A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation

  1. Michael C Kiritsy
  2. Laurisa M Ankley
  3. Justin Trombley
  4. Gabrielle P Huizinga
  5. Audrey E Lord
  6. Pontus Orning
  7. Roland Elling
  8. Katherine A Fitzgerald
  9. Andrew J Olive  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Michigan State University, United States

Abstract

Cytokine-mediated activation of host immunity is central to the control of pathogens. Interferon-gamma (IFNγ) is a key cytokine in protective immunity that induces major histocompatibility complex class II molecules (MHCII) to amplify CD4+ T cell activation and effector function. Despite its central role, the dynamic regulation of IFNg-induced MHCII is not well understood. Using a genome-wide CRISPR-Cas9 screen in murine macrophages we identified genes that control MHCII surface expression. Mechanistic studies uncovered two parallel pathways of IFNg-mediated MHCII control that require the multifunctional glycogen synthase kinase 3 beta (GSK3β) or the mediator complex subunit MED16. Both pathways control distinct aspects of the IFNg response and are necessary for IFNg-mediated induction of the MHCII transactivator Ciita, MHCII expression, and CD4+ T cell activation. Our results define previously unappreciated regulation of MHCII expression that is required to control CD4+ T cell responses.

Data availability

Raw sequencing data in FASTQ and processed formats is available for download from NCBI Gene Expression Omnibus (GEO) under accession number GSE162463 (CRISPR Screen) and GSE162464 (RNA sequencing).

The following data sets were generated

Article and author information

Author details

  1. Michael C Kiritsy

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8364-8088
  2. Laurisa M Ankley

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin Trombley

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gabrielle P Huizinga

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Audrey E Lord

    Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pontus Orning

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-6916
  7. Roland Elling

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Katherine A Fitzgerald

    Medicine: Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrew J Olive

    Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States
    For correspondence
    oliveand@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3441-3113

Funding

National Institutes of Health (AI146504)

  • Andrew J Olive

U.S. Department of Agriculture (NIFA HATCH 1019371)

  • Andrew J Olive

National Institutes of Health (AI132130)

  • Michael C Kiritsy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PROTO201800057) of Michigan State University.

Copyright

© 2021, Kiritsy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,430
    views
  • 535
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael C Kiritsy
  2. Laurisa M Ankley
  3. Justin Trombley
  4. Gabrielle P Huizinga
  5. Audrey E Lord
  6. Pontus Orning
  7. Roland Elling
  8. Katherine A Fitzgerald
  9. Andrew J Olive
(2021)
A genetic screen in macrophages identifies new regulators of IFNγ-inducible MHCII that contribute to T cell activation
eLife 10:e65110.
https://doi.org/10.7554/eLife.65110

Share this article

https://doi.org/10.7554/eLife.65110

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.