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Abstract
Background: Sanofi-Pasteur’s CYD-TDV is the only licensed dengue vaccine. Two phase three trials

showed higher efficacy in seropositive than seronegative recipients. Hospital follow-up revealed

increased hospitalisation in 2–5- year-old vaccinees, where serostatus and age effects were

unresolved.
Methods: We fit a survival model to individual-level data from both trials, including year 1 of

hospital follow-up. We determine efficacy by age, serostatus, serotype and severity, and examine

efficacy duration and vaccine action mechanism.
Results: Our modelling indicates that vaccine-induced immunity is long-lived in seropositive

recipients, and therefore that vaccinating seropositives gives higher protection than two natural

infections. Long-term increased hospitalisation risk outweighs short-lived immunity in

seronegatives. Independently of serostatus, transient immunity increases with age, and is highest

against serotype 4. Benefit is higher in seropositives, and risk enhancement is greater in

seronegatives, against hospitalised disease than against febrile disease.
Conclusions: Our results support vaccinating seropositives only. Rapid diagnostic tests would

enable viable ‘screen-then-vaccinate’ programs. Since CYD-TDV acts as a silent infection, long-term

safety of other vaccine candidates must be closely monitored.
Funding: Bill & Melinda Gates Foundation, National Institute for Health Research, UK Medical

Research Council, Wellcome Trust, Royal Society.
Clinical trial number: NCT01373281 and NCT01374516.

Introduction
Over 40% of the world population is at risk of dengue infection. An estimated 105 million infections

and approximately 50 million symptomatic cases occur each year (Stanaway et al., 2016;

Cattarino et al., 2020). Dengue disease is caused by four distinct viruses, termed serotypes (DENV-

1–4). Infection confers lifelong immunity to a homologous serotype, but against a heterologous sero-

type protective immunity is only temporary (St John and Rathore, 2019). Furthermore, secondary

infection with a heterologous serotype drastically increases the likelihood of disease (St John and

Rathore, 2019).

Traditional vector control interventions have had little impact on dengue disease burden

(Guzman et al., 2010) and no antiviral treatments yet exist. Several vaccine candidates are in devel-

opment, but the only licensed vaccine is Sanofi-Pasteur’s CYD-TDV (marketed as Dengvaxia). CYD-

TDV is a live attenuated tetravalent chimeric vaccine, where genes for the structural proteins (E and

prM) are taken from the four DENV serotypes, while the other proteins are based on the yellow fever
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17D vaccine strain. The vaccine has now been licensed in 21 countries and the EU. A phase two trial

in 2012 (ClinicalTrials.gov number NCT00842530) (Sabchareon et al., 2012) reported moderate effi-

cacy of 30.2% (�13.4% to 56.6%) and showed the vaccine to be well tolerated and largely safe. Two

large scale phase three trials followed: the CYD14 trial (ClinicalTrials.gov number NCT01373281) in

South East Asia of 10,275 children aged 2–14 (Capeding et al., 2014), and the CYD15 trial

(ClinicalTrials.gov number NCT01374516) in Latin America of 20,869 children aged 9–16

(Villar et al., 2015). After stratifying by age, participants were randomly assigned to vaccine or con-

trol arms in a 2:1 ratio, and vaccine doses were given at baseline then 6 and 12 months later. For a

subset of participants (approximately 20% for CYD14% and 10% for CYD15), immunogenicity and

prior dengue exposure was determined using baseline sera. Participants were actively surveilled by

weekly phone calls for 25 months post-first dose (where any symptomatic disease was detected),

after which surveillance was passive using routine hospital surveillance, (where only hospitalisations

were detected). See (Capeding et al., 2014; Villar et al., 2015; Hadinegoro et al., 2015) for further

details of the trial design.

The CYD14 and CYD15 trials showed overall vaccine efficacies of 56.5% (43.8%–66.4%) and

60.8% (52.0%–68.0%) respectively, with efficacy varying significantly by serotype and prior exposure.

However, in 2015, results from the first year of long-term follow up (Hadinegoro et al., 2015)

showed that while the vaccine remained beneficial overall, the number of hospitalisations among 2–

5 year olds was significantly greater in vaccinees than in controls. A potential explanation for these

results considered age as a proxy for serostatus (Aguiar and Stollenwerk, 2018), and that the vac-

cine may act as a ‘silent’ disease-free infection that primes host immunity (Ferguson et al., 2016;

Flasche et al., 2016). Therefore, a seronegative child, who would ordinarily experience their first

and relatively low-risk natural infection, would after vaccination instead experience a ‘secondary-like’

infection that is more predisposed to clinically apparent disease. Conversely, a child with a single

prior natural infection would have a lower risk of disease when exposed to dengue post-vaccination,

normally associated with tertiary and quaternary infection [Figure 1].

The immunogenicity subset was only a small fraction of the entire trial, and the estimated efficacy

in seronegatives had wide confidence intervals indicating neither benefit nor harm, and so it was not

possible to determine conclusively whether age or lack of prior exposure was the dominant factor in

the increased hospitalisation of 2–5 year-old vaccinees. Further, it was not possible to retroactively

expand the immunogenicity subset to determine prior dengue exposure, as Dengvaxia can elicit

Figure 1. Model Schematic 1: vaccine as silent infection. Top row: unvaccinated individuals are naive, or infected with either: their first dengue

infection with moderate disease risk; their second higher risk infection; or their third or fourth lower risk infection. Middle row: vaccinating seropositive

individuals with a single prior infection lowers the disease risk associated with secondary infection to that associated with tertiary and quaternary

infection. Bottom row: vaccinating naive (seronegative) individuals increases disease risk upon their first natural infection. Figure adapted from

Ferguson et al., 2016 with permission.
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antibody responses that would test positive under a plaque reduction neutralisation test (PRNT).

Therefore, and because the vaccine showed the greatest benefit in children aged nine or older, the

vaccine was licensed for use above this age, independent of baseline serostatus.

An ELISA assay detecting anti-dengue non-structural protein 1 (NS1) IgG antibodies then pro-

vided a novel approach to retrospectively assess the serostatus of trial participants prior to vaccina-

tion (Nascimento et al., 2018). Dengvaxia expresses yellow fever NS1, not dengue NS1, and

therefore this assay can distinguish between natural infection and exposure to the vaccine. Blood

samples of trial participants who contracted virologically confirmed dengue during follow-up were

analysed using the NS1 assay in the CYD14 and CYD15 trials. The results provided clear evidence of

the enhanced risk of hospitalised or severe dengue disease in baseline seronegative vaccinees

(Sridhar et al., 2018) and these were in line with refined estimates of vaccine efficacy obtained with

machine learning (Dorigatti et al., 2018). Subsequently, in November 2017, Dengvaxia was recom-

mended only in persons with a confirmed prior dengue infection (WHO, 2018).

Here we present a survival model with time and age varying hazards, which we fit to the individual

level phase three CYD14 and CYD15 data, up to and including the first year of long-term follow-up

(Hadinegoro et al., 2015). We characterize the efficacy profile and mode of action of the vaccine,

which we find to be consistent with the ‘vaccine as silent infection’ hypothesis. We refine previous

estimates, and examine the vaccine’s duration of protection and its efficacy against both febrile den-

gue disease and hospitalized disease. Our results provide a comprehensive characterization of CYD-

TDV’s safety and efficacy, and demonstrate the need for long-term follow up in the phase three trials

of other dengue vaccine candidates currently in development.

Materials and methods

Data
We use the individual-level trial data from the CYD14 and CYD15 trials, in both the active phase (25

months post first dose) and the 1st year of passive phase hospital follow-up. In the active phase, all

symptomatic dengue disease is detected, but in the passive phase only hospitalisations were

detected. All cases refer to virologically confirmed dengue. Infecting serotype is known for almost

all cases (97.6% for CYD14, 95.8% for CYD15, 96.7% overall). Baseline serostatus is known for only a

minority of subjects (19.3% for CYD14, 9.6% for CYD15, 12.7% overall). Model variants (including

our main model) that consider serotype-specific effects omit all cases of unknown serotype. We

right-censor after date of first case for each patient, and so do not consider multiple cases per

patient.

Model
We divide trial participants by trial arm a and baseline serostatus b (0 = seronegative or 1 = seropos-

itive at baseline), as described in Figures 1 and 2. Disease risk is allowed to vary by the number of

prior dengue exposures and by disease type (where disease type refers either to trial phase (active =

0; passive = 1) or disease severity (non-severe/non-hospitalised = 0, severe/hospitalised = 1)). We

consider a country-specific baseline hazard of disease (or force of infection, i.e. the risk of disease

among susceptibles) as a spline lc(t), and we link baseline seropositivity to each participant’s age

and the background transmission intensity in their country (see below). A trial participant of age a in

trial arm a, with baseline serostatus b, in country c is subject to the following hazard from serotype d

of disease type D at time t:

labcdD t;að Þ ¼ lc tð Þ�cdMbZ að ÞRabcD að Þ 1� da;VacI
�
bd a; t; tFð Þ

� �

where RabcD að Þ is the relative risk of disease associated with natural infection. Mb is the multiplier

of the baseline hazard associated with baseline serostatus b, equal to 1 for seronegatives and fitted

for seropositives. This parameter reflects seropositive participants’ reduced infection risk due to their

immunity to at least one serotype.
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Figure 2. Model schematic 2: vaccine-induced transient immunity model hierarchy. In all model variants, we allow the initial magnitude and mean

duration of transient immunity to vary by baseline serostatus (exponential waning is assumed). (A) Our main model allows transient immunity magnitude

to vary by age and serotype, as well as baseline serostatus. For each serostatus, we model transient immunity with age, and serotype effects are

incorporated additively (see Materials and methods for details). We further include an age-specific multiplier of the baseline hazard. (B) and (C) show

Figure 2 continued on next page
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�cd 2 [0,1] is the proportion of serotype d in country c (assumed to be constant, with
P

4

d¼1

�cd ¼ 1,

see below); Z(a) is the multiplier of the force of infection for age a; daVac is the Kronecker delta

defined by

da;Vac ¼
1 a¼Vaccine

0 a¼Control

�

We define the transient immunity Ibd*(a, t, tF) against serotype d for vaccinees of age a and base-

line serostatus b at time t, given time of most recent vaccine dose tF by

I�bdða; t; tFÞ ¼
IbdðaÞexpð�ðt� tFÞ=t bÞ IbdðaÞ>0

IbdðaÞ Otherwise

�

That is, positive values of transient immunity wane exponentially (to reflect previously observed

antibody dynamics Clapham et al., 2016). Additional details on age-specific transient immunity

Ibd(a) and duration t b, and force of infection Z(a) are given below [Figure 2A].

The relative risk of disease of type D for a subject with i prior dengue exposures is given by KiD.

K1 0 = 1 (secondary febrile dengue illness) is taken to be the baseline, and we assume the relative

risk is the same for tertiary and quaternary infection of either type, and so K2D = K3D. Our model

considers serostatus to be binary (either seropositive or seronegative), and so we define the risk of

disease ’cD að Þ among seropositive participants, which is an aggregate of the risks of disease given

monotypic or multitypic infection history, shown below.

Our main model considers vaccination to alter the risk of disease associated with prior exposure,

by acting as a silent, disease-free infection (Figure 1). Therefore, the relative risks are defined as

follows:

Rabc0ðaÞ ¼

K0;0 a¼Control; b¼ 0

’c0ðaÞ a¼Control; b¼ 1

K1;0 a¼Vaccine; b¼ 0

K2;0 a¼Vaccine; b¼ 1

8

>

>

<

>

>

:

when considering the active phase of the trial (or symptomatic disease of any severity) and

Rabc1ðaÞ ¼

K0;0K0;1 a¼Control; b¼ 0

’c0ðaÞ’c1ðaÞ a¼Control; b¼ 1

K1;0K1;1 a¼Vaccine; b¼ 0

K2;0K2;1 a¼Vaccine; b¼ 1

8

>

>

<

>

>

:

when considering the passive phase of the trial or hospitalised/severe disease. A glossary of the

above terms can be found in Supplementary file 1.

Severity analysis
We interpret relative risks in two different ways depending on our analysis. The probability of case

detection depends on the degree of trial surveillance, and so by default we allow relative risks to dif-

fer between the active and passive trial phases. For example, Ki = 2, D = 0 is the risk of clinically

apparent disease (of any severity) in the active phase for those with two or more prior infection.

Alternatively, when distinguishing between severe and non-severe disease (or equivalently between

hospitalised and non-hospitalised disease), risk of disease does not differ between trial phases but

between disease severities, for example, the risk of severe disease in seronegatives would be Ki = 0,

D = 1. In practice, these two interpretations of the relative risk parameters are largely equivalent as

non-hospitalised disease is detected exclusively by active surveillance and passive surveillance only

detects hospitalised or severe disease. It does however change the calculation of survival probabili-

ties. We allow relative risks of hospitalised disease to differ between CYD14 and CYD15 trials to

Figure 2 continued

reduced model variants that dispense with serotype and age effects, respectively. (D) Shows our simplest model variant without explicit age or serotype

effects.
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account for the non-standardised hospitalisation criteria between Southeast Asia and Latin America.

We do not do so when modelling severe disease since the trials used the WHO dengue severity cri-

teria to ascribe disease severity in all trial sites. We fix the ratios K0,1 /K1,1 = K2,1/K1,1 = 0.25

(Ferguson et al., 2016), while the proportion of symptomatic secondary infections that require hos-

pitalisation (or that result in severe disease) K1,1 are fitted parameters.

It should be stressed that in our formulation overall vaccine benefit cannot be measured by tran-

sient immunity alone, but rather in combination with the change in relative risk induced by

vaccination.

Baseline hazard splines
We model the baseline hazard for each country as a quadratic spline. We divide the follow-up period

of length T into n-1 intervals tkf gnk¼1
with tk ¼ k � T

n
, and define lc tkð Þ ¼ kck as the knots of the spline

for country c.

lcðtÞ ¼max 0;

P

2

i¼0

bickt
i; tk � t<tkþ1; k¼ 1;2; :::;n� 3

P

2

i¼0

bicðn�2Þt
i; tn�2 � t<tn

kc1; t� t1
kcn; t� tn

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

The observation period is approximately T = 4 years, and we use n =10 knots, spaced at 4-month

intervals. For polynomial
P

2

i¼0

bickt
i, we solve the following equations for coefficients b0ck;b1ck;b2ckf g:

lc tkð Þ ¼ kc kð Þ ¼
X

2

i¼0

bickt
i
k

lc tkþ1ð Þ ¼ kc kþ1ð Þ ¼
X

2

i¼0

bickt
i
kþ1

lc tkþ2ð Þ ¼ kc kþ2ð Þ ¼
X

2

i¼0

bickt
i
kþ2

The knot locations tkf gnk¼1
are fixed and their values kckf gnk¼1

are fitted parameters.

Relative risk in seropositives
If hc is the constant historical force of infection in country c, then the probability of remaining sero-

negative until age a is given by

p0c að Þ ¼ e�hc�a.

Therefore, the probability of seropositivity (i.e. at least one infection) by age a is given by

1� e�hc�a. Assuming that each serotype carries an equal force of infection, then the probability of

exactly one infection with any serotype is given by

p1c að Þ ¼ 4� e�3hc=4�a� 1� e�hca=4
� �

The relative risk of disease ’cD(a) in seropositive participants is therefore a weighted average of

the risk in participants with one or more than one prior exposure.

’cD að Þ ¼
p1c að Þ

1� p0c að Þ
K1Dþ 1�

p1c að Þ

1� p0c að Þ

� �

K2D

Note that the historical hazards hc refer to infection, not disease, and that this approximation

assumes that historical force of infection is equal across serotypes.
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Serotype proportions

The proportions �cd of serotype d in country c must satisfy
P

4

d

�cd ¼ 1 for all c. Therefore, given pro-

portions for three serotypes, the fourth is explicitly determined. We fit three parameters qcy (y = 1,

2, 3) for each country c and calculate

�c1 ¼ qc1

�c2 ¼ qc2 � 1� qc1ð Þ

�c3 ¼ qc3� 1� qc2ð Þ� 1� qc1ð Þ

�c4 ¼ 1� qc3ð Þ� 1� qc2ð Þ� 1� qc1ð Þ

Each parameter qcy is fitted with prior Unif(0,1).

Age effects
We use a step function to model age-specific transient immunity and force of infection multiplier.

This function is constant within the age groups 2–5, 6–11 and 12–16 years. We also considered a

quadratic spline formulation, similar to the baseline hazard, with four knots placed at ages 2, 6, 12

and 16 years, although this did not sufficiently improve model fit.

We model serotype and age effects additively (Figure 2A), that is, if Ab(a) gives the relationship

between transient immunity and age for serostatus b, then the (initial) magnitude of transient immu-

nity Ibd(a) for baseline serostatus b and serotype d for age a is given by

Ibd að Þ ¼ Ab að Þþ sbd

where sbd is the intercept for baseline serostatus b and serotype d (fixed at 0 for serotype d = 1).

Likelihood
If the hazard due to all serotypes combined is given by

labcD t;að Þ ¼
X

4

d¼1

labcdD t;að Þ

then where relative risks distinguish between trial phases, we let

l�abc t;að Þ ¼
labc0 t;að Þ t<tP
labc1 t;að Þ t� tP

�

where tP is the date that active surveillance ends and passive surveillance begins, and define the

integrated hazard between start and end times tS and tE as

Labc tS; tE;að Þ ¼

Z tE

tS

l�abc t;að Þdt

Our model does not consider multiple disease episodes for the same patient over the observation

period, and subjects are right-censored after they become a case for the first time. Therefore, when

relative risks distinguish between the severity of disease, ‘survival’ between times tS and tE refers to

surviving disease of both severities, and we therefore define the integrated hazard additively as

Labc tS; tE;að Þ ¼

Z tE

tS

labc0 t;að Þþlabc1 t;að Þð Þdt

This interpretation assumes that hazards are proportional between disease severities (although

not between trial arms, countries or between number of prior infections).

In both formulations, the probability Pabc tS; tE;að Þ of remaining disease free from between times tS
and tE is given by
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Pabc tS; tE;að Þ ¼ exp �Labc tS; tE;að Þð Þ

and so the probability QabcdD tS; tE;að Þ of disease from serotype d of type D at time tE is given by

QabcdD tS; tE;að Þ ¼ Pabc tS; tE;að ÞlabcdD tE;að Þ�TI

where TI is the time interval within which the hazard is assumed to be constant. We take TI to be 1

day.

For brevity, we combine the above to denote the probability of clinical outcome C given parame-

ters � by

P�
abcðC; tS; tE;a;�Þ ¼ P�

abcðC; tS; tE;aÞ ¼
QabcdDðtS; tE;aÞ C¼ case

PabcðtS; tE;aÞ C¼ non� case

�

If hc denotes the constant historical force of infection in country c, then the probabilities pbc(a) of

having serostatus b in country c at age a are given by

p0c að Þ ¼ e�hca

then the likelihood of parameters � is given by

L �ð Þ ¼
Y

N

i¼1

P�
aibici

Ci; tSi; tEi;aið Þpbici aið Þ
� �

Data augmentation
We have baseline immunity data for only around 10% of subjects, and the above likelihood requires

the baseline serostatus of each trial participant. We employ data augmentation, in which the base-

line serostatus of each participant outside the immunogenicity subset is treated as a parameter, to

infer the immunological status of each participant with missing baseline serostatus. This has the

advantage that fitted parameters are less dependent on initial assignment of baseline serostatus and

can be considered as marginal distributions over possible values of baseline immunity. We use Gibbs

sampling to calculate the conditional probability of seropositivity, given the current state of the

parameter chain � and the patient’s age, trial arm, country and clinical outcome C.

Abbreviating and letting P SþjC; �ð Þ and P S�jC; �ð Þ ¼ 1� P SþjC; �ð Þ respectively denote the proba-

bilities of seropositivity and seronegativity at baseline given clinical outcome C, by Bayes’ theorem

we have

P SþjC;�ð Þ ¼
P CjSþ;�ð Þ

P C;�ð Þ
¼

P CjSþ;�ð Þ

P CjSþ;�ð ÞP Sþ;�ð ÞþP CjS�;�ð ÞP S�;�ð Þ

For example, a non-case of age a in country c has the following probability of seropositivity at

baseline

P SþjNon� case;�ð Þ ¼
Pa;1;c tS; tE;að Þ

Pa;1;c tS; tE;að Þ 1� exp �hcað Þð ÞþPa;0;c tS; tE;að Þexp �hcað Þ

for parameters �. Similarly, for a case of severity D of age a in country c we have

P SþjCase;�ð Þ ¼
Qa;1;c;D tS; tE;að Þ

Qa;1;c;D tS; tE;að Þ 1� exp �hcað Þð ÞþQa;0;c;D tS; tE;að Þexp �hcað Þ

Hazard ratios
If V and C are the sets of vaccinees and controls, respectively, then within any given stratum of inter-

est S (e.g. in a particular country, age or serostatus subset, or combination thereof), then posterior

ratios of hazards of any disease severity and due to any serotype HR(t*) for all serotypes combined

at time post-first dose t* are given by
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HRS t�ð Þ ¼ i2S\V

X

laibici tSi þ t�;aið Þ

i2S\C

X

laibici tSi þ t�;aið Þ

jS\Cj

jS\Vj

where jSj denotes the number of trial participants in stratum S.

For hazard ratios HR(t*,d) of a particular disease severity D and serotype d, we have

HRS t�;d;Dð Þ ¼ i2S\V

X

laibicidD tSi þ t�;aið Þ

i2S\C

X

laibicidD tSi þ t�;aið Þ

jS\Cj

jS\Vj

Survival curves
For stratum S as at t* days post-first dose, posterior survival probabilities PS t�ð Þ are calculated as

PS t�ð Þ ¼ i2S

X

Paibici tSi ; tSi þ t�;aið Þ

jSj

and if nS t�ð Þ denotes the number of cases in stratum S that occurred within t* days post-first dose,

then the observed survival probabilities are given by

PS;Obs t�ð Þ ¼ 1�
nS t�ð Þ

jSj

Attack rates
The period for which participants were under active or passive surveillance varies by patient. There-

fore, we calculate attack rates using

AR TrialPeriodð Þ ¼ i2S

X

Paibici tSi ; tAi
;aið Þ�Paibici tSi ; tBi

;aið Þ

i2S

X

tBi
� tAi

where tAi
and tBi

are the start and end times of the trial period for patient i (tSi is the start of follow-

up and is arbitrary here). To compute attack rates for observed data, we use the same formula, but

Paibici tSi ; t;aið Þ takes value 0 if the patient i is a case between tSi and t, and 1 otherwise. We use exact

binomial confidence intervals on aggregate observed survival probabilities. For predicted attack

rates, we use 95% credible intervals of posterior samples.

Model variants and fitting
Model fitting was performed using the Metropolis–Hastings algorithm for parameter inference and

Gibbs sampling for data augmentation. Parameters fitted include the relative risks, vaccine-induced

transient immunities (by baseline serostatus, serotype and age) and their durations. For each coun-

try-specific baseline hazard, the logged knots of the spline are the fitted parameters, which explicitly

determine all values of the baseline hazard. Prior distributions for parameters and augmented data

were uniform (Supplementary file 1), and proposal distributions were normal. Each model variant

was run for 1,100,000 iterations with a burn-in period of 100,000, storing 1 in every 100 iterations as

posterior samples. Convergence was assessed visually. The model was coded in C++ using OpenMP

(Dagum and Menon, 1998), and results were analysed in R 3.6.1 (R Development Core Team,

2019). All model code is available at https://github.com/dlaydon/DengVaxSurvival (Laydon, 2021;

copy archived at swh:1:rev:d4964b7240312a371b2767533099643c59025dbf).

We consider alternative model variants that do not incorporate explicit serotype or age effects

(Figure 2B–D, Table 1), and also a variant without vaccine-induced immune priming. Model fit is

assessed both visually and using the Bayesian Information Criterion (BIC) (Bhat and Kumar, 2010)

and the Widely Applicable Bayesian Information Criterion (WBIC) (Watanabe, 2013). For the WBIC,

model variants with the highest values are to be preferred, in contrast to the BIC where model var-

iants with the lowest values are preferred.
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Table 1. Parameter values by model variant.
A, B, C, D refer to panels A, B, C and D of Figure 2. WBIC: Widely-Applicable Bayesian Information Criterion.

Model variant Main model A
Age effects
onlyB

Serotype effects
onlyC Simplest modelD

WBIC �28627.1 �29065.33 �28591.5 �29018.16

Relative risks Trial phase No. prior infections

Active (K0,0) 0 0.7 (0.36, 0.98) 0.53 (0.26, 0.9) 0.52 (0.28, 0.83) 0.43 (0.24, 0.78)

Active (K0,1) 1 (baseline) 1 (1, 1) 1 (1, 1) 1 (1, 1) 1 (1, 1)

Active (K0,2) two or 3 0.31 (0.14, 0.63) 0.32 (0.14, 0.65) 0.2 (0.1, 0.4) 0.21 (0.089, 0.45)

Passive (K1,0) 0 0.053 (0.034,
0.078)

0.054 (0.035,
0.078)

0.051 (0.033, 0.073) 0.052 (0.034,
0.074)

Passive (K1,1) 1 0.21 (0.14, 0.31) 0.22 (0.14, 0.31) 0.2 (0.13, 0.29) 0.21 (0.14, 0.3)

Passive (K2,1) 2 or 3 0.053 (0.034,
0.078)

0.054 (0.035,
0.078)

0.051 (0.033, 0.073) 0.052 (0.034,
0.074)

Seronegative transient
immunity

Any
serotype

Any age - - - 0.64 (0.34, 0.81)

2–5 years - 0.48 (0.085, 0.77) - -

6–11 years - 0.65 (0.36, 0.85) - -

12–16 years - 0.61 (0.25, 0.85) - -

Serotype 1 Any age - - 0.47 (0.12, 0.74) -

2–5 years 0.16 (–0.34, 0.61) - - -

6–11 years 0.39 (–0.0023,
0.73)

- - -

12–16 years 0.4 (0.022, 0.73) - - -

Serotype 2 Any age - - 0.29 (0.0095, 0.62) -

2–5 years �0.11 (–0.72,
0.46)

- - -

6–11 years 0.12 (–0.38, 0.57) - - -

12–16 years 0.14 (–0.39, 0.6) - - -

Serotype 3 Any age - - 0.69 (0.29, 0.96) -

2–5 years 0.43 (–0.17, 0.86) - - -

6–11 years 0.65 (0.15, 0.96) - - -

12–16 years 0.67 (0.17, 0.97) - - -

Serotype 4 Any age - - 0.78 (0.59, 0.92) -

2–5 years 0.54 (0.11, 0.85) - - -

6–11 years 0.76 (0.53, 0.93) - - -

12–16 years 0.78 (0.48, 0.98) - - -

Table 1 continued on next page
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Results

Trial data
Figure 3 shows the proportion of participants with virologically detected dengue by trial, age group,

trial phase, serotype and disease severity. Both trials show a clear benefit of vaccine across each age

group for the active phase (25 months post-first dose), where surveillance could detect both hospi-

talised and non-hospitalised disease. In the passive phase (next 11 months following active phase),

there are considerably fewer cases, owing to its shorter duration and detection of only hospitalised

cases. Further, the benefits of vaccination in the passive phase are less than the active, and 2–5-year-

old vaccinees show a greatly increased risk of hospitalisation than controls. In both trials, a mix of

infecting serotypes among cases was observed.

Model outputs
Because we consider both transient immunity and the change in disease risk induced by vaccination,

the vaccine’s overall effect can be difficult to interpret using only parameter estimates. We therefore

summarise model output using hazard ratios (vaccine/control). Figure 4 shows estimated posterior

Table 1 continued

Model variant Main model A
Age effects
onlyB

Serotype effects
onlyC Simplest modelD

Seropositive transient
immunity

Any
serotype

Any age - - - 0.43 (0.041, 0.73)

2–5 years - 0.23 (0.0089, 0.6) - -

6–11 years - 0.49 (0.11, 0.74) - -

12–16 years - 0.65 (0.37, 0.82) - -

Serotype 1 Any age - - 0.29 (0.015, 0.64) -

2–5 years 0.21 (0.011, 0.55) - - -

6–11 years 0.42 (0.063, 0.7) - - -

12–16 years 0.54 (0.22, 0.78) - - -

Serotype 2 Any age - - 0.4 (0.041, 0.75) -

2–5 years 0.26 (0.015, 0.63) - - -

6–11 years 0.47 (0.1, 0.76) - - -

12–16 years 0.59 (0.28, 0.83) - - -

Serotype 3 Any age - - 0.54 (0.12, 0.84) -

2–5 years 0.36 (0.06, 0.72) - - -

6–11 years 0.57 (0.19, 0.83) - - -

12–16 years 0.69 (0.39, 0.9) - - -

Serotype 4 Any age - - 0.79 (0.44, 0.98) -

2–5 years 0.52 (0.2, 0.86) - - -

6–11 years 0.73 (0.37, 0.96) - - -

12–16 years 0.85 (0.56, 0.99) - - -

Transient-immunity duration Seronegative (t 0) 4.5 (1, 9.6) 5 (1.1, 9.7) 4.1 (0.97, 9.4) 4.9 (1.2, 9.6)

Seropositive (t 1) 11 (2.3, 20) 12 (2.9, 20) 9.5 (1.2, 19) 10 (1.3, 20)

Age-specific hazard multiplier
Z(a)

2–5 years (baseline) 1 (1,1) 1 (1, 1) - -

6–11 years 1.2 (0.91, 1.5) 1.1 (0.88, 1.4) - -

12–16 years 1.1 (0.79, 1.5) 1 (0.76, 1.4) - -

Infection risk multiplier Seronegative (M0,
baseline)

1 (1,1) 1 (1, 1) 1 (1,1) 1 (1, 1)

Seropositive (M1) 0.77 (0.43, 0.99) 0.61 (0.31, 0.96) 0.69 (0.4, 0.97) 0.57 (0.33, 0.94)
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Figure 3. Summary of trial data.
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Figure 4. Posterior hazard ratios by trial, age group and baseline serostatus over time (main model). Each plot shows posterior hazard ratios (vaccine:

control) for each age group at 0, 12, 25 and 36 months (0, 1, 2 or 3 years) of follow-up. Hazard ratios consider symptomatic disease regardless of

serotype or hospitalisation status. Grey line indicates a ratio of 1, that is, no difference between the trial arms. Red line is the mean posterior estimate,

and pink intervals represent 95% credible intervals of posterior samples. Rows show ratios when not broken down by serostatus (top row), for

seronegatives (middle row) and seropositives (bottom row), for CYD14 (left column) and CYD15 (right column).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Posterior hazard ratio estimates by trial, age group, baseline serostatus and serotype over time (main model).

Figure supplement 2. Posterior hazard ratios by hospitalisation status.

Figure supplement 3. Posterior hazard ratios by serotype against non-hospitalised disease status.

Figure supplement 4. Posterior hazard ratios by serotype and hospitalised disease status.
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hazard ratios for symptomatic disease (regardless of hospitalisation) by trial, serostatus and age

group over time.

The vaccine has the greatest benefit for seropositive recipients: hazard ratios remain low through-

out the active phase and the first year of passive phase, and mean posterior and 95% credible inter-

vals are below 1 for all ages, indicating consistent benefit. The decrease in hazard ratios over time in

each age group reflects the greater benefit to seropositives against hospitalised/severe disease as

only this disease outcome is measured in the passive phase.

For seronegative vaccinees, hazard ratios are neither significantly positive nor negative during the

first year. Ratios rise dramatically afterwards, reflecting low and short-lived immunity, combined with

an almost sixfold long-term increase in disease risk, in both trials and in all age groups. Because the

passive phase trial surveillance detected only hospitalised disease, this increase in hazard ratios

refers to an increase in risk of hospitalisation, consistent with the 2017 NS1 data (Sridhar et al.,

2018), to which our model was not fitted.

When unstratified by baseline serostatus, the vaccine is broadly beneficial, although hazard ratios

rise over time, and are above 1 for 2–5 year olds in the first year of passive follow up. Decreasing

hazard ratios with age reflect increasing seropositivity with age, and to a lesser extent the increase

with age in transient immunity that we infer for seropositives. Low seroprevalence in 2–5 year olds is

the driving factor of their increased risk, and this is consistent with the risk enhancement observed in

the first year of long-term follow-up data. Hazard ratios are similar between trials for comparable

age groups.

The estimated trends with age, serostatus and time hold when broken down by serotype (Fig-

ure 4—figure supplement 1), although net vaccine efficacy varies by serotype. Vaccination respec-

tively offers the least and greatest benefit to serotypes 2 and 4. Hazard ratios are higher for

serotype 2, although the vaccine remains beneficial in seropositives. For serotypes 3 and 4, hazard

ratios are lower, and vaccination provides some initial protection even in seronegatives, although

again these ratios rise over time. Risk enhancement of 2–5-year-old vaccinees is much higher for

serotypes 1 and 2 than for 3 and 4.

Table 1 shows parameter estimates for our main model. We infer relative risks by prior infection

under both active and passive surveillance, and define Ki,D as the relative risk of disease of type D (in

this instance referring to either the active or passive phase) given i previous infections. Disease risk

in active phase secondary infections is our baseline (i.e. K1,0: = 1).

We estimate the relative risk parameters K0,0 and K2,0 to be 0.7 (0.36–0.98) and 0.31 (0.14–0.63),

respectively. That is, among unvaccinated individuals, primary infection is 70% as likely, and tertiary/

quaternary infection is 31% as likely, to cause symptomatic disease as secondary infection. However,

considering vaccination as a silent infection, seronegative vaccinees increase their long-term risk of

symptomatic disease by a factor of K1,0/K0,0 = 1.5 (1.0–2.7), whereas vaccinees with a single prior

infection multiply their long-term disease risk by a factor of K2,0/K1,0 = 0.31 (0.14–0.63), transient

immunity notwithstanding.

We estimate the proportions of symptomatic primary, secondary and tertiary/quaternary infec-

tions that require hospitalisation (i.e. parameters K0,1, K1,1 and K2,1) to be 0.053 (0.034–0.078), 0.21

(0.14–0.31) and 0.053 (0.034–0.078), respectively. Therefore, in seronegatives, vaccination increases

long-term risk of hospitalisation by a factor of K1,0 K1,1/K0,0 K0,1 = 6.1 (4.1–11), whereas for those

with a single prior infection hospitalisation risk is multiplied by a factor of K2,0 K2,1/K1,0 K1,1 = 0.078

(0.036–0.16), again without considering transient immunity. Because disease risk in tertiary and qua-

ternary infection is assumed to be equal (i.e. K2,1 = K3,1 and K2,2 = K3,2), multitypic seropositives

(those with more than one previous infection) are unaffected by this mechanism of vaccine action.

Estimates of transient immunity by age, serostatus and serotype are shown in Figure 5. For every

serotype, seronegative transient immunity estimates do not vary for older age groups but are lower

for 2–5 year olds. They are lowest for serotype 2 (with negative mean estimates of �11% (�72–46%)

for 2–5 year olds) and relatively high for serotypes 3 and 4. For seropositives, while estimates are

again higher for serotypes 3 and 4, they vary less by serotype but more by age, with immunity being

lower for younger than older children. Our results imply that transient immunity varies by age, inde-

pendently of serostatus, although more so in seropositives (Figure 5, Table 1).

We could not precisely infer durations of transient immunity. Mean posterior estimates of sero-

negative and seropositive transient immunity duration are 4.5 (1–9.6) and 11 (2.3–20) years, respec-

tively. However, a closer look at parameter posterior distributions (Figure 5—figure supplement 1,
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top row) is informative: in seropositives, approximately equal weight is given to longer durations of

between 5 and 20 years (85% of posterior mass is above 5 years), whereas in seronegatives shorter

durations are more likely (modal estimate is approximately 2 years and 62% of posterior mass is

below 5 years).

If seropositive transient immunity were zero (or alternatively if the duration of transient immunity

in seropositives was very short), then vaccination would only prime immunity and only individuals

with pre-existing monotypic immunity would benefit from vaccination. Instead we estimate positive

values for transient immunity for each age group and serotype. Further, model fits that fix seroposi-

tive transient immunity at zero do not reproduce the trial data. Therefore, for seropositives, to the

extent that transient immunity is long-lived, vaccination confers benefit beyond that of priming

immunity and consequent reduction of disease risk to that associated with natural tertiary and qua-

ternary infection. Hence individuals with pre-existing multitypic immunity are also predicted to bene-

fit from vaccination, with the caveat that we were not able to test a model in which transient

immunity only applied to those with monotypic immunity. Conversely, in seronegatives, any positive

benefit that mitigates long-term increase in disease risk is short-lived.

We find that the age group-specific multiplier of the baseline hazard increases with age for 6–11

year olds (1.2, 0.91–1.5), but then decreases for the 12–16 age group (1.1, 0.79–1.5) to be no differ-

ent from the 2–5-year-old age group in the mean posterior estimates. While both credible intervals

encompass 1 (indicating no difference), model runs that omit this age-specific hazard multiplier give

a noticeably inferior visual fit (Appendix 1). Regardless of vaccination, we find that seropositives are

0.77 (0.43–0.99) times as likely to be infected as seronegatives due to their immunity to at least one

serotype.

Figure 5. Age-specific transient immunity estimates (main model). Profiles of age-group-specific transient immunity by serostatus for serotypes 1–4.

Mean posterior estimates are shown in red, with 95% credible intervals surrounding.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Transient immunity duration posteriors.

Figure supplement 2. Posterior chains of serotype proportions by country.

Figure supplement 3. Observed and predicted age-specific seroprevalence by country and trial.

Figure supplement 4. Age-specific transient immunity estimates (age effects model without serotype effects).

Figure supplement 5. Age-specific transient immunity durations (model with fitted age-specific transient immunity durations).
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Estimates of the serotype proportions by country are shown in Figure 5—figure supplement 2,

showing substantial heterogeneity between countries in their serotype distributions (e.g. Puerto Rico

and Brazil’s cases are almost exclusively comprised of serotypes 1 and 4, respectively).

Model fits
Observed Kaplan–Meier curves demonstrate a clear overall benefit of vaccination. Over the com-

bined active and first year passive phase, controls acquire symptomatic disease more than vaccinees

in every country and age group. In both trials, vaccine efficacy wanes over time, and the slopes in

the Kaplan–Meier curves become more equal (Figure 6). The active phase lasted ~25 months (760

days), after which the slopes of the curves in each trial arm level off because only hospitalisations

were detected. The model was fitted to the combined data from CYD14 and CYD15, and reprodu-

ces the observed Kaplan–Meier curves well across countries and age groups (Figure 6).

Observed attack rates varied widely by country, trial arm, trial phase and age group (Figure 7,

Figure 7—figure supplements 1 and 2). Attack rates were generally higher in CYD14 than CYD15,

and they decrease with age in both arms. Our main model captures this variation well, and the mean

predicted attack rates fall within the confidence intervals of the observed attack rates in every age

group, country, trial arm and trial phase. Importantly, the mean estimates reproduce the increased

hospitalisation among 2–5-year-old vaccinees observed in the CYD14 trial (Figure 7).

Figure 7—figure supplements 3 and 4 show attack rates outputted from the immunogenicity

subset only, where model predictions remain within the confidence intervals of observed attack

rates. Attack rates again decrease with age in seropositives but not seronegatives, likely because of

immunity to previously encountered serotypes (Figure 7—figure supplement 4). For seronegative

vaccinees, increased disease risk in the passive phase is predicted for all age groups in both trials,

and not only 2–5 year olds in CYD14. Conversely, predicted seropositive attack rates are lower for

vaccinees than controls across both trials. Our estimates well reproduce the data that is not overly

sparse and again largely predict the 2017 NS1 data (Sridhar et al., 2018). The observed distribution

of seroprevalence by age in the immunogenicity subset is well mirrored in the augmented data (Fig-

ure 5—figure supplement 3).

Severity analysis
Our default interpretation of relative risk parameters Ki,D distinguishes between differences in case

detection under active and passive surveillance. However, we can also interpret these parameters to

distinguish between non-hospitalised and hospitalised disease (or alternatively between non-severe

and severe disease) (see Materials and methods).

We find that hazard ratios are consistent with our default interpretation which does not consider

disease severity. However, here it is easier to distinguish between the vaccine’s temporal effects and

its differing efficacy against hospitalised or severe disease. For seropositives, temporal effects are

minimal, and vaccination confers high and long-lasting protection against disease, and more so

against hospitalised disease. In seronegatives, against non-hospitalised disease, hazard ratios again

show only minor (and sometimes non-significant) initial protection, but they do not rise to the same

dramatic extent. However, against hospitalised disease there is immediate risk enhancement that

substantially worsens over time (Figure 4—figure supplement 2). In summary, the differences

between seronegative and seropositive efficacy are greater against hospitalised disease than against

febrile disease.

These trends hold when broken down by serotype (Figure 4—figure supplements

3 and 4). Protection is greatest against serotype 4 and lowest against serotype 2. The rate at which

vaccination enhances hospitalisation risk in seronegatives varies by serotype: against serotype 2, vac-

cination increases hospitalisation risk immediately after vaccination and only rises slowly during the

following three years (to approximately sixfold); whereas for serotypes 3 and 4 the eventual risk

enhancement is lower (approximately fourfold) but follows a delay (Figure 4—figure supplement 4).

Hazard ratios are almost identical when considering severe and non-severe disease.

Age-, serotype- and serostatus-specific transient immunity estimates are similar to our default

interpretation when considering hospitalised or severe disease (not shown). We allow the propor-

tions of symptomatic disease requiring hospitalisation to differ between trials to reflect non-standar-

dised criteria between countries. Among secondary infection, proportions differ slightly between the
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Figure 6. Fits to observed Kaplan–Meier curves by trial, age group and country (main model). In each plot, vaccine and control survival probabilities are

plotted against days post-first dose (vaccine or placebo). Dark lines denote observed curves, dashed lines are the mean posterior estimates, with 95%

credible intervals around.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Fits to observed Kaplan–Meier curves by trial and disease severity.

Figure supplement 2. Fits to observed Kaplan–Meier curves by trial and hospitalisation status.

Figure supplement 3. Fits to observed Kaplan–Meier curves by trial, age group and country (simplest model without age or serotype effects).

Figure supplement 4. Fits to observed Kaplan–Meier curves by trial, age group and country (age effects model without serotype effects).

Figure supplement 5. Fits to observed Kaplan–Meier curves by trial, age group and country (serotype effects model without age effects).

Figure 6 continued on next page
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CYD14 and CYD15 trials at 0.30 (0.23–0.33) and 0.16 (0.12–0.21), respectively (values for primary

and tertiary/quaternary infection are determined by fixed ratios). Relative risks of severe disease are

considerably lower than hospitalised disease at 0.012 (0.0087–0.016), 0.047 (0.035–0.063) and 0.012

(0.0087–0.016) for primary, secondary and tertiary/quaternary infection.

When distinguishing between severe and non-severe disease, we reproduce observed survival

curves at trial level for non-severe disease, but fits are less good for severe disease (Figure 6—fig-

ure supplement 1). This is due firstly to limited data (non-severe cases outnumber severe cases by

1223 to 58), and secondly because we do not allow transient immunity to vary by disease severity.

When we instead consider hospitalisation (Figure 6—figure supplement 2), fits to survival curves

are good regardless of hospitalisation status. In both scenarios, model fits to ‘either’ disease severity

(e.g. surviving both severe and non-severe disease) closely resemble those of our default interpreta-

tion, where disease severity is not considered. Attack rates in each disease category are relatively

well fitted, although passive phase attack rates are less well fitted for severe or hospitalised disease

(non-hospitalised febrile disease is not detected by passive surveillance) (Figure 7—figure supple-

ments 5 and 6).

Alternative model variants
We conducted a sensitivity analysis to examine whether more parsimonious models are sufficient to

explain the complex trial data (Appendix 1). Broadly, it is necessary to include explicit age effects to

reproduce the age distribution of cases and to include serotype effects to reproduce variation by

country. While we could not precisely infer the duration of transient immunity, our analysis indicated

that it is short-lived in seronegatives and long-lived in seropositives.

Discussion
Our results provide a comprehensive profile of Sanofi-Pasteur’s CYD-TDV vaccine (Dengvaxia). We

investigated multiple mechanisms of vaccine action and analysed its dependence on serotype, base-

line serostatus and age. We further examined efficacy by disease severity.

There was substantial heterogeneity in transient immunity by serotype and serostatus. Vaccine-

induced protection against each serotype was higher in seropositive recipients than in seronegatives,

and these findings were robust across model variants. The incorporation of serotype-specific tran-

sient immunity improved model fits to country breakdowns, but had little effect on fits to age break-

downs. Interestingly, transient immunity was found to increase with age in seropositives and to a

lesser extent in seronegatives. While one mechanism of our model (change in relative risk through

‘silent infection’) separates seropositivity into monotypic and multitypic immunity, the other (confer-

ral of transient immunity) does not, and so it is possible that the age trend in seropositives also

reflects increasing transient immunity for multitypic immunes, although the slight age trend in sero-

negatives could not be explained this way. In general, heterogeneity between countries’ Kaplan–

Meier curves can be explained by serotype and seroprevalence, although these factors are insuffi-

cient to explain differences in vaccine efficacy by age, for which age-specific effects (independent of

serostatus) are required.

In every model variant examined, vaccination substantially decreased disease risk in seropositives,

but increased risk in seronegatives (particularly risk of hospitalised/severe disease). These findings

are consistent with and largely predict the NS1 data and long-term follow-up data (Sridhar et al.,

2018). We further found larger differences in efficacy between seropositives and seronegatives

when considering hospitalised disease: benefit to seropositives and risk enhancement in seronega-

tives is greater than against febrile disease. Our findings here may be affected by the data used: the

passive surveillance in the first year of hospital follow-up does not detect non-hospitalised disease.

Figure 6 continued

Figure supplement 6. Fits to observed Kaplan–Meier curves by trial, age group and country (model without age-specific force of infection).

Figure supplement 7. Fits to observed Kaplan–Meier curves by trial, age group and country (model without immune priming).

Figure supplement 8. Fits to observed Kaplan–Meier curves by trial, age group and country (model with fitted age-specific transient immunity
durations).
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While our analysis demonstrates that serostatus is the dominant factor in efficacy, the data do not

allow us to consider the order of infecting serotype, which recent work suggests affects disease risk

(Aguas et al., 2019) and therefore perhaps efficacy also. While we have analysed the vaccine’s effect

against different serotypes and different severities of disease, we have not analysed efficacy against

infection (Olivera-Botello et al., 2016). It would be helpful to examine the degree to which efficacy

Figure 7. Model fits to observed attack rates at trial level for active and first year passive phase. Observed and predicted age group-specific attack

rates are shown for CYD14 (left column) and CYD15 (right column), for first three years follow-up (active phase and first year hospital phase combined),

and for the first year of follow-up only. Blue and red denote observed attack rates for control and vaccine groups, while light blue and pink denote

model predictions for control and vaccine groups. Confidence intervals for observed attack rates are calculated using exact binomial confidence

intervals, whereas the uncertainty around predicted rates are 95% posterior sample credible intervals.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Model fits to observed attack rates by country.

Figure supplement 2. Model fits to observed first year passive phase attack rates by country.

Figure supplement 3. Model fits to observed immunogenicity subset attack rates.

Figure supplement 4. Model fits to observed immunogenicity subset attack rates from first year passive phase.

Figure supplement 5. Model fits to observed attack rates by trial, hospitalisation status and trial phase.

Figure supplement 6. Model fits to observed attack rates by trial, disease severity and trial phase.

Figure supplement 7. Model fits to observed attack rates at trial level for active and first year passive phase (model without immune priming).

Figure supplement 8. Model fits to observed attack rates at trial level for active and first year passive phase (model with fitted age-specific transient
immunity durations).
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is dependent upon antibody titres (Salje et al., 2018; Katzelnick et al., 2017) as opposed to a

binary serostatus. The latter may determine whether vaccine immune priming is age dependent.

Our model does not disaggregate seropositives into monotypic or multitypic immunity, and we

were unable to test models whereby transient immunity applies only to multitypic seropositives. The

use of antibody titres could be informative, although we are ultimately limited by the small size of

the immunogenicity subset. Additionally, we do not model either serotype-specific natural immunity

or transient immunity that arises from natural infection.

Our model estimates an enhancement of risk for seronegative vaccinees for every serotype

(although more so for serotypes 1 and 2 than for serotypes 3 and 4), whereas previous work indi-

cated the vaccine’s better performance against serotype 4 (Sridhar et al., 2018). This is likely due to

the fact that we do not consider serotype-specific relative risks (and therefore serotype-specific

changes in relative risk induced by ‘silent infection’ vaccination). While we attempted previously to

resolve this issue, there is insufficient power to resolve these parameters, particularly for the passive

phase or hospitalised disease. Further, serotype-specific transient immunity durations would likely

have diminished or altogether removed the predicted risk enhancement for serotype 4. Again

though, there is insufficient power to resolve such serotype effects, particularly seeing as transient

immunity durations by serostatus were not precisely inferred.

Current WHO guidance recommends serological testing of potential vaccine recipients before

vaccination and only vaccinating seropositives (Dengue vaccine, 2019). Age targeting of vaccination

is therefore important: too young an age, and most of those tested will be seronegative, too old

and most will have already experienced secondary dengue infection.

Distinguishing between monotypic and multitypic infection is not usually possible in clinical prac-

tice. However, our results suggest that all seropositives are likely to benefit from vaccination, and

further that vaccinating them will be more beneficial than merely boosting their immunity to that of

someone with two previous natural infections. Importantly, this means it may be more beneficial to

vaccinate multitypic seropositives than other models have predicted (Flasche et al., 2016), at least

to the extent that seropositive transient immunity is long-lived and acts in both monotypic and multi-

typic seropositive vaccine recipients.

High-resolution maps of dengue seropositivity are now available, and alongside improved rapid

diagnostic tests and ‘screen-then-vaccinate’ programmes (Flasche and Smith, 2019), optimal

deployment of the vaccine could reduce the increasing worldwide burden of dengue disease by as

much as 30% (Cattarino et al., 2020). Therefore, targeting only seropositive recipients with this vac-

cine is an increasingly viable public health strategy.
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Appendix 1

Simplest model without age or serotype effects
When we omit serotype and age effects (infection history notwithstanding) (Figure 2D), the hazard

is given by

labcD t;að Þ ¼ lc tð ÞMbRabcD að Þ 1� da;VacI
�
b t; tFð Þ

� �

.

Here age is only considered alongside historical transmission intensity to determine the contribu-

tions of monotypic and multitypic infection to seropositive relative risks.

This reduced model fits observed Kaplan–Meier curves well at trial level, although age group

breakdowns are more variable: vaccine efficacy is respectively overestimated and underestimated

the 2–5 and 12–14 CYD-14 age groups (Figure 6—figure supplement 3). This is likely due to an

uneven age distribution in CYD-14: age groups 2–5 and 12–14 constitute 24.2% and 22.7% of CYD-

14 (or 7.9% and 7.5% of combined CYD-14 and CYD-15 data), whereas 6–11 years olds comprise

53.2% of the CYD14 data (17.5% of combined data). CYD-15 age breakdowns are better (Figure 6—

figure supplement 3), attributable to its larger size and narrower age range, although efficacy is still

slightly underestimated in the highest age group.

Fits to individual countries are more variable (Figure 6—figure supplement 3). Lower-quality fits

in country and age group subsets are usually attributable to thinner data and specifically lower case

numbers; however, this explanation is insufficient for Brazil, which has high case numbers, indicating

country-specific effects that are not captured by reduced model. The estimates of serotype propor-

tions (Figure 5—figure supplement 2) are instructive: Brazil and Mexico have vastly different sero-

type proportions (specifically serotypes with the highest and lowest vaccine-induced immunities,

respectively), and therefore fits to these countries improve with the inclusion of serotype effects. In

contrast, Indonesia, Thailand and Colombia have more equal serotype proportions, and thus their

fits are not greatly improved. These results indicate that the effects of vaccination vary by age, inde-

pendently of serostatus, and therefore that a more complex model is necessary to explain the trial

data.

Relative risk parameters are lower but consistent with our main model, and initial seronegative

transient immunity is 0.64 (0.34–0.74), whereas seropositive transient immunity is estimated to be

0.43 (0.041–0.73). Seronegative and seropositive durations are estimated at 4.9 (1.2–9.6) and 10

(1.4–20) years, respectively (and have similar posteriors to our main model), again indicating long-

lasting benefit to seropositives beyond the effect of immune priming (Table 1).

Model with age effects only
Adding age-specific transient immunity and force of infection (Figure 2B) to the simplest model, we

have the hazard

labcD t;að Þ ¼ lc tð ÞMbZ að ÞRabcD að Þ 1� da;VacI
�
b a; t; tFð Þ

� �

.

Fits in the CYD-14 2–5 and 12–14-year-old age groups are improved; however, fits to individual

countries are largely the same as the simplest model (Figure 6—figure supplement 4). Further,

each measurement of model fit is inferior to our main model (Table 1). We conclude that inclusion

of age effects alone is insufficient to explain the trial data.

This model variant again shows an increasing trend with age in transient immunity for seroposi-

tives, but less so for seronegatives (Figure 5—figure supplement 4, Table 1). Mean transient immu-

nity estimates are consistent with those from our main model when averaged over serotypes

(Table 1).

Model with serotype effects only
Adding serotype-specific transient immunity to the simplest model (Figure 2C) gives the following

hazard:

labcdD t;að Þ ¼ lc tð Þ�cdMbRabcD að Þ 1� da;VacI
�
bd t; tFð Þ

� �

where again age is only present in seropositive relative risk. While survival curves of individual

countries are well fitted, age-stratified survival curves are fitted no better than the simplest model
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and qualitatively worse than the model with age and serotype effects (Figure 6—figure supplement

5), and so we choose the latter model as our default. Vaccine-induced estimates from the model

with only serotype effects are consistent with those from our main model when averaged over age

groups (Table 1).

While these simpler model variants are more parsimonious, they do not explain the trial data as

well as our main model. Age-specific variation in transient immunity and the force of infection are

required to fit the age distribution of cases well, and serotype-specific transient immunities are nec-

essary to fit observed attack rates by country.

Model without age-specific force of infection
Because our estimates of the age-specific force of infection multiplier were relatively imprecise and

had credible intervals that spanned 1 (indicating no difference between age groups), we investigated

a model that removed these effects, with the following hazard

labcdD t;að Þ ¼ lc tð Þ�cdMbRabcD að Þ 1� da;VacI
�
bd a; t; tFð Þ

� �

Transient immunity and relative risk parameters are essentially unaffected by this omission; how-

ever, the age breakdowns in CYD-14 are adversely affected in 2–5 year olds and 6–11 year olds (Fig-

ure 6—figure supplement 6).

Model without immune priming
Our main model considers vaccination to prime host immunity akin to a natural disease-free infec-

tion, and this must be considered alongside estimates of vaccine-induced transient immunity. Here

we consider a model without immune priming, and so relative risk parameters do not vary by trial

arm, giving

Rbc0ðaÞ ¼
K0;0 b¼ 0

’c0ðaÞ b¼ 1

�

;

Rbc1 að Þ ¼
K0;0K0;1 b¼ 0

’c0 að Þ’c1 að Þ b¼ 1

�

;

and

labcdD t;að Þ ¼ lc tð Þ�cdMbZ að ÞRbcD að Þ 1� da;VacI
�
bd a; t; tFð Þ

� �

In this model variant the benefit of the vaccine is purely a function of transient immunity and its

duration.

Fits to the Kaplan–Meier curves (Figure 6—figure supplement 7) and attack rates (Figure 7—fig-

ure supplement 7) over the entire trial duration appear similar to our main model. However, passive

phase attack rates in the 2–5-year CYD-14 age group are not reproduced at all, and indeed here the

vaccine is erroneously predicted to be beneficial. Further, each measure of model fit is poorer for

this variant. We conclude that immune priming is required to properly account for the trial data,

explain the vaccine’s action mechanism and evaluate vaccine benefit and risk.

Model with age-specific durations of transient immunity
We investigated another model variant where we allowed the duration of protection t b(a) to vary

with age, and so here

I�bd a; t; tFð Þ ¼
Ibd að Þexp � t� tFð Þ=t b að Þð Þ Ibd að Þ>0

Ibd að Þ Otherwise

�

where t b(a) is a step function.

Fits to Kaplan–Meier curves and attack rates are almost indistinguishable from our main model

(Figure 6—figure supplement 8 and Figure 7—figure supplement 8). We find no age dependence

in seropositive durations, but there is some indication that seronegative transient immunity may be

Laydon et al. eLife 2021;10:e65131. DOI: https://doi.org/10.7554/eLife.65131 25 of 26

Research article Epidemiology and Global Health

https://doi.org/10.7554/eLife.65131


longer-lived in older children (Figure 5—figure supplement 5). As posteriors for durations are

already imprecisely inferred when not age-specific, and since fits are largely unchanged, we do not

allow duration to vary in our main model.
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