PMCA generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice

  1. Edoardo Bistaffa
  2. Alba Marín Moreno
  3. Juan Carlos Espinosa
  4. Chiara Maria Giulia De Luca
  5. Federico Angelo Cazzaniga
  6. Sara Maria Portaleone
  7. Luigi Celauro
  8. Giuseppe Legname
  9. Giorgio Giaccone
  10. Juan Maria Torres
  11. Fabio Moda  Is a corresponding author
  1. Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
  2. Centro de Investigación en Sanidad Animal (CISA-INIA), Spain
  3. ASST Santi Paolo e Carlo Università Degli Studi di Milano, Italy
  4. Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Italy

Abstract

Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA).

Methods In this work, we have challenged PMCA generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology.

Results: All inoculated mice developed mild spongiform changes, astroglial activation and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate.

Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious.

Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (Speedy) to FM; by the Spanish Ministerio de Economía y Competitividad [grant AGL2016-78054-R (AEI/FEDER, UE)] to J.M.T. and J.C.E.; A.M.-M. was supported by a fellowship from the INIA (FPI-SGIT-2015-02).

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Edoardo Bistaffa

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Alba Marín Moreno

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan Carlos Espinosa

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6719-9902
  4. Chiara Maria Giulia De Luca

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Federico Angelo Cazzaniga

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara Maria Portaleone

    Department of Health Sciences, Otolaryngology Unit, ASST Santi Paolo e Carlo Università Degli Studi di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Luigi Celauro

    Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Giuseppe Legname

    Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Giorgio Giaccone

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan Maria Torres

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0443-9232
  11. Fabio Moda

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    For correspondence
    Fabio.Moda@istituto-besta.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2820-9880

Funding

Ministero della Salute (GR-2013-02355724)

  • Fabio Moda

Ministero della Salute (Ricerca Corrente)

  • Fabio Moda

MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015)

  • Fabio Moda

Euronanomed III (Speedy)

  • Fabio Moda

Spanish Ministerio de Economia y Competitividad (AGL2016-78054-R (AEI/FEDER,UE))

  • Juan Maria Torres

INIA (Fellowship FPI-SGIT-2015-02)

  • Alba Marín Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We conducted animal experiments in accordance with the Code for Methods and Welfare Considerations in Behavioural Research with Animals (Directive 2010/63/EU) and made every effort to minimize suffering. Experiments developed in Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Madrid, Spain) were evaluated by the Committee on the Ethics of Animal Experiments of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria and approved by the General Directorate of the Madrid Community Government (permit no. PROEX 263-15)

Human subjects: Written informed consent for participation in research and all procedures for sample collection and experimental studies were in accordance with the 1964 Declaration of Helsinki and its later amendments and were approved by the Ethical Committee of "Fondazione IRCCS Istituto Neurologico Carlo Besta" (Milan, Italy).

Reviewing Editor

  1. J Paul Taylor, St Jude Children's Research Hospital, United States

Version history

  1. Received: November 30, 2020
  2. Accepted: April 13, 2021
  3. Accepted Manuscript published: April 14, 2021 (version 1)
  4. Version of Record published: April 23, 2021 (version 2)

Copyright

© 2021, Bistaffa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,533
    Page views
  • 123
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edoardo Bistaffa
  2. Alba Marín Moreno
  3. Juan Carlos Espinosa
  4. Chiara Maria Giulia De Luca
  5. Federico Angelo Cazzaniga
  6. Sara Maria Portaleone
  7. Luigi Celauro
  8. Giuseppe Legname
  9. Giorgio Giaccone
  10. Juan Maria Torres
  11. Fabio Moda
(2021)
PMCA generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice
eLife 10:e65311.
https://doi.org/10.7554/eLife.65311

Further reading

    1. Medicine
    Luyang Cao, Lixiang Ma ... Jingsong Xu
    Research Article

    Billions of apoptotic cells are removed daily in a human adult by professional phagocytes (e.g. macrophages) and neighboring nonprofessional phagocytes (e.g. stromal cells). Despite being a type of professional phagocyte, neutrophils are thought to be excluded from apoptotic sites to avoid tissue inflammation. Here, we report a fundamental and unexpected role of neutrophils as the predominant phagocyte responsible for the clearance of apoptotic hepatic cells in the steady state. In contrast to the engulfment of dead cells by macrophages, neutrophils burrowed directly into apoptotic hepatocytes, a process we term perforocytosis, and ingested the effete cells from the inside. The depletion of neutrophils caused defective removal of apoptotic bodies, induced tissue injury in the mouse liver, and led to the generation of autoantibodies. Human autoimmune liver disease showed similar defects in the neutrophil-mediated clearance of apoptotic hepatic cells. Hence, neutrophils possess a specialized immunologically silent mechanism for the clearance of apoptotic hepatocytes through perforocytosis, and defects in this key housekeeping function of neutrophils contribute to the genesis of autoimmune liver disease.

    1. Medicine
    Hong Zheng, Qianjin Li ... Cheng-Kui Qu
    Research Article

    While mitochondria in different tissues have distinct preferences for energy sources, they are flexible in utilizing competing substrates for metabolism according to physiological and nutritional circumstances. However, the regulatory mechanisms and significance of metabolic flexibility are not completely understood. Here, we report that the deletion of Ptpmt1, a mitochondria-based phosphatase, critically alters mitochondrial fuel selection – the utilization of pyruvate, a key mitochondrial substrate derived from glucose (the major simple carbohydrate), is inhibited, whereas the fatty acid utilization is enhanced. Ptpmt1 knockout does not impact the development of the skeletal muscle or heart. However, the metabolic inflexibility ultimately leads to muscular atrophy, heart failure, and sudden death. Mechanistic analyses reveal that the prolonged substrate shift from carbohydrates to lipids causes oxidative stress and mitochondrial destruction, which in turn results in marked accumulation of lipids and profound damage in the knockout muscle cells and cardiomyocytes. Interestingly, Ptpmt1 deletion from the liver or adipose tissue does not generate any local or systemic defects. These findings suggest that Ptpmt1 plays an important role in maintaining mitochondrial flexibility and that their balanced utilization of carbohydrates and lipids is essential for both the skeletal muscle and the heart despite the two tissues having different preferred energy sources.