backlighting.

Visual stimuli in the spatial shade-light, temporal shade-light, and optomotor assays were delivered 
in a behavior box modified to accommodate stimulus delivery with an overhead projector (Optoma 
S310e DLP). The DLP color wheel was removed to reduce apparent flicker to the flies caused by low 
sensitivity to red light in flies. Stimuli were accurately targeted to individual flies by creating a regis-
tration mapping between the projector and the tracking camera using previously described method 
using MARGO tracking software. Briefly, a 2D polynomial registration model of a projector targeting 
coordinates of a small (10 px) was fitted to coordinates obtained by tracking the dot as it was rastered 
over the projector display field. All visual stimuli were crafted and displayed with PsychToolbox.

Single-fly videos used in the motionmapper unsupervised classification pipeline were acquired in 
behavioral boxes as described above. We replaced the dual-channel LED illuminator with an LCD 
screen backlight to reduce apparent non-uniformities in the videos. Behavioral arenas consisted of 
custom thermoformed clear PTEG lid with sloping sides to prevent wall walking. Lids were coated with 
sigmacote (Sigma-Aldrich SL2-100ML) to prevent flies from walking on the ceiling and were clamped 
in place to a 0.25" tempered glass base via custom acrylic 2 × 2 array of arenas.

Behavioral tracking
Flies were imaged with overhead tracking cameras at varying resolutions and frame rates. Unless 
otherwise specified, images for behavior tracking were acquired at 10 Hz with a 1280 × 1024 pixel 
BlackFly GigE camera (PointGrey BFLY-U3-13S2M-CS) fitted with a Fujinon YV2.8 × 2.8 SA-2, 2.8– 8 
mm, 1/3", CS mount lens. Circadian and optomotor experiments were conducted with 3  Hz and 
60 Hz imaging, respectively. Tracking images for the odor sensitivity assay were acquired at 1328 × 
1048 pixel at 23 Hz (PointGrey FMVU-13S2C). Single-fly videos for unsupervised classification were 
acquired.

Fly tracking and stimulus control for all experiments (excluding unsupervised single-fly imaging) 
were programmed in MATLAB and implemented with MARGO (Werkhoven et  al., 2019). The 
MARGO tracking algorithm has been previously described in detail. Briefly, binary foreground blobs 
were segmented from a thresholded difference image computed by subtracting each frame from 
an estimate of the background. A rolling model of the background was computed as the median 
image of the rolling stack of background sample images. Every 2 min, a new sample image of the 
background was acquired and replaced the oldest image in the stack. Regions of interest (ROIs) 
were defined to encompass only a single behavioral arena (i.e., one fly), and the tracking algorithm 
proceeded independently for each ROI. The tracking threshold used to segment binary foreground 
blobs from the background was manually set prior to tracking and was independent for each exper-
iment. Blobs below a minimum or maximum area (also defined manually for each experiment) were 
excluded from tracking in each frame. After filtering, the centroid trace of each ROI was updated with 
the position of the blob with shortest distance to the last known (non-NaN) position of each trace. 
The centroid trace of any ROI with no detected blobs in any given frame received no position (i.e., 
NaN). Output measurements of speed and area were converted from pixels/s and pixels2 to mm/s 
and mm2, respectively, by measuring the length of a known landmark size (e.g., arena diameter) prior 
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to tracking. Fisheye distortion of camera lenses was modeled and corrected via MATLAB’s camera 
calibrator app.

For the acquisition of single-fly videos used in the motionmapper unsupervised classification pipe-
line, flies were tracked in real time to reduce video file size by extracting a 200 × 200 pixel region 
around the fly centroid. Tracking was performed by computing the centroid of the entire difference 
image acquired and was calculated via the method described above. Tracking was coordinated simul-
taneously for four 1280 × 1024 pixel resolution cameras (PointGrey CM3-U3-13Y3M-CS) at 100 Hz 
with a custom LabView script obtained from the J. Shaevitz lab (personal communication), which was 
lightly modified to add background subtraction to the tracking.

Decathlon experimental design
Flies underwent behavioral testing from 3  days post-eclosion up to a maximum of 14  days post-
eclosion depending on when unsupervised classification was performed. For each Decathlon exper-
iment, behavioral testing began with activity screen of 288 flies in the Y-maze assay. Flies were then 
sorted by number turns made during the activity screen. The top 192 flies with the highest activity 
level were selected for testing in the remainder of the Decathlon and were transferred to individual 
housing on day 3 post-eclosion for overnight circadian behavior profiling. On subsequent days, all flies 
were anesthetized as described above and transferred from individual housing into a behavioral assay 
each day (from days 3 to 11 post-eclosion) and were returned individual housing for overnight circa-
dian behavioral measurement. Flies were tested in cohorts dependent on the throughput capacity 
(described for each assay below) of the assay run on any given day. Although the range of testing 
times for all animals on some days was relatively broad (all experiments were conducted between 11 
AM and 5PM), no behavioral experiment lasted more than 2 hr in duration, meaning that individual 
cohorts typically spent more than 3 hr (2 hr experiment +2× anesthetization and transferring) off of 
food media. The order of individual assays (shown in Figure 1) was randomized at the start of each 
Decathlon with the exception of activity screening and unsupervised imaging, which occurred at the 
beginning and end of each Decathlon (respectively) for logistical feasibility. Descriptions and imple-
mentation details of the Decathlon behavioral assays are provided below and are summarized in 
Supplementary file 1.

After day 11 post-eclosion, remaining living flies were split into three roughly equal-sized cohorts 
(approximately 56 flies each) for unsupervised behavioral imaging, which were imaged in groups 
of four flies between 10 AM and 6 PM on subsequent days. Cohorts of flies were flash-frozen on 
liquid nitrogen immediately following unsupervised behavioral imaging and prepped for RNAseq as 
described above.

Arena circling and circadian assays
Both the arena circling and circadian assays consisted of exploration of a circular arena. Although 
a near identical list of measures of locomotor handedness, speed, and movement bout dynamics 
were recorded in each assay (circadian includes gravitaxis also), the assays are distinguished by their 
background light level, duration, behavioral arena, and access to food. The arena circling assay was 
conducted over 2 hr with constant light in a wide (28 mm diameter) and shallow (1.6 mm depth) arena 
without food. The circadian assay was conducted overnight (20–21 hr) on a 12:12 hr light and dark 
cycle (10 AM:10 PM) with each fly in a narrow (6.8 mm) and deep (10.6 mm) well of a 96-multiwell 
plate. The depth of the arena in addition to the difference in arena ceiling (sigmacoted acrylic in arena 
circling and uncoated plastic mesh circadian) adds a vertical and body orientation dimension to the 
circadian assay not present in arena circling. This feature not only adds a measure of floor vs. ceiling 
preference (i.e., gravitaxis) to the circadian assay but also potentially confounds measures of circling 
directionality due to the fact that flies can circle the arena right-side up on the floor, upside-down on 
the ceiling, or sideways on the walls.

LED Y-maze assay
Individual flies explored symmetrical Y-shaped arenas with LEDs at the end of each arm. For all arenas 
in parallel, real-time tracking detected which arm the fly was in at each frame. At the start of each trial, 
an LED was randomly turned on in one of the unoccupied arms. Once flies walked into one of these 
two new arms, all the LEDs in the arena were turned off and a new trial was initiated by randomly 
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turning on an LED in one of the newly unoccupied arms. This process is repeated for each fly inde-
pendently over 2 hr. Turns were scored as positively (toward a lit LED) or negatively (toward an unlit 
LED) phototactic. LEDs were either fully off (OFF) or were driven at maximum intensity (ON). No inter-
mediate LED intensity values were tested. In addition to the phototactic bias, measures of locomotor 
handedness peed, choice timing, and choice sequence were also recorded.

Odor sensitivity assay
In the odor sensitivity assay, flies explored linear tunnels where half of the tunnel contained an odor 
(typically noxious) and the other contained no odor. Odor ports positioned at either end of the tunnels 
delivered either odor or odorless air. Vents positioned at the midpoint of each tunnel form a sharp 
boundary between the two air streams. Flies were presented with a 3 min baseline period with no 
odor on either side followed by a 12 min experimental period with half odor and half no odor. Sensi-
tivity to the odor was estimated by measuring the fraction of occupancy time spent in the odor half of 
the tunnel. Flies showed a weak aversion to the designated odor side during baseline measurement, 
prior to the presentation of odor (0.47 ± 0.30 mean pre-odor occupancy). Flies displayed strong initial 
aversion (0.17 ± 0.22 mean first half odor occupancy) to the side of the tunnels with the odor, which 
slightly diminished (0.22 ± 0.23 mean second half occupancy) over the stimulus duration. In addition 
to odor occupancy, locomotor handedness was scored as the average direction of heading direction 
reversals on the long axis of the tunnels. In addition to the above measures, speed, turn timing, and 
turn direction sequence were also recorded.

Optomotor assay
In this assay, optomotor stimuli were centered on the bodies of flies by projecting them onto the floor 
of their arenas in which they are walking freely. These stimuli consisted of a maximally contrasting 
(black = 0, white = 1, min. power = 79 µW ± 61 nW, max. power = 2.4 mW ± 4.7 µW) rotating pinwheel 
(spatial frequency = 0.18 cycles/°, rotational speed = 320 °/s) and typically evoked a turn in the direc-
tion of the rotation to stabilize the visual motion. The pinwheel center followed the position of the fly 
as it moved so that the only apparent motion of the stimulus is rotational motion around the body. 
Therefore, the stimulus was closed loop with respect to position and open loop with respect to rota-
tion velocity. We observed that optomotor responses could be reliably elicited, provided individuals 
were already moving when the pinwheel was initiated. We therefore only presented the pinwheel 
when (1) flies were moving, (2) a minimum inter-trial interval (2 s) had passed to prevent behavioral 
responses from adapting, and (3) flies exceeded a minimum distance from the edge of the arena 
to ensure that the stimulus occupied a significant portion of the animal’s FoV. Over 2 hr of testing, 
an optomotor index was calculated for each fly as the fraction (normalized to [–1,1]) of body angle 
change that occurred in the same direction as the stimulus rotation over the duration of the stimulus. 
On average, flies displayed reliable optomotor responses (mean = 0.49 ± 0.16) when stimulated. In 
addition to optomotor index measures of fly activity, movement bout dynamics and locomotor hand-
edness were also recorded.

Spatial light-shade assay
Ambient light preference is estimated in this assay by projecting a circular stimulus with one side fully 
bright (intensity = 1) and the other side fully dark (intensity = 0), with the two regions separated by 
a small (10%  of the arena diameter) boundary zone of intermediate brightness (intensity = 0.5) (min. 
power = 79 µW ± 61 nW, max. power = 2.4 mW ± 4.7 µW). A light occupancy measure was calculated 
for each fly as the fraction of time spent in the lit region divided by the total time spent in both the 
lit and unlit regions. Time spent in the intermediate boundary zone was scored as no preference and 
was excluded from the calculation. Each 2 hr experiment was divided into 15 stimulus cycles with each 
cycle consisting of an alternating 4 min baseline block where each arena was unlit and a 4 min exper-
imental block where shade-light stimuli were targeted to each arena. At the start of each block, each 
stimulus was rotated to center the intermediate zones (or virtual intermediate zone in the baseline 
block) over the flies’ bodies. In effect, this required flies to move from the intermediate zone during 
the block to express any preference. In addition to light occupancy measures of fly activity, movement 
bout dynamics and locomotor handedness were also recorded.

https://doi.org/10.7554/eLife.64988
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Temporal light-shade assay
Ambient light preference is estimated in this assay by projecting a fully bright (intensity = 1) or fully 
dark (intensity = 0) stimulus to the entire arena when flies crossed an invisible virtual boundary in 
the center (min. power = 79 µW ± 61 nW, max. power = 2.4 mW ± 4.7 µW). Therefore, this stimulus 
paradigm was distinct from the spatial light-shade assay in that flies could not express a preference by 
navigating with respect to an apparent spatial pattern of light. A light occupancy measure was calcu-
lated for each fly as the fraction of time flies received the lit stimulus divided by the total duration of 
the experiment (2 hr). The invisible boundary zone was always positioned in the center of the arena 
such that a randomly exploring fly would receive both stimuli in roughly equal amounts. The angular 
orientation of the boundary zone was randomly initialized for each arena independently at the start 
of the experiment. To avoid rapid switching or flickering of the stimulus for flies sitting directly on the 
boundary, flies were required to cross a small buffer zone (5%  of the arena diameter) beyond the 
arena center into the other zone before switching the stimulus.

Y-maze assay
In the Y-maze assay, locomotor handedness was estimated as flies explored symmetrical Y-shaped 
arenas. Each time flies changed position from one arm of the maze to another, turns were scored as 
left-handed or right-handed depending on whether the chosen arm was to the left of right on the 
choice point (i.e., the arena center). To avoid scoring centroid estimation errors around the choice 
point or small forays into new arms as turns, the flies were required to traverse a minimum distance 
(60%  the length of the arm) into any arm before a turn was scored. In addition to locomotor hand-
edness, measures of speed, movement bout dynamics, turn choice timing, and turn choice sequence 
were also recorded.

Central complex thermogenetic screen
We extracted measure of turn timing clumpiness (choiceClumpiness) and turn direction switchiness 
(handSwitchiness) from a previously conducted thermogenetic screen for light-dependent modulation 
of locomotor handedness (Skutt-Kakaria et al., 2019). Gal4 driver and neuronal effector parental 
lines were crossed to generate F1 progeny with sparse neuronal expression of effectors that could be 
thermogenetically activated (dTrpA1) or silenced (Shibirets). For all screen experiments, fly locomotor 
handedness was assayed for 4 hr in the Y-maze with the following temperature program: 1 hr at 23 °C 
(permissive temperature), 1 hr temperature ramp up to the restrictive temperature (Shibirets = 29 °C, 
dTrpA1 = 32 °C), 1 hr at the restrictive temperature, and 1 hr temperature ramp down from the restric-
tive temperature to 23 °C. Although activity level varied over the duration of the experiment, flies 
made many turns throughout all temperature blocks: completing an average of 193 ± 119 and 757 ± 
311 turns in the permissive and restrictive periods, respectively. The background light was repeatedly 
switched on and off in time blocks (min = 5 s, other times = 10 and 30, max = 60 s, each hour had 
the same repeated sequence) in a random order shared between all screen experiments. Because 
we were interested only in temperature-dependent modulation of turn dynamics, we computed indi-
vidual clumpiness and switchiness scores for all turns within each temperature condition (permissive 
and restrictive) regardless of the light condition.

RNAseq and transcriptomic analyses
Single-fly RNAseq preparation and sequencing was performed using TM3′seq, a high-throughput 
low-cost RNA protocol previously described in Pallares et al., 2020. An overview of the method is 
provided below, but more detailed descriptions are available in an online protocol and in the original 
publication.

Fly tissue preparation
Following Decathlon behavioral testing, flies were briefly anesthetized on CO2 and transferred to a 
96-well plate via aspiration. Immediately following, flies were flash-frozen on liquid nitrogen and were 
decapitated to separate heads and bodies. Well plates were then transferred to a dry ice and ethanol 
cold bath to keep the samples frozen while heads were individually transferred to a separate 96-well 
plate with a cold probe needle. Samples were then stored at –80 °C. After storage, tissue was ground 
in 100 μl of lysis buffer with a 2.8 mm stainless steel grinding bead steel grinding bead for 10 min at 
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maximum speed with a homogenizer. CyBio FeliX liquid handling robot (Analitik Jena) was used to 
perform mRNA extraction from the resulting lysate using a Dynabeads mRNA DIRECT Purification Kit 
(ThermoFisher, #61012) and a custom protocol (Pallares et al., 2020) optimized for low cost, yielding 
approximately 10–20 ng mRNA per head.

Library preparation
RNA (10 μl of 1 ng/μl mRNA) was added to 1 μl of 0.83 µM oligo (Tn5ME-B-30T) for a 3 min incu-
bation at 65 °C immediately prior to reverse transcription. The first strand of cDNA was synthesized 
by reverse transcription of the mRNA via a 1 hr incubation at 42 °C by adding the following to the 
reaction mixture above: 1 μl SMARTScribe RT (Takara, #639538), 1 μl dNTPs 10 mM (NEB, #N0447S), 
2 μl DTT 0.1 M (Takara, #639538), 4 μl 5× First-Strand buffer (Takara, #639538), and 1 μl B-tag-sw 
oligo. Following synthesis, the reverse transcriptase was inactivated via a 15 min incubation 70 °C. A 
cDNA amplification mixture was prepared by adding 5 μl of the resulting first-strand cDNA with 7.5 μl 
of OneTaq HS Quick-load 2× (NEB, #M0486L) and 2.5 μl water. The cDNA was then amplified in a 
thermocycler via the following program: 68 °C 3 min, 95 °C 30 s, [95 °C 10 s, 55 °C 30 s, 68 °C 3 min] 
* 3 cycles, 68 °C 5 min.

Tn5 tagmentation was used alongside universal adaptors for library amplification. The adapter-B 
was previously added during synthesis of the first cDNA strand. To create a Tn5 adaptor-A, an adapter 
annealing mixture was prepared by adding 10 μl (100 μM) of a forward oligo (adapter-A) and 10 μl 
(100 μM) reverse adapter-A oligo (Tn5MErev) to 80 μl re-association buffer (10 mM Tris pH 8.0, 50 mM 
NaCl, 1 mM EDTA). Oligos were annealed in a thermocycler with the following cycle program: 95 °C 
for 10 min, 90 °C for 1 min followed by 60 cycles reducing temperature by 1 °C/cycle, hold at 4 °C. 5 μl 
of 1 μM annealed adapter was then anneal to 5 μl of Tn5 in a thermal cycler for 30 min at 37 °C. 5 μl of 
cDNA was mixed with 1 μl of pre-charged Tn5. The adapter-A loaded Tn5 was diluted 7× in re-associ-
ation buffer: glycerol (1:1), 4 μl of TAPS buffer 5× pH 8.5; 50 mM TAPS, 25 mM MgCl2, 50% v/v DMF, 
and 5 μl of water. The mixture was then and incubated for 7 min at 55 °C followed by an additional 
7 min incubation with 3.5 μl of SDS 0.2%  (Promega, #V6551) to ensure that Tn5 was dissociated from 
the cDNA. The resulting cDNA libraries were then amplified. Briefly, 10 μl of OneTaq HS Quick-Load 
2×  (NEB, #M0486L), 1 μl i5 primer 1 μM, 1 μl i7 primer 1 μM, and 7 μl of water were used to amplify 
1 μl of the tagmentation reaction following the program: 68 °C 3 min, 95 °C 30 s, [95 °C 10 s, 55 °C 
30 s, 68 °C 30 s] * 12 cycles, 68 °C 5 min.

Sequencing and expression quantification
Samples were sequenced on an Illumina HiSeq 2500 in separate runs using dual indexes and 
single-end ~100 bp sequencing. Low-quality bases and adapter sequences were removed from reads 
using Trimmomatic 0.32 (SE ILLUMINACLIP: 1:30:7 LEADING: 3 TRAILING: 3 SLIDINGWINDOW: 4:15 
MINLEN:20; Bolger et  al., 2014). Downstream analysis was only performed on reads at least 20 
nucleotides after trimming. Reads were then mapped to the r6.14 Drosophila melanogaster genome 
assembly using STAR (Dobin et al., 2013), and were assigned to genes using featureCounts from the 
package Subread (Liao et al., 2014). Read counts were further filtered to include only reads assigned 
to protein coding genes with a minimum of 500k   reads per individual (n.b. measuring 3′ biased 
expression).

Enrichment analyses
Following sequencing, raw reads from individual flies with fewer than 1M  reads total were removed. 
Raw read counts were normalized to reads per million (RPM) and were further filtered to exclude 
genes with less than 10 RPM averaged across all remaining flies. Individual fly read distributions were 
then quantile normalized so that the distributions of normalized reads were matched across all indi-
vidual samples. One-dimensional linear models were fit using expression data from the remaining 
6710 genes to predict each of the 97 individual behavioral scores (97 × 6710 models total). 69 × 6710 
models were fit for unsupervised measures. Gene lists were constructed for each behavior separately 
by collecting their respective significantly predictive genes (model p-value < 0.05).

Enrichment scores were computed using clusterProfiler (Yu et al., 2012) as part of the Biocon-
ductor (https://www.​bioconductor.​org) package for R (version 3.6; R Development Core Team, 2020). 
We performed KEGG enrichment analysis on predictive gene lists from each behavior independently 
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to identify functional categories of genes overrepresented for any particular behavioral measure 
compared to the background list of 6710 genes. clusterProfiler uses a Benjamini–Hochberg proce-
dure (Benjamini and Hochberg, 1995) to adjust p-values. We report these adjusted p-values. KEGG 
categories were defined as significant if the adjusted p-values for the category were less than 0.05. 
Significant categories and their corresponding genes were identified separately for each behavior. 
Significant category (and gene) lists for groups of behaviors (i.e., all behaviors or a priori group 
behaviors) were constructed as the union of the significant enrichment categories (and genes) from 
each group’s member behaviors. To assess reproducibility of enrichment categories and their corre-
sponding gene sets, enrichment lists were repeatedly generated from bootstrap resampled individ-
uals (500 replicates), downstream of quantile normalization. Average p-values were calculated as the 
mean across bootstrap replicates of the minimum adjusted p-value for each enrichment category 
across behaviors within a group.

Genomic sequencing of inbred flies
DNA was extracted from individual flies using Zymo Quick-DNA Microprep Kit (Cat# D3020). 
Sequencing libraries were prepared using the transposase Tn5 using the same protocol described 
above (from cDNA). Samples were sequenced on an Illumina HiSeq 2500 using dual indexes, 
paired-end  ~150  bp sequencing. After de-multiplexing, low-quality bases and adapter sequences 
were removed from reads using Trimmomatic 0.32 (SE ILLUMINACLIP: 1:30:7 LEADING: 3 TRAILING: 
3 SLIDINGWINDOW: 4:15 MINLEN: 20). Reads were then mapped to the r6.14 Drosophila melano-
gaster genome assembly using BWA -aln (Li and Durbin, 2009). Genotypes were generated following 
GATK best practices (https://​software.​broadinstitute.​org/​gatk/​best-​practices/; McKenna et al., 2010). 
Heterozygosity was estimated using VCFTools v0.1.16 --het (Danecek et al., 2011).

Quantification and statistical analysis
Merging Decathlon data sets
Inspection of raw measure distributions separated by batch (i.e., a single cohort of flies tested in 
a single behavioral box at the same time) showed batch effects on the sample means and disper-
sion even within the same Decathlon experiment. Therefore, data was z-scored separately by batch 
and measure type to control for sample differences in mean and variance. Data of the same assay, 
measure, and day of testing (i.e., the unique measures from a single day of Decathlon behavior) were 
then combined, resulting in an initial n × d data matrix for a single Decathlon experiment, where n 
is the number of individuals and d is the number of measures. The matrix contained a substantial 
fraction of missingness (mean = 0.23 ± 0.22) within measures after initial construction. We used alter-
nating least squares (ALS) to estimate a complete matrix that preserved, as accurately as possible, the 
covariance structure of the underlying data (Figure 1—figure supplement 5). To reduce run to run 
variation in ALS, we generated 200 complete data matrices with ALS, under different random seeds, 
and computed the final infilled matrix as the median of these repetitions. Simulations with ground 
truth data (Figure 1—figure supplement 5) for comparison of infilling methods were run with data 
randomly drawn from a multivariate normal distribution matching that of the inbred Decathlon cova-
riance matrix. These simulated comparisons showed that median ALS imputation did not necessarily 
produce the infilling with the lowest mean-squared error, but did result in a correlation structure closer 
to ground truth than any other method. Since we are ultimately interested in the correlation struc-
ture of behavioral biases, we therefore opted for median ALS infilling. This process resulted in three 
complete matrices: two n × d matrices for the two Berlin-Kiso Decathlon experiments and one n × d 
matrix for the NEX Decathlon experiment.

To combine the Decathlon-1 and Decathlon-2 matrices for Berlin-Kiso, we z-scored by behavioral 
measure within each matrix to adjust for Decathlon experiment batch effects on mean and variance. 
Data from the two matrices were then combined by matching unique assay and measure combina-
tion. Because the order of assays was randomized for each Decathlon experiment, day of testing was 
ignored when combining behavioral measures from all non-circadian assays (e.g., olfaction odorOccu-
pancy from day 7 of Decathlon-1 was combined with olfaction odorOccupancy from day 8 of Decath-
lon-2). Circadian measures were matched by day of testing due to circadian measurements being 
collected on all days of testing (e.g., circadian meanSpeed from day 1 of Decathlon-1 was combined 
with circadian meanSpeed from day 1 of Decathlon-2). Placeholder NaN values were inserted in cases 
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where no matching measure existed in the other matrix (e.g., temporal phototaxis for Decathlon-1). 
The resulting full data matrix was then z-scored by measure and any residual missing values (due to 
lack of an existing measure match) were then infilled via the ALS method described above.

Distilled matrix generation
We created a distilled matrix to condense any covarying features for which we had a prior expectation 
that the measures might be correlated for obvious or uninteresting reasons. We defined such groups 
of measures (a priori groups) that primarily consisted of either duplicate measures (e.g., all 10 days 
of circadian gravitaxis) or measures that are likely to be linked by the same underlying phenomenon 
(e.g., choiceNumber and meanSpeed across multiple assays). Details of the measures in each a priori 
group are detailed in Supplementary file 2. Criteria used to assign each metric to its corresponding a 
priori group are shown in Supplementary file 3. We performed PCA on each a priori group separately 
in an attempt to capture group variance with fewer dimensions. We defined an adaptive cutoff for 
the number of PCs retained from each group as the highest PC above or within the 95%  confidence 
interval of the variance explained by PCs computed on a shuffled version of the same matrix. We 
reasoned that PCs above or within the variance explained for PCs computed on the shuffled matrix (a 
matrix with approximately independent features) represented components corresponding to mean-
ingful covariance.

Multidimensional analyses
To characterize the dimensional organization of the Decathlon, we computed the number of connected 
components in a thresholded covariance matrix representing a directionless graph. We swept 200 
threshold values uniformly spaced between the minimum and maximum covariance. A spectrum of 
dimensional organization was formed by iteratively counting the number of connected components 
in the graph at each threshold value. To estimate a lower limit on the dimensionality and to assess 
the degree to which the number of connected components was dependent on specific groups of 
measures, we repeated the steps above on matrices after randomly selecting measures to drop from 
the matrix, iteratively increasing the number of measures dropped from one to d-1 (i.e., one feature 
remaining).

Unless otherwise specified, t-SNE embeddings of all data sets was performed on the Euclidean 
pairwise distances of z-scored values with perplexity = 20. All embeddings were optimized by mini-
mizing the KL-divergence between the original and embedded data. t-SNE performed on Decathlon 
measures was run with perplexity = 8, where we had an expectation that clusters would be relatively 
small (e.g., 3–8 data points) due to the low number of measures in our a priori groups (median = 5) 
and low number of unique measures from each assay (median = 8) and day of testing.

Unsupervised behavioral classification
As previously described (Berman et al., 2014), single-fly videos were decomposed into behavioral 
classification time series with the motion mapper pipeline. Briefly, 200 × 200 px frames centered 
on the flies were translationally and rotationally aligned with sub-pixel accuracy to a template fly 
body to restrict frame-to-frame variation to postural changes by the flies. The data dimensionality 
was reduced by restricting further analysis to the 6700 px with the highest variance. The data for all 
individuals was further compressed with PCA into 50 eigenmode postural time series. PC time series 
were then spectrally decomposed into 25 uniformly spaced frequency channels via Morlet wavelet 
transformation, resulting in a high-dimensional (1250) representation of each frame at various times-
cales. A representative subsampled training set of frames was constructed for each individual by 
embedding their data into two dimensions with t-SNE (van der Maaten and Hinton, 2008) and 
selecting frames according to proportionally to their local probability density in the embedded 
space. A joint two-dimensional embedding for all individuals data was then constructed by embed-
ding the combined training set via t-SNE. Individual embeddings were generated by projecting all 
remaining data points into the joint embedding. As previously described, the distribution of log-
speed trajectories within the embedded space was well-described by a two-component Gaussian 
mixture model (GMM) with the majority of frames falling into a low-speed mode. We used the stan-
dard deviation of the low-speed GMM component to define a small Gaussian kernel (σ = 1.37) that 
was convolved with the embedded points the compute a continuous density. The embedded space 
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was then segmented into discrete regions by computing watersheds (Najman and Schmitt, 1994) of 
the negative density. Behavioral classifications were then assigned to frames by the watershed region 
occupied. Frames were filtered by defining an embedded speed threshold (2.78) as the intersection 
of GMM components where the log-speed distribution was maximally separable. All frames above 
speed threshold received no classification. Individual occupancy within each classification was then 
used to compute a discrete probability density function for each individual. The behavioral state tran-
sition matrix (Figure 2G) was calculated as the row-normalized probability that a fly in state i (rows) 
would be in state j (columns) 1 frame later.

Human readable labels were applied to each classification by generating 8 × 8 tiled movies of 
frames corresponding to individual pauses within each classification above a minimum duration of 
10 ms. Labels were designated post hoc to describe the behaviors that appeared to be frequently 
represented after repeated viewing. The labels were composed with the following format: body part 
(e.g., wing, forelimb, abdomen), the behaviors displayed (e.g., walking, grooming, movement), and a 
qualitative descriptor of the speed of movement (e.g., idle, slow, fast).

Statistics
Unless otherwise stated, all reported correlations were computed as the Spearman rank correlation. 
p-Values reported for correlation coefficients were calculated via two-tailed t-test of the null hypoth-
esis that the regression coefficient was not significantly different from zero.

To generate bootstrapped distributions of correlation the correlation matrices, Decathlon matrices 
(either the full or distilled matrices) were sorted to match measures across Decathlon data sets as 
described above. A pair of bootstrapped matrices were created by bootstrapping individuals from 
either the same (e.g., resampling Berlin-Kiso matrix twice) or different Decathlon matrices up to the 
size of the original matrix. The correlation matrix was computed for each bootstrapped matrix and the 
unique, off-diagonal r-values of each matrix were stored. A single correlation of correlations was then 
calculated on the two sets of r-values. The above steps were then repeated over 100 repetitions for 
all unique combinations of Decathlon data sets.

False discovery rate calculation
We computed the FDR for significance of measure correlations as a function of α-value for each combi-
nation of Decathlon data set (Berlin-Kiso or NEX) and matrix type (full or distilled). Each data matrix 
was bootstrap resampled (100 repetitions) up to the size of the original matrix. Correlation matrices 
were computed for each matrix and p-values were calculated correlation coefficient (see statistics). 
We then calculated mean kernel density estimates for all p-values of unique measure combinations 
across bootstrap replicates. The above steps were then repeated for bootstrap shuffled data matrices 
to create a null distribution of p-values for correlation coefficients. We defined FDR as the shuffled 
p-value density divided by the observed p-value density. For determining significance of correlation, 
we set α = 0.05, corresponding to the following FDR: Berlin-Kiso full = 0.30, NEX full = 0.30, Berlin-Kiso 
distilled = 0.37, NEX distilled = 0.42.
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