PMCA generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice

  1. Edoardo Bistaffa
  2. Alba Marín Moreno
  3. Juan Carlos Espinosa
  4. Chiara Maria Giulia De Luca
  5. Federico Angelo Cazzaniga
  6. Sara Maria Portaleone
  7. Luigi Celauro
  8. Giuseppe Legname
  9. Giorgio Giaccone
  10. Juan Maria Torres
  11. Fabio Moda  Is a corresponding author
  1. Fondazione IRCCS Istituto Neurologico Carlo Besta, Italy
  2. Centro de Investigación en Sanidad Animal (CISA-INIA), Spain
  3. ASST Santi Paolo e Carlo Università Degli Studi di Milano, Italy
  4. Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Italy

Abstract

Background: Fatal Familial Insomnia (FFI) is a genetic prion disease caused by the D178N mutation in the prion protein gene (PRNP) in coupling phase with methionine at PRNP 129. In 2017, we have shown that the olfactory mucosa (OM) collected from FFI patients contained traces of PrPSc detectable by Protein Misfolding Cyclic Amplification (PMCA).

Methods In this work, we have challenged PMCA generated products obtained from OM and brain homogenate of FFI patients in BvPrP-Tg407 transgenic mice expressing the bank vole prion protein to test their ability to induce prion pathology.

Results: All inoculated mice developed mild spongiform changes, astroglial activation and PrPSc deposition mainly affecting the thalamus. However, their neuropathological alterations were different from those found in the brain of BvPrP-Tg407 mice injected with raw FFI brain homogenate.

Conclusions: Although with some experimental constraints, we show that PrPSc present in OM of FFI patients is potentially infectious.

Funding: This work was supported in part by the Italian Ministry of Health (GR-2013-02355724 and Ricerca Corrente), MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015), and Euronanomed III (Speedy) to FM; by the Spanish Ministerio de Economía y Competitividad [grant AGL2016-78054-R (AEI/FEDER, UE)] to J.M.T. and J.C.E.; A.M.-M. was supported by a fellowship from the INIA (FPI-SGIT-2015-02).

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Edoardo Bistaffa

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Alba Marín Moreno

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan Carlos Espinosa

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6719-9902
  4. Chiara Maria Giulia De Luca

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Federico Angelo Cazzaniga

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara Maria Portaleone

    Department of Health Sciences, Otolaryngology Unit, ASST Santi Paolo e Carlo Università Degli Studi di Milano, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Luigi Celauro

    Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Giuseppe Legname

    Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Giorgio Giaccone

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Juan Maria Torres

    Centro de Investigación en Sanidad Animal (CISA-INIA), Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0443-9232
  11. Fabio Moda

    Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
    For correspondence
    Fabio.Moda@istituto-besta.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2820-9880

Funding

Ministero della Salute (GR-2013-02355724)

  • Fabio Moda

Ministero della Salute (Ricerca Corrente)

  • Fabio Moda

MJFF, ALZ, Alzheimer's Research UK and the Weston Brain Institute (BAND2015)

  • Fabio Moda

Euronanomed III (Speedy)

  • Fabio Moda

Spanish Ministerio de Economia y Competitividad (AGL2016-78054-R (AEI/FEDER,UE))

  • Juan Maria Torres

INIA (Fellowship FPI-SGIT-2015-02)

  • Alba Marín Moreno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Paul Taylor, St Jude Children's Research Hospital, United States

Ethics

Animal experimentation: We conducted animal experiments in accordance with the Code for Methods and Welfare Considerations in Behavioural Research with Animals (Directive 2010/63/EU) and made every effort to minimize suffering. Experiments developed in Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Madrid, Spain) were evaluated by the Committee on the Ethics of Animal Experiments of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria and approved by the General Directorate of the Madrid Community Government (permit no. PROEX 263-15)

Human subjects: Written informed consent for participation in research and all procedures for sample collection and experimental studies were in accordance with the 1964 Declaration of Helsinki and its later amendments and were approved by the Ethical Committee of "Fondazione IRCCS Istituto Neurologico Carlo Besta" (Milan, Italy).

Version history

  1. Received: November 30, 2020
  2. Accepted: April 13, 2021
  3. Accepted Manuscript published: April 14, 2021 (version 1)
  4. Version of Record published: April 23, 2021 (version 2)

Copyright

© 2021, Bistaffa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,586
    Page views
  • 128
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edoardo Bistaffa
  2. Alba Marín Moreno
  3. Juan Carlos Espinosa
  4. Chiara Maria Giulia De Luca
  5. Federico Angelo Cazzaniga
  6. Sara Maria Portaleone
  7. Luigi Celauro
  8. Giuseppe Legname
  9. Giorgio Giaccone
  10. Juan Maria Torres
  11. Fabio Moda
(2021)
PMCA generated prions from the olfactory mucosa of patients with Fatal Familial Insomnia cause prion disease in mice
eLife 10:e65311.
https://doi.org/10.7554/eLife.65311

Share this article

https://doi.org/10.7554/eLife.65311

Further reading

    1. Medicine
    Jinjing Chen, Ruoyu Wang ... Jongsook Kemper
    Research Article

    The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.

    1. Cell Biology
    2. Medicine
    Chun Wang, Khushpreet Kaur ... Gabriel Mbalaviele
    Research Article

    Chemotherapy is a widely used treatment for a variety of solid and hematological malignancies. Despite its success in improving the survival rate of cancer patients, chemotherapy causes significant toxicity to multiple organs, including the skeleton, but the underlying mechanisms have yet to be elucidated. Using tumor-free mouse models, which are commonly used to assess direct off-target effects of anti-neoplastic therapies, we found that doxorubicin caused massive bone loss in wild-type mice, a phenotype associated with increased number of osteoclasts, leukopenia, elevated serum levels of danger-associated molecular patterns (DAMPs; e.g. cell-free DNA and ATP) and cytokines (e.g. IL-1β and IL-18). Accordingly, doxorubicin activated the absent in melanoma (AIM2) and NLR family pyrin domain containing 3 (NLRP3) inflammasomes in macrophages and neutrophils, causing inflammatory cell death pyroptosis and NETosis, which correlated with its leukopenic effects. Moreover, the effects of this chemotherapeutic agent on cytokine secretion, cell demise, and bone loss were attenuated to various extent in conditions of AIM2 and/or NLRP3 insufficiency. Thus, we found that inflammasomes are key players in bone loss caused by doxorubicin, a finding that may inspire the development of a tailored adjuvant therapy that preserves the quality of this tissue in patients treated with this class of drugs.