A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation

  1. Michael C Kiritsy
  2. Laurisa M Ankley
  3. Justin Trombley
  4. Gabrielle P Huizinga
  5. Audrey E Lord
  6. Pontus Orning
  7. Roland Elling
  8. Katherine A Fitzgerald
  9. Andrew J Olive  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Michigan State University, United States

Abstract

Cytokine-mediated activation of host immunity is central to the control of pathogens. Interferon-gamma (IFNγ) is a key cytokine in protective immunity that induces major histocompatibility complex class II molecules (MHCII) to amplify CD4+ T cell activation and effector function. Despite its central role, the dynamic regulation of IFNg-induced MHCII is not well understood. Using a genome-wide CRISPR-Cas9 screen in murine macrophages we identified genes that control MHCII surface expression. Mechanistic studies uncovered two parallel pathways of IFNg-mediated MHCII control that require the multifunctional glycogen synthase kinase 3 beta (GSK3β) or the mediator complex subunit MED16. Both pathways control distinct aspects of the IFNg response and are necessary for IFNg-mediated induction of the MHCII transactivator Ciita, MHCII expression, and CD4+ T cell activation. Our results define previously unappreciated regulation of MHCII expression that is required to control CD4+ T cell responses.

Data availability

Raw sequencing data in FASTQ and processed formats is available for download from NCBI Gene Expression Omnibus (GEO) under accession number GSE162463 (CRISPR Screen) and GSE162464 (RNA sequencing).

The following data sets were generated

Article and author information

Author details

  1. Michael C Kiritsy

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8364-8088
  2. Laurisa M Ankley

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin Trombley

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabrielle P Huizinga

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Audrey E Lord

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pontus Orning

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-6916
  7. Roland Elling

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katherine A Fitzgerald

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrew J Olive

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    For correspondence
    oliveand@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3441-3113

Funding

National Institutes of Health (AI146504)

  • Andrew J Olive

U.S. Department of Agriculture (NIFA HATCH 1019371)

  • Andrew J Olive

National Institutes of Health (AI132130)

  • Michael C Kiritsy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PROTO201800057) of Michigan State University.

Copyright

© 2021, Kiritsy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,488
    views
  • 545
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael C Kiritsy
  2. Laurisa M Ankley
  3. Justin Trombley
  4. Gabrielle P Huizinga
  5. Audrey E Lord
  6. Pontus Orning
  7. Roland Elling
  8. Katherine A Fitzgerald
  9. Andrew J Olive
(2021)
A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation
eLife 10:e65110.
https://doi.org/10.7554/eLife.65110

Share this article

https://doi.org/10.7554/eLife.65110

Further reading

    1. Immunology and Inflammation
    Somen K Mistri, Brianna M Hilton ... Jonathan E Boyson
    Research Article

    During thymic development, most γδ T cells acquire innate-like characteristics that are critical for their function in tumor surveillance, infectious disease, and tissue repair. The mechanisms, however, that regulate γδ T cell developmental programming remain unclear. Recently, we demonstrated that the SLAM/SAP signaling pathway regulates the development and function of multiple innate-like γδ T cell subsets. Here, we used a single-cell proteogenomics approach to identify SAP-dependent developmental checkpoints and to define the SAP-dependent γδ TCR repertoire in mice. SAP deficiency resulted in both a significant loss of an immature Gzma+Blk+Etv5+Tox2+ γδT17 precursor population and a significant increase in Cd4+Cd8+Rorc+Ptcra+Rag1+ thymic γδ T cells. SAP-dependent diversion of embryonic day 17 thymic γδ T cell clonotypes into the αβ T cell developmental pathway was associated with a decreased frequency of mature clonotypes in neonatal thymus, and an altered γδ TCR repertoire in the periphery. Finally, we identify TRGV4/TRAV13-4(DV7)-expressing T cells as a novel, SAP-dependent Vγ4 γδT1 subset. Together, the data support a model in which SAP-dependent γδ/αβ T cell lineage commitment regulates γδ T cell developmental programming and shapes the γδ TCR repertoire.

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.