A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation

  1. Michael C Kiritsy
  2. Laurisa M Ankley
  3. Justin Trombley
  4. Gabrielle P Huizinga
  5. Audrey E Lord
  6. Pontus Orning
  7. Roland Elling
  8. Katherine A Fitzgerald
  9. Andrew J Olive  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Michigan State University, United States

Abstract

Cytokine-mediated activation of host immunity is central to the control of pathogens. Interferon-gamma (IFNγ) is a key cytokine in protective immunity that induces major histocompatibility complex class II molecules (MHCII) to amplify CD4+ T cell activation and effector function. Despite its central role, the dynamic regulation of IFNg-induced MHCII is not well understood. Using a genome-wide CRISPR-Cas9 screen in murine macrophages we identified genes that control MHCII surface expression. Mechanistic studies uncovered two parallel pathways of IFNg-mediated MHCII control that require the multifunctional glycogen synthase kinase 3 beta (GSK3β) or the mediator complex subunit MED16. Both pathways control distinct aspects of the IFNg response and are necessary for IFNg-mediated induction of the MHCII transactivator Ciita, MHCII expression, and CD4+ T cell activation. Our results define previously unappreciated regulation of MHCII expression that is required to control CD4+ T cell responses.

Data availability

Raw sequencing data in FASTQ and processed formats is available for download from NCBI Gene Expression Omnibus (GEO) under accession number GSE162463 (CRISPR Screen) and GSE162464 (RNA sequencing).

The following data sets were generated

Article and author information

Author details

  1. Michael C Kiritsy

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8364-8088
  2. Laurisa M Ankley

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin Trombley

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabrielle P Huizinga

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Audrey E Lord

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pontus Orning

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-6916
  7. Roland Elling

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katherine A Fitzgerald

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrew J Olive

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    For correspondence
    oliveand@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3441-3113

Funding

National Institutes of Health (AI146504)

  • Andrew J Olive

U.S. Department of Agriculture (NIFA HATCH 1019371)

  • Andrew J Olive

National Institutes of Health (AI132130)

  • Michael C Kiritsy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PROTO201800057) of Michigan State University.

Copyright

© 2021, Kiritsy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,639
    views
  • 549
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael C Kiritsy
  2. Laurisa M Ankley
  3. Justin Trombley
  4. Gabrielle P Huizinga
  5. Audrey E Lord
  6. Pontus Orning
  7. Roland Elling
  8. Katherine A Fitzgerald
  9. Andrew J Olive
(2021)
A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation
eLife 10:e65110.
https://doi.org/10.7554/eLife.65110

Share this article

https://doi.org/10.7554/eLife.65110

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hiroyuki Yamamoto, Tetsuro Matano
    Research Article

    HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus–host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus–host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.

    1. Immunology and Inflammation
    Yan Qian, Qiannv Liu ... Pengyan Xia
    Research Article

    The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.