PMCA generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice

  1. Edoardo Bistaffa
  2. Alba Marín Moreno
  3. Juan Carlos Espinosa
  4. Chiara Maria Giulia De Luca
  5. Federico Angelo Cazzaniga
  6. Sara Maria Portaleone
  7. Luigi Celauro
  8. Giuseppe Legname
  9. Giorgio Giaccone
  10. Juan Maria Torres
  11. Fabio Moda  Is a corresponding author
  1. Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
  2. Centro de Investigación en Sanidad Animal (CISA-INIA), Spain
  3. ASST Santi Paolo e Carlo Università Degli Studi di Milano, Italy
  4. Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Italy

Abstract

Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA).

Methods In this work, we have challenged PMCA generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology.

Results: All inoculated mice developed mild spongiform changes, astroglial activation and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate.

Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious.

Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (Speedy) to FM; by the Spanish Ministerio de Economía y Competitividad [grant AGL2016-78054-R (AEI/FEDER, UE)] to J.M.T. and J.C.E.; A.M.-M. was supported by a fellowship from the INIA (FPI-SGIT-2015-02).

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Edoardo Bistaffa

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Alba Marín Moreno

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan Carlos Espinosa

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6719-9902
  4. Chiara Maria Giulia De Luca

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Federico Angelo Cazzaniga

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara Maria Portaleone

    Department of Health Sciences, Otolaryngology Unit, ASST Santi Paolo e Carlo Università Degli Studi di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Luigi Celauro

    Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Giuseppe Legname

    Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Giorgio Giaccone

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan Maria Torres

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0443-9232
  11. Fabio Moda

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    For correspondence
    Fabio.Moda@istituto-besta.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2820-9880

Funding

Ministero della Salute (GR-2013-02355724)

  • Fabio Moda

Ministero della Salute (Ricerca Corrente)

  • Fabio Moda

MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015)

  • Fabio Moda

Euronanomed III (Speedy)

  • Fabio Moda

Spanish Ministerio de Economia y Competitividad (AGL2016-78054-R (AEI/FEDER,UE))

  • Juan Maria Torres

INIA (Fellowship FPI-SGIT-2015-02)

  • Alba Marín Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We conducted animal experiments in accordance with the Code for Methods and Welfare Considerations in Behavioural Research with Animals (Directive 2010/63/EU) and made every effort to minimize suffering. Experiments developed in Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Madrid, Spain) were evaluated by the Committee on the Ethics of Animal Experiments of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria and approved by the General Directorate of the Madrid Community Government (permit no. PROEX 263-15)

Human subjects: Written informed consent for participation in research and all procedures for sample collection and experimental studies were in accordance with the 1964 Declaration of Helsinki and its later amendments and were approved by the Ethical Committee of "Fondazione IRCCS Istituto Neurologico Carlo Besta" (Milan, Italy).

Copyright

© 2021, Bistaffa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edoardo Bistaffa
  2. Alba Marín Moreno
  3. Juan Carlos Espinosa
  4. Chiara Maria Giulia De Luca
  5. Federico Angelo Cazzaniga
  6. Sara Maria Portaleone
  7. Luigi Celauro
  8. Giuseppe Legname
  9. Giorgio Giaccone
  10. Juan Maria Torres
  11. Fabio Moda
(2021)
PMCA generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice
eLife 10:e65311.
https://doi.org/10.7554/eLife.65311

Share this article

https://doi.org/10.7554/eLife.65311

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).