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Abstract COVID19 is a heterogeneous medical condition involving diverse underlying

pathophysiological processes including hyperinflammation, endothelial damage, thrombotic

microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms

driving these processes and lack of staging biomarkers hamper the ability to stratify patients for

targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of

hospitalized COVID19 patients revealing that seroconversion status associates with distinct

underlying pathophysiological states. Low antibody titers associate with hyperactive T cells and NK

cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement

activation, and depletion of lymphocytes, neutrophils, and platelets. Upon seroconversion, all of

these processes are attenuated, observing instead increases in B cell subsets, emergency

hematopoiesis, increased D-dimer, and hypoalbuminemia. We propose that seroconversion status

could potentially be used as a biosignature to stratify patients for therapeutic intervention and to

inform analysis of clinical trial results in heterogenous patient populations.

Introduction
COVID19 (coronavirus disease of 2019), the disease caused by the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), has caused more than 2.33 million deaths worldwide since late

2019. SARS-CoV-2 is a highly contagious coronavirus that uses angiotensin-converting enzyme-2

(ACE-2), a protein widely expressed on lung type II alveolar cells, endothelial cells, enterocytes, and
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arterial smooth muscle cells, as its primary cellular entry receptor (Hoffmann et al., 2020). Neuropi-

lin-1 (NRP1) has been characterized as an additional entry receptor for SARS-CoV-2, thus extending

the range of host cells and tissues directly affected by the virus (Cantuti-Castelvetri et al., 2020;

Daly et al., 2020). The clinical presentation of COVID19 is highly variable, ranging from asymptom-

atic infection to multiorgan failure and death (Wiersinga et al., 2020). Mild symptoms include a flu-

like condition consisting of fever, nasal congestion, cough, fatigue, and myalgia. In a small fraction

of patients, SARS-CoV-2 causes more severe effects in multiple organ systems. These include respi-

ratory failure, thromboembolic disease, thrombotic microangiopathies, stroke, neurological symp-

toms including seizures, as well as kidney and myocardial damage (Wiersinga et al., 2020). The

molecular and cellular bases of this clinical heterogeneity remain to be elucidated.

Several pathophysiological processes have been implicated in the etiology of severe COVID19

symptoms, including but not restricted to a hyperinflammation-driven pathology (Tay et al., 2020),

disruption of lung barrier function by Type I and III interferons (IFN) (Broggi et al., 2020;

Major et al., 2020), organ damage by systemic activation of the complement cascade (Holter et al.,

2020), vascular pathology caused by a bradykinin storm (Garvin et al., 2020), and a dysregulated

fibrinolytic system (D’Alessandro et al., 2020). The interplay between these non-mutually exclusive

processes is yet to be fully elucidated, and each of them offers opportunities for therapeutic inter-

ventions currently being tested in clinical trials. However, the lack of precise biomarkers for cohort

stratification and targeted therapeutics has hampered progress in this area.

We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19

patients investigating the multidimensional impacts of seroconversion status. When stratifying

patients by a quantitative metric of seroconversion, or ‘seroconversion index’, we were able to

define biosignatures differentially associated with humoral immunity. Low seroconversion indices

associate with high levels of activated T cells and cytokine-producing natural killer (NK) cells, bio-

signatures of monocyte activation, high levels of IFN alpha, gamma, and lambda ligands, markers of

systemic complement activation, and depletion of lymphocytes, neutrophils, and platelets. In sero-

converted patients, all these biosignatures are decreased or fully reversed, leading instead to

increased levels of circulating plasmablasts and mature and activated B cell subsets, increased num-

bers of neutrophils, lymphocytes, and platelets, elevated markers of platelet degranulation and

D-dimer, and significantly decreased levels of albumin and major liver-derived proteins, indicative of

increased liver damage and/or vascular leakage. Altogether, these results indicate that a quantitative

assessment of seroconversion status could be employed to map the trajectory of underlying patho-

physiological processes, with potential utility in stratification of patients in the clinic and enhanced

interpretation of clinical trial data.

Results

Hospitalized COVID19 patients display highly variable seroconversion
status
In order to investigate variations in the pathophysiological state of COVID19 patients, we completed

an integrated analysis of 105 research participants, including 73 COVID19 patients versus 32 nega-

tive controls (Figure 1a). Cohort characteristics are summarized in Supplementary file 1. COVID19

patients tested positive for SARS-CoV-2 infection by PCR and/or antibody testing and were hospital-

ized due to COVID19 symptoms, but none of them had developed severe pathology requiring ICU

admission at the time of blood collection. The control group was recruited from the same hospital

system, where they were receiving care for diverse comorbidities (Supplementary file 1) but tested

negative for SARS-CoV-2 infection. Research blood draws were obtained from consented partici-

pants and analyzed by matched SARS-CoV-2 seroconversion assays, plasma proteomics using two

alternative platforms [mass-spectrometry (MS) and SOMAscan assays], 82-plex cytokine profiling

using multiplex immunoassays with Meso Scale Discovery (MSD) technology, and immune cell profil-

ing via mass cytometry (MC) (Figure 1a) (see Materials and methods).

In order to stratify the COVID19-positive cohort, we measured seroconversion with multiplex

immunoassays detecting IgGs against four different SARS-CoV-2 peptides: full length nucleocapsid,

full length spike protein (spike), as well as smaller peptides encompassing the N-terminus domain

(NTD) and the receptor-binding domain (RBD) of the spike protein (see Materials and methods). The
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Figure 1. Highly variable seroconversion status among hospitalized COVID19 patients. (a) Overview of experimental approach. Blood samples from 105

research participants, 73 of them with COVID19, were analyzed by matched multiplex immunoassays for detection of antibodies against SARS-CoV-2,

plasma proteomics using mass spectrometry (MS), SOMAscan proteomics, and cytokine profiling using Meso Scale Discovery (MSD) technology. Data

was then analyzed to define biosignatures of seroconversion. (b) Multiplex immunoassays were used to measure antibodies against the SARS-CoV-2

nucleocapsid and spike proteins, as well as specific peptides encompassing the N-terminus domain (NTD) and receptor-binding domain (RBD) of the

spike protein. Data are presented as modified Sina plots with boxes indicating median and interquartile range. Numbers above brackets are p-values

for Mann–Whitney tests. (c) Scatter plots showing correlations between antibodies against the full-length spike protein versus antibodies against the

nucleocapsid, NTD, and RBD domains. Points are colored by density; lines represent linear model fit with 95% confidence interval. (d) Seroconversion

indices were calculated for each research participant by summing the Z-scores for each of the four seroconversion assays. Z-scores were calculated from

the adjusted concentration values for each epitope in each sample, based on the mean and standard deviation of COVID19-negative samples. (e)

Scatter plots displaying the top five correlations between seroconversion indices and proteins detected in the MS proteomics data set among COVID19

patients. Points are colored by density; lines represent linear model fit with 95% confidence interval. (f) Sina plots showing values for the top five

proteins correlated with seroconversion comparing the control cohort (Negative, Neg.) to COVID19 patients divided into seroconversion low and high

status. Data are presented as modified Sina plots with boxes indicating median and interquartile range. Numbers above brackets are q-values for

Mann–Whitney tests. See also Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Biosignatures of seroconversion among hospitalized COVID19 patients.
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COVID19 cohort displayed significantly elevated levels of anti-SARS-CoV-2 IgGs in all four assays,

with strong inter-individual variability (Figure 1b). As a control, levels of antibodies against the Flu A

Hong Kong H3 virus strain were no higher in COVID19 patients (Figure 1—figure supplement 1a).

In COVID19 patients, reactivity against the spike protein correlated positively with reactivity against

the other three peptides (Figure 1c). Therefore, we generated a seroconversion index by summing

Z-scores for each individual seroconversion assay, which enabled us to assign a quantitative serocon-

version value to each patient (Figure 1d). For the purpose of this study, we divided the COVID19

cohort into equally sized groups of low and high seroconversion indices, referred hereto as sero-low

and sero-high groups, respectively.

We then set out to define biosignatures significantly associated, either positively or negatively,

with the seroconversion index among COVID19 patients by analyzing correlations with the prote-

ome, cytokine profiling, and MC data sets. When calculating Spearman correlation values between

seroconversion indices and individual features in the other data sets, we identified hundreds of pro-

teins and dozens of immune cell types significantly correlated with seroconversion (Figure 1—figure

supplement 1b–g, Supplementary files 2–5). Reassuringly, top positive correlations among 407

abundant plasma proteins detected by MS are dominated by specific immunoglobulin sequences,

including several that were previously observed to be enriched in the bloodstream of COVID19

patients during seroconversion (Supplementary file 2, Figure 1e–f; Nielsen et al., 2020).

Altogether, these observations suggest that seroconversion is accompanied by significant

changes in underlying pathophysiological processes in COVID19, which prompted us to complete a

more thorough analysis of these correlations.

Immune cell signatures of seroconversion in COVID19
First, we investigated associations between seroconversion and changes in the frequencies of

peripheral immune cell subsets among COVID19 patients. Among all live CD45+ white blood cells

(WBCs), significant negative associations included plasmacytoid dendritic cells (pDCs), distinct sub-

sets of CD4+ and CD8+ T cells, and CD56bright NK cells (Figure 2a,b, Figure 2—figure supplement

1a,b). Conversely, positive associations were dominated by B cell subsets. pDCs were only mildly

elevated in sero-low COVID19 patients relative to the control group but significantly decreased in

the circulation of sero-high patients (Figure 2c). Being first responders during a viral infection, pDCs

are predicted to be activated and extravasate into the circulation early on as part of the innate

immune response, ahead of development of humoral immunity. Their significant reduction in the

bloodstream of sero-high patients could be indicative of exhaustion and/or depletion over the

course of the disease. Among CD4+ T cells, we observed elevated frequencies of Th1, Th17, Th1/

17, follicular helper CD4+ T cells (TFH), and terminally differentiated effector memory CD45RA+ sub-

sets in sero-low COVID19 patients, with frequencies falling back to baseline or below baseline in

sero-high patients (Figure 2a,c). Among CD8+ T cells, a similar behavior was observed for activated

(CD95+), effector (T-bet+Eomes+), senescent (T-bet+ Eomes�), effector memory, and terminally dif-

ferentiated CD45RA+ subsets (Figure 2a–c, Figure 2—figure supplement 1a,b). These patterns

were largely conserved when calculating frequencies within all T cells and within CD4+ and CD8+ T

cell subsets (Figure 2—figure supplement 1a, Supplementary file 5). These changes in peripheral

T cell subsets are consistent with an acute and transient antiviral T cell response in patients with low

seroconversion indices, marked by elevated levels of activated and effector CD8+ T cells, polariza-

tion of CD4+ T cells toward the Th1 antiviral state, accompanied by development of T cell memory,

TFH-assisted maturation of B cells, and eventual senescence and terminal differentiation of cytotoxic

CD8+ T cells. Notably, we also observed increases in CD3+ CD4- CD8- T cells (DN T cells) only in

sero-low patients (Figure 2a). DN T cells display distinct effector phenotypes, including an upregu-

lated cytolytic machinery, and may mediate tissue damage in autoinflammatory conditions such as

systemic lupus erythematosus and Sjogren’s syndrome (Brandt and Hedrich, 2018). This bimodal T

cell behavior is accompanied by increases in the frequency of CD56bright NK cells only in sero-low

patients (Figure 2a,c). CD56bright NK cells lack expression of inhibitory receptors and express high

levels of activating receptors, cytokine and chemokine receptors, and adhesion molecules

(Poli et al., 2009). Although CD56bright NK cells are not as cytotoxic as other NK subsets, they are

strong producers of key cytokines involved in the immune response, most prominently IFNG, which

we found to be elevated in sero-low patients (see later, Figure 3). CD56bright NK cells have been

found to be elevated in some autoimmune conditions and infections (Poli et al., 2009).
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Somewhat expectedly, the frequency of total B cells and plasmablasts among CD45+ live cells

increased with seroconversion (Figure 2a–c, Figure 2—figure supplement 1a–c). Other B cell sub-

sets displaying significant positive association with seroconversion include key memory subsets such

as switched Memory B cells (Switched Bmem), IgM+ memory B cells (IgM+ Bmem), c-delta switched
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Figure 2. Seroconversion associates with significant changes in peripheral immune cell frequencies. (a) Heatmap representing changes in the frequency

of immune cell subsets that are significantly correlated, either positively or negatively with seroconversion status. Values displayed are median Z-scores,

derived from cell frequencies among all CD45+ cells, for each cell subset for controls (negative, Neg.) versus COVID19 patients divided into

seroconversion low (Low) and high (High) status. Z-scores were calculated from the adjusted frequency values for each cell type in each sample, based

on the mean and standard deviation of COVID19-negative samples. Asterisks indicate a significant difference relative to the control COVID19-negative

group, and the + symbols indicate a significant difference between sero-low and sero-high groups after multiple hypothesis correction (q < 0.1, Mann–

Whitney test). (b) Scatter plots for indicated immune cell types significantly correlated with seroconversion indices among COVID19 patients. Points are

colored by density; lines represent linear model fit with 95% confidence interval. (c) Sina plots showing values for indicated immune cell types

significantly correlated with seroconversion indices among COVID19 patients. The parent cell lineage is indicated in the header and Y axis label for

each plot. Data are presented as modified Sina plots with boxes indicating median and interquartile range. Numbers above brackets are q-values for

Mann–Whitney tests. See also Figure 2—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Immune cell signatures of seroconversion.
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memory B cells (c-delta switched B-mem), and pre-switched activated memory B cells (pre-switched

activated Bmem) (Figure 2a–c, Figure 2—figure supplement 1a–c). Other B cell subsets enriched in

sero-high COVID19 patients include mature naı̈ve B cells and age-dependent B cells (ABCs)

(Figure 2a,b, Figure 2—figure supplement 1a–c). An increase in mature naı̈ve B cells is consistent
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Figure 3. Seroconversion is associated with decreased interferon signaling. (a) Heatmap displaying changes in circulating levels of immune factors that

are significantly correlated, either positively or negatively, with seroconversion status. The left column represents Spearman rho values, while the right

columns display median Z-scores for each immune factor for controls (negative, Neg.) versus COVID19 patients divided into seroconversion low (Low)

and high (High) status. Factors are ranked from most positively correlated (top, high rho values) to most anti-correlated (bottom, low rho values) with

seroconversion index. Z-scores were calculated from the adjusted concentration values for each immune factor in each sample, based on the mean and

standard deviation of COVID19-negative samples. Asterisks indicate a significant difference relative to the control COVID19-negative group, and the +

symbols indicate a significant difference between sero-low and sero-high groups (q < 0.1, Mann–Whitney test). (b) Scatter plots for indicated immune

factors significantly correlated with seroconversion indices among COVID19 patients. Points are colored by density; lines represent linear model fit with

95% confidence interval. (c) Sina plots showing values for immune factors correlated with seroconversion comparing controls (Neg.) to COVID19

patients divided into seroconversion low and high status. Data are presented as modified Sina plots with boxes indicating median and interquartile

range. Numbers above brackets are q-values for Mann–Whitney tests. (d) Scatter plots showing correlations between circulating levels of IFNA2

measured by MSD and the indicated cell types measured by mass cytometry. Values for immune cells correspond to frequency among all live cells.

Points are colored by density; lines represent linear model fit with 95% confidence interval. See also Figure 3—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Seroconversion associates with differential abundance of circulating immune factors.
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with the development of humoral immunity. ABCs are associated with typical aging and develop-

ment of autoimmunity, but their potential role during viral infections is less understood

(Karnell et al., 2017).

Altogether, these findings illustrate the heterogenous immune state among hospitalized

COVID19 patients, with seroconversion status being clearly associated with specific changes in circu-

lating immune cell subsets, which could be largely understood as part of the progression of the anti-

viral immune response from innate cellular immunity to adaptive humoral immunity. As discussed

later, these changes in immune cell frequencies occur in the context of clear depletion of total lym-

phocytes, neutrophils, and platelets in sero-low patients, with recovery of all these blood cell types

in sero-high patients (see later, Figures 5 and 6).

Seroconversion associates with decreased IFN signaling
Next, we investigated associations between seroconversion and circulating levels of cytokines, che-

mokines, and other immune modulators in the bloodstream. Toward this end, we analyzed signifi-

cant correlations in the MS proteomics, SOMAscan proteomics, and MSD data sets (Figure 1—

figure supplement 1b, Supplementary files 2–4). Collectively, these three data sets contain data

on dozens of factors involved in immune control (Supplementary file 6). The most obvious result

from this analysis was a clear negative correlation between seroconversion and circulating levels of

key IFN ligands. Among 82 immune factors in the MSD data set, top negative correlations are

IFNA2, IFNL1, and IFNG (Figure 1—figure supplement 1b, Figure 3a,b, Supplementary files 4

and 6). Among 5000+ epitopes measured by SOMAscan, IFNA7, IFNL3, and IFNA1 rank among the

top 10 negative correlations with seroconversion (Figure 3a,b, Supplementary file 3). All these IFN

ligands were significantly higher in sero-low COVID19 patients relative to the control cohort, but lev-

els fall back within normal ranges in sero-high COVID19 patients (Figure 3a,c). These results could

be interpreted as a transient wave of IFN production during early stages of SARS-CoV-2 infection,

with return to normal levels upon development of humoral immunity. This notion is further sup-

ported by the elevated plasma levels of key IFN-inducible proteins, such as CXCL10 (C-X-C Motif

Chemokine Ligand 10, IFN-inducible protein 10, IP10), and elevated expression of IFN-inducible

mRNAs (e.g. CXCL10, ISG15, MX1, and IFIT1), preferentially in sero-low patients (Figure 3a, Fig-

ure 3—figure supplement 1a–c). Notably, this pattern was not evident for IFNB1 (Figure 3—figure

supplement 1a,b). Factors involved in monocyte differentiation and activation were also preferen-

tially elevated in sero-low patients, such as CCL8 (C-C Motif Chemokine Ligand 8, Monocyte Chemo-

attractant Protein 2, MCP2), CSF3 (Colony Stimulating Factor 3, Granulocyte Colony Stimulating

Factor, G-CSF), and CCL19 (C-C Motif Chemokine Ligand 19, Macrophage Inflammatory Protein 3

beta, MIP3beta) (Figure 3a–c). Although circulating levels of total monocytes and monocyte subsets

are not significantly correlated with seroconversion status (Supplementary file 5), these results are

consistent with a transient round of activation and mobilization of tissue-resident monocytes and

macrophages by local IFN production, with subsequent decreases upon seroconversion. In support

of this notion, we noticed that circulating levels of CD14, a surface marker for monocytes and macro-

phages, were strongly anticorrelated with seroconversion, being significantly elevated among sero-

low patients and significantly depleted in sero-high patients (Figure 3—figure supplement 1a,b). In

fact, CD14 was the top negative correlation in the MS proteomics dataset (Figure 1—figure supple-

ment 1b, Supplementary file 2).

In agreement with the signs of B cell maturation and differentiation associated with seroconver-

sion (Figure 2a,b and Figure 2—figure supplement 1a–c), top correlations among immune factors

include TNFSF13B (TNF Superfamily Member 13B, B-cell activating factor, BAFF), and its receptor,

TNFRSF17 (TNF Receptor Superfamily Member 17, B cell Maturation Protein, BCMA). TNFSF13B is

increased preferentially in sero-low patients relative to the control group (Figure 3c). In contrast, its

receptor TNFRSF17 decreases preferentially in sero-low patients, returning to levels similar to the

control group upon seroconversion (Figure 3c). The increased levels of TNFSF13B in sero-low

patients are consistent with a strong wave of B cell stimulation and proliferation prior to B cell matu-

ration and seroconversion. The decrease in circulating soluble TNFRSF17 could be interpreted as a

consequence of transient lymphopenia prior to seroconversion (see later, Figure 6). Other interesting

top correlations reveal that seroconversion associates with a restoration of circulating cytokines

depleted preferentially in sero-low COVID19 patients, such as CCL14 and CCL24 (Eotaxin-2)

(Figure 3a). Again, these changes could be explained by decreases in lymphocyte counts
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preferentially in sero-low patients (see later, Figure 6). Of note, seroconversion is not strongly corre-

lated with changes in acute phase proteins that are commonly elevated upon viral and bacterial

infections, such as C-reactive protein (CRP) and ferritin (FTL) (Supplementary files 2–4). Whereas

CRP levels measured by MS decrease in sero-high patients, ferritin levels remain high (Figure 3—fig-

ure supplement 1d), suggesting that seroconversion attenuates but does not fully reverse the

broader inflammatory phenotype of COVID19.

In order to understand how these changes in cytokines could be integrated with changes

observed in circulating immune cell types in the MC data set, we interrogated whether levels of

IFNA2, the top anticorrelated cytokine with seroconversion indices, showed significant correlations

with immune cell subsets among all live peripheral blood mononuclear cells (PBMCs)

(Supplementary file 7). Indeed, IFNA2 levels correlated negatively with key B cell subsets increased

upon seroconversion, and positively with pDCs, T cell subsets decreased upon seroconversion, and

CD56bright NK cells (Figure 3d, Figure 3—figure supplement 1e, Supplementary file 7).

Altogether, these observations could be interpreted as an orchestrated movement in the immune

system away from an innate immune response marked by IFN production and IFN-inducible changes

in immune cell type frequency and function, toward a state of adaptive humoral immunity and anti-

body production.

Seroconversion associates with decreased markers of systemic
complement activation
Analysis of the top negative correlations with the MS and SOMAscan proteomics data sets revealed

that seroconversion correlates strongly with decreased plasma levels of subunits of the various com-

plement pathways (Supplementary files 2,3). In fact, 10 of the top 20 negative correlations in the

MS data set are complement subunits or complement regulators, and the top negative correlation in

the SOMAscan data set is the complement subunit C1QC (Figure 4a,b, Figure 1—figure supple-

ment 1b,c, Supplementary files 2,3). This led us to complete a more thorough investigation of the

interplay between seroconversion and the complement pathways (Supplementary file 8).

There are three recognized complement pathways, known as the classical, lectin, and alternative

pathways, with significant crosstalk among them and convergence on the so-called terminal pathway

that leads to formation of the membrane attack complex (MAC) (Noris and Remuzzi, 2013). Pro-

teins from all three pathways were significantly anti-correlated with seroconversion including C1QA,

C1QB, C1QC, C1R, and C1S, all involved in initiation of the classical pathway; C2, C4A, and C4B,

which share functions in activation of the classical and lectin pathways; C3, which acts both in the lec-

tin and alternative pathways; as well as C6, C7, C8A, C8B, C8G, and C9, which act in the down-

stream terminal pathway (Figure 4a). Additionally, seroconversion correlates negatively with positive

regulators of the complement cascade, such as GC (GC Vitamin D Binding Protein), which enhances

the chemotactic activity of C5 alpha for neutrophils in inflammation and mediates macrophage acti-

vation (Kew et al., 1995); FCN3 (Ficolin 3), a protein involved in activation of the lectin complement

pathway (Hein et al., 2010); CFB (Complement Factor B, C3/C5 Convertase); and CFP (Complement

Factor P, Properdin). Most of these factors are significantly elevated in sero-low COVID19 patients

relative to controls, but return to baseline or below baseline levels in sero-high patients (Figure 4c

and Figure 4—figure supplement 1a,b). Negative modulators of complement function showed simi-

lar behaviors, such as CFH (Complement Factor H), C4BPB (C4b binding protein), and SERPING1

(C1 inhibitor), suggesting the induction of negative feedback mechanisms during complement acti-

vation in sero-low patients (Figure 4a). Only SOMAscan signals for C5 and the C5.C6 complex

showed the opposite behavior, with lower signals in sero-low COVID19 patients, which could be

interpreted as increased consumption of the C5 precursor polypeptide by the C5 convertase

(Figure 4a, Figure 4—figure supplement 1a,b).

Altogether, although our proteomics platforms do not enable a complete characterization of the

complement cascade in terms of measuring cleaved fragments, protein complexes, and post-transla-

tional modifications, our results can nonetheless be understood as a profound, yet transient wave of

systemic activation of the complement cascades early during the course of SARS-CoV-2 infections,

followed by return to normal levels upon seroconversion.
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Seroconversion associates with remodeling of the hemostasis network
toward platelet recovery and activation
Top positive and negative correlations between seroconversion indices and the proteomics data sets

included many prominent regulators of hemostasis (Supplementary files 2,3). Given the importance

of thromboembolism and microangiopathies in COVID19, we decided to investigate the interplay

between seroconversion and circulating levels of factors involved in coagulation and thrombosis in

more detail (Supplementary file 9). Among these factors, positive correlations with seroconversion

indices were dominated by markers of platelet degranulation (Figure 5a), including key proteins

stored in platelet alpha granules, such as SERPINA3 (alpha-1-antichymotrypsin, ACT), PDGFD (plate-

let derived growth factor D), SELP (selectin P), and GP1BA (glycoprotein Ib alpha) (Figure 5a–c,

Supplementary file 9). Except for SERPINA3, all factors are depleted in sero-low patients relative to
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Figure 4. Seroconversion correlates with decreased markers of systemic complement activation. (a) Heatmap displaying changes in circulating levels of

components of the various complement pathways that are significantly correlated, either positively or negatively, with seroconversion status. The left

column represents Spearman rho values, while the right columns display median Z-scores for each complement factor for controls (negative, Neg.)

versus COVID19 patients (positive) divided into seroconversion low (Low) and high (High) status. Factors are ranked from most positively correlated

(top, high rho values) to most anti-correlated (bottom, low rho values) with seroconversion status. Z-scores were calculated from the adjusted

concentration values for each analyte in each sample, based on the mean and standard deviation of COVID19-negative samples. Asterisks indicate a

significant difference relative to the control COVID19-negative group, and the + symbols indicate a significant difference between sero-low and sero-

high groups (q < 0.1, Mann–Whitney test). (b) Scatter plots for indicated complement factors significantly correlated with seroconversion indices among

COVID19 patients. Points are colored by density; lines represent linear model fit with 95% confidence interval. (c) Sina plots showing values for

complement factors correlated with seroconversion comparing controls (Negative, Neg.) to COVID19 patients divided into seroconversion low (Low)

and high (high) status. Data are presented as modified Sina plots with boxes indicating median and interquartile range. Numbers above brackets are

q-values for Mann–Whitney tests. See also Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Seroconversion associates with decreased markers of systemic complement activation.
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the control cohort, and all four factors are significantly elevated in sero-high patients relative to

sero-low patients (Figure 5a,c).

Conversely, top negative correlations with seroconversion in both proteomics data sets include

key modulators of the intrinsic and extrinsic coagulation pathways. Many positive regulators of coag-

ulation are elevated in sero-low patients and depleted in sero-high patients, including HABP2 (hya-

luronan activated binding protein 2, factor VII activating protein, FSAP), SERPINF2 (alpha-2-plasmin
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Figure 5. Seroconversion associates with remodeling of the hemostasis control network. (a) Heatmap displaying changes in circulating levels of known

modulators of hemostasis that are significantly correlated, either positively or negatively, with seroconversion status. The left column represents

Spearman rho values, while the right columns display row-wise Z-scores for each factor for controls (negative, Neg.) versus COVID19 patients divided

into seroconversion low (Low) and high (High) status. Factors are ranked from most positively correlated (top, high rho values) to most anti-correlated

(bottom, low rho values) with seroconversion status. Z-scores were calculated from the adjusted concentration values for each analyte in each sample,

based on the mean and standard deviation of COVID19-negative samples. Asterisks indicate a significant difference relative to the control COVID19-

negative group, and the + symbols indicate a significant difference between sero-low and sero-high groups (q < 0.1, Mann–Whitney test). (b and c)

Scatter plots (b) and Sina plots (c) for factors positively correlated with seroconversion indices. (d and e) Scatter plots (d) and Sina plots (e) for factors

negatively correlated with seroconversion indices. (f and g) Scatter plot (f) and Sina plots (g) displaying the correlations between seroconversion index

and platelet counts and D-dimer values obtained from clinical laboratory testing. Points in (b), (d), and (f) are colored by density; lines represent linear

model fit with 95% confidence interval. Data in (c), (e), and (g) are presented as modified Sina plots with boxes indicating median and interquartile

range. Numbers above brackets are q-values for Mann–Whitney tests. See also Figure 5—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Seroconversion associates with remodeling of the hemostasis network.
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inhibitor), F7 (Coagulation Factor VII), F2 (Coagulation Factor II, thrombin), F11 (Coagulation Factor

XI), F12 (Coagulation Factor XII), and F10 (Coagulation Factor X), as well as the structural compo-

nents FGA (Fibrinogen Alpha Chain) and FGB (Fibrinogen Beta Chain) (Figure 5a,d,e, Figure 5—fig-

ure supplement 1a,b). However, many endogenous anticoagulants and drivers of fibrinolysis also

show a similar pattern, such as SERPINC1 (antithrombin, AT-III), SERPINA10 (antitrypsin), PLG (Plas-

minogen), and PLAU (Plasminogen Activator, Urokinase). SERPINC1 is a potent inhibitor of throm-

bin, as well as coagulation factors IXa, Xa, and XIa (Rau et al., 2007). SERPIN10A is another inhibitor

of coagulation factors Xa and XIa (Rau et al., 2007). Plasminogen is the precursor of plasmin, the

key enzyme in fibrinolysis, and PLAU mediates proteolytic generation of plasmin. Lastly, several kal-

likreins, including KLKB1, KLK12, KLK10, and KLK12, as well as KNG1 (kininogen) are all depleted in

seroconverted patients (Figure 5—figure supplement 1a,b). The kinin-kallikrein system plays key

roles in coagulation, inflammation, and blood pressure control (Wu, 2015). Once activated, kallik-

reins function as serine proteases that can cleave plasminogen into plasmin, thus promoting fibrino-

lysis, but also high-molecular weight kininogen (HMWK) into the vasoactive peptide bradykinin, thus

promoting vasodilation (Wu, 2015).

Overall, the interpretation of varying plasma levels for these various modulators of hemostasis is

not straightforward, as many of these factors are subject to proteolytic cleavage, consumption, and/

or aggregation, and many of them are produced by the liver and cleared by the kidney, two organs

affected in COVID19. Therefore, in order to place these complex proteomic signatures in the con-

text of COVID19 pathology, we investigated correlations between seroconversion indices and clini-

cal laboratory values for platelets and D-dimer measured in the course of hospitalization. As part of

standard of care in hospitalized COVID19 patients, platelets are routinely counted to assess throm-

bocytopenia, whereas D-dimer, a proteolytic product of blood clots during fibrinolysis, is routinely

measured to assess thrombotic risk. We therefore obtained platelet counts and D-dimer values from

the clinical laboratory tests closest in time to the research blood draw employed for the -omics

measurements. Both platelet counts and D-dimer correlated positively with the seroconversion

scores (Figure 5f). Platelet counts were significantly lower in the sero-low group relative to the sero-

high group, with ~30% of sero-low patients being considered thrombocytopenic (Figure 5g,

Supplementary file 1).

D-dimer levels were significantly higher in the sero-high group relative to the sero-low group,

with the mean value for this group being well above the accepted threshold of 500 ng/mL

(Supplementary file 1). Very few measurements of D-dimer were available for the control group,

which were highly variable and not significantly different from the sero-low group (Figure 5g). Alto-

gether, these results are consistent with transient platelet depletion early in the course of SARS-

CoV-2 infections, followed by recovery in platelet counts, increased platelet degranulation, and

higher levels of fibrinolysis products in sero-high patients. Additionally, as discussed next, depletion

of coagulation factors produced by the liver in sero-high patients could be tied to liver dysfunction

and/or vascular leakage.

Seroconversion is accompanied by emergency hematopoiesis and
hypoalbuminemia
Analysis of the clinical laboratory values obtained closest in time to the research blood draws

revealed other significant correlations between key clinical parameters and seroconversion indices.

In addition to the aforementioned positive correlations with platelet counts and D-dimer levels, sero-

conversion correlated positively and significantly with absolute neutrophil count (ANC), WBC count,

and absolute lymphocyte count (ALC) (Figure 6a–c, Figure 6—figure supplement 1a,

Supplementary file 10). Consistently, these parameters are lower in the sero-low COVID19 patients,

with mean values toward the low end of normal ranges (Supplementary file 1), but increase signifi-

cantly in sero-high patients. These changes are indicative of an early but transient depletion of lym-

phocytes, neutrophils, and platelets in COVID19, followed by ‘emergency hematopoiesis’, a

compensatory phenomenon involving broad stimulation of hematopoietic and stem cell progenitors

(HSPCs) by factors such as G-CSF (CSF3) (Fuchs et al., 2019), which we found to be elevated in

sero-low patients (Figure 3a). The oscillations in neutrophils and lymphocyte counts could explain

some of the changes in soluble immune factors depleted in sero-low patients only (e.g. TNFRSF17

expressed by B cells) (Figure 3a–c).
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Figure 6. Seroconversion associates with recovery in blood cell numbers and hypoalbuminemia. (a) Heatmap displaying correlations between clinical

laboratory values and seroconversion status. The left column represents Spearman rho values, while the right columns display row-wise Z-scores for

each variable for controls (negative, Neg.) versus COVID19 patients divided into seroconversion low (Low) and high (High) status. Measures are ranked

from most positively correlated (top, high rho values) to most anti-correlated (bottom, low rho values) with seroconversion status. Asterisks after the

clinical parameter name indicate a significant correlation. Z-scores were calculated from the adjusted concentration values for each analyte in each

sample, based on the mean and standard deviation of COVID19-negative samples. Asterisks indicate a significant difference relative to the control

COVID19-negative group, and the + symbols indicate a significant difference between sero-low and sero-high groups (q < 0.1, Mann–Whitney test). (b–

e) Scatter plots (b and c) and Sina plots (c and e) for indicated clinical laboratory values significantly correlated with seroconversion indices among

COVID19 patients. In b and c, points are colored by density; lines represent linear model fit with 95% confidence interval. In c and e, Sina plots show

values for clinical laboratory tests correlated with seroconversion comparing controls (Negative, Neg.) to COVID19 patients divided into seroconversion

low (Low) and high (High) status. Data are presented as modified Sina plots with boxes indicating median and interquartile range. Numbers above

brackets are q values for Mann–Whitney tests. (f) Differences in the indicated ratios of clinical laboratory values between sero-low and sero-high

COVID19 patients. Data are presented as modified Sina plots with boxes indicating median and interquartile range. Numbers at upper left of each plot

are p-values for Mann–Whitney tests. (g) Table showing how the indicated ratios of the specified clinical values could be potentially used to gauge the

seroconversion status of a hospitalized patient with moderate pathology. The units employed for calculating these ratios are 103/mcL for white blood

cells (WBC) and platelets; g/dL for albumin (ALB); ng/mL for D-dimer; and U/L for alkaline phosphatase (ALP). ALT: alanine aminotransferase, AST:

aspartate aminotransferase; BUN: blood urea nitrogen; BNP: brain natriuretic peptide; CRP: C-reactive protein. See also Figure 6—figure supplement

1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Seroconversion associates with recovery of blood cell counts and hypoalbuminemia.
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Other significant correlations revealed that seroconversion associates with markers of liver dys-

function and/or vascular leakage. Seroconverted patients showed elevated levels of blood urea

nitrogen (BUN), elevated alkaline phosphatase (ALP), and decreased levels of albumin (ALB)

(Figure 6a,d,e). Elevated BUN is indicative of liver and/or kidney malfunction. Elevated ALP is indica-

tive of liver damage. Although the markers of liver injury AST (aspartate transaminase) and ALT (ala-

nine transaminase) are elevated in the COVID19 cohort relative to the control group, they are not

significantly associated with seroconversion status (Figure 6a, Figure 6—figure supplement 1a,b).

Creatinine was significantly lower in COVID19 patients, also a sign of liver pathology, but no differ-

ent by seroconversion status (Figure 6—figure supplement 1a,b). Low levels of circulating ALB,

often reaching hypoalbuminemia, is a common feature of COVID19 pathology that has been associ-

ated with worse prognosis independently of age and comorbidities (Huang et al., 2020). It has been

proposed that strong hypoalbuminemia without differences in AST and ALT could be due to inflam-

mation-driven escape of serum ALB into interstitial space downstream of increased vascular perme-

ability (Huang et al., 2020). In order to investigate this further, we probed the MS proteomics

data set to see if other abundant liver-derived proteins showed similar behavior (Supplementary file

2). Indeed, seroconversion correlates with significantly decreased levels of major liver-derived pro-

teins such as FETUB (fetuin B), PON1 (Paraoxonase 1), HPX (hemopexin), A1BG (alpha-1b-glycopro-

tein), APOA1 (apolipoprotein A1), and BCHE (butyrylcholinesterase) (Figure 6—figure supplement

1c, Supplementary file 2). This phenomenon could explain why many liver-derived factors involved

in hemostasis control are also depleted in sero-high patients (e.g. fibrinogens, F2, F7, kallikreins)

(Figure 5a, Figure 5—figure supplement 1a,b). Altogether, these results reveal that seroconversion

is associated with recovery in diverse blood cell types, indicative of emergency hematopoiesis, along

with biomarkers indicative of more severe liver dysfunction and/or increased vascular damage and

interstitial leakage.

Lastly, we explored the possibility of defining a classifier that could discriminate the sero-low ver-

sus sero-high groups by using ratios of clinical laboratory values elevated upon seroconversion with

ALB (which is decreased upon seroconversion) as the denominator. Expectedly, the WBC/ALB,

D-dimer/ALB, Platelets/ALB, ALP/ALB, ANC/ALB, BUN/ALB, and ALC/ALB ratios were all signifi-

cantly higher in the sero-high group (Figure 6f, Figure 6—figure supplement 1d,e). Using cut-off

values that would capture >70% of the sero-high group when used individually, we noted that using

any two of these cut offs concurrently would provide >90% specificity with >75% sensitivity in identi-

fying a sero-high patient (Figure 6g). Increasing the classifier criteria to require passing any three or

any four of these ratio cut-offs further increases specificity, at the cost of sensitivity (Figure 6g).

Although the clinical utility of this classifier would require validation efforts in much larger cohorts, it

nonetheless illustrates the variable clinical presentation of COVID19 pathology along a quantitative

spectrum of seroconversion.

Discussion
The temporal sequence of seroconversion relative to the onset of COVID19 symptoms has been

already established (Chen et al., 2020; Seow et al., 2020). Within 2 weeks of symptom onset, virus-

specific antibodies start accumulating in the bloodstream (Seow et al., 2020). Circulating IgMs,

IgAs, and IgGs against SARS-CoV-2 increase rapidly thereafter, followed by decay of IgMs and IgAs

over time, while IgGs remain high for several weeks and months (Seow et al., 2020). Building upon

this knowledge, our integrated analysis of biosignatures of seroconversion using IgG measurements

against SARS-CoV-2 polypeptides in hospitalized COVID19 patients supports a model for staging

COVID19 pathology into a distinct sequence of early and late events, referred hereto as Stage 1 and

Stage 2 (Figure 7). In this model, a seroconversion index based on IgG levels would increase over

the first 2–4 weeks after symptom onset, with concomitant changes in COVID19 pathophysiology.

In Stage 1, associated with the initial antiviral response, hospitalized patients carry low levels of

SARS-CoV-2-specific IgGs, high levels of circulating IFN ligands and complement subunits, signa-

tures of activated T cells, pDCs and monocytes, high levels of cytokine-producing NK cells, as well

as overall depletion of lymphocytes, neutrophils, and platelets. In Stage 2, associated with develop-

ment of humoral immunity, patients carry high levels of SARS-CoV-2-specific antibodies, near base-

line levels of IFN ligands, complement subunits, and activated T cells, no significant cytopenias, but

clear signs of B cell differentiation, plasmablast accumulation, platelet degranulation markers,
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increased D-dimer levels, increased markers of liver damage (ALP, BUN), and depletion of circulating

albumin.

Based on our findings, we propose the following sequence of events in mild-to-moderate symp-

tomatic, hospitalized COVID19 patients. In Stage 1, COVID19 pathology is dominated by IFN- and

complement-driven processes. Although SARS coronaviruses have evolved diverse strategies to

evade the antiviral effects of IFNs (Kindler et al., 2016), IFN signaling nonetheless remains a potent

defense mechanism against SARS-CoV-2, as illustrated by the fact that both genetic variants

Seroconversion- +

Interferon ,  and 
production

Systemic complement
activation

Activated monocytes, pDCs,
T cells and NK cells

Stage 1

Depletion of platelets,
lymphocytes,

and neutrophils

Emergency hematopoiesis

Platelet recovery and
activation

B cell activation and maturation,
adaptive immune response

Stage 2

Low albumin,
High BUN, ALP
High D-dimer

Figure 7. Model for staging COVID19 pathophysiology based on seroconversion status. Stage 1 applies to

COVID19 patients with low degree of seroconversion and involves high levels of circulating IFNs, signs of strong

systemic complement activation, hyperactive T cells, activated monocytes, and cytokine-producing NK cells, as

well as depletion of key blood cell types. Stage 2 applies to COVID19 patients with high degree of seroconversion

and is characterized by increased blood cell numbers, increased levels of markers of platelet degranulation,

elevated D-dimer, and markers of increased liver dysfunction and/or interstitial leakage.
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compromising IFN signaling and autoantibodies against IFN ligands have been associated with

severe COVID19 (Bastard et al., 2020; Zhang et al., 2020). However, sustained high levels of Type

I and Type III IFN ligands could potentially contribute to SARS pathology through disruption of lung

barrier function and other mechanisms (Broggi et al., 2020; Major et al., 2020). In mouse models

of both SARS-CoV-1 and SARS-CoV-2 infections, Type I IFN signaling was shown to be required for

development of lung pathology (Israelow et al., 2020; Channappanavar et al., 2016). In Stage 1,

high IFN signaling is likely to drive activation of monocytes and T cells as well as B cell differentia-

tion. In our studies, levels of IFNA2 are clearly correlated with activation of both CD4+ and CD8+ T

cell subsets, with polarization of CD4+ T cells toward Th1 and Th17 states. Stage 1 is also correlated

with signs of monocyte activation, demarked by high levels of MCP2/CCL8, CSF3, and circulating

CD14, as well as high production of TNFSF13B. Stage 1 is also characterized by high levels of circu-

lating complement factors. Recent studies have shown direct activation of the alternative comple-

ment pathway by the SARS-CoV-2 spike protein (Yu et al., 2020), and systemic complement

activation has been associated with severe respiratory failure in COVID19 (Holter et al., 2020;

Carvelli et al., 2020). Sustained high levels of complement activation could contribute to pathology

through both the cytolytic effects of the MAC and the proinflammatory effects of the C5a-C5aR1

axis (Carvelli et al., 2020). Indeed, in a mouse model of SARS-CoV-1, depletion of the C3 comple-

ment subunit attenuated SARS pathology (Gralinski et al., 2018), and anti-C5aR1 neutralizing anti-

bodies inhibited the C5a-mediated recruitment of human myeloid cells to lung tissue and reduced

accompanying lung injury in a humanized mouse model (Carvelli et al., 2020). Complement could

damage the endothelial tissue in the lung and other organs, compromising vascular integrity. Of

note, early systemic elevation of complement subunits followed by elevation of the complement

inhibitor SERPING1 has been described in the transition from pre-clinical to active tuberculosis

(Lubbers et al., 2020; Esmail et al., 2018). Furthermore, markers elevated in Stage 1, such as CRP

and CXCL10/IP-10, have been found to have high sensitivity and moderate specificity to triage

patients with symptoms suggestive of active tuberculosis (Santos et al., 2019).

In this model, the transition from Stage 1 to Stage 2 is mediated by development of humoral

immunity, as well as emergency hematopoiesis. As B cells differentiate, mature, and are selected by

clonal evolution, plasmablasts are enriched in the bloodstream, producing specific IgGs of ever

greater neutralizing capacity recognizing the RBD region of the spike protein. Seroconversion not

only prevents viral reentry into cells, but could also prevent direct activation of the complement cas-

cade by the spike protein (Yu et al., 2020). As humoral immunity develops, levels of IFN signaling

and complement activity plummet. Increased levels of broad stimulators of hematopoiesis in Stage 1

(e.g. CSF3) would lead to emergency hematopoiesis. In turn, increased numbers of circulating plate-

lets during Stage 2 would encounter the endothelial damage caused during Stage 1 by the cytolytic

effects of the virus, disruption of lung barrier function by IFNs, complement attack, and even per-

haps T cell- and monocyte-mediated cellular toxicity. In turn, the vascular damage incurred during

Stage 1 would contribute to leakage of serum proteins in Stage 2 (i.e. hypoalbuminemia) and/or

decreased production of abundant liver proteins due to increased liver damage. Although our analy-

ses revealed significant remodeling of the hemostasis network in Stage 1 and Stage 2, we cannot

conclusively interpret these results in terms of relative risk of thromboembolism and microangiop-

athy. Although D-dimer levels are higher in sero-high patients, our study is not powered to conclude

if thrombotic disease is higher upon seroconversion.

According to this model, therapeutic interventions being tested in COVID19 could benefit from

patient stratification based on a quantitative assessment of seroconversion. For example, JAK inhibi-

tors and complement inhibitors, both of which have been tested for treatment of COVID19 pathol-

ogy (Kalil et al., 2020; Cantini et al., 2020; Mastellos et al., 2021), may be more effective in

cohorts enriched for sero-low patients. Clinical biomarkers for Stage 1 could be high IFN levels, high

complement levels, and/or severe cytopenia. In contrast, patients in Stage 2 may not benefit from

JAK inhibitors and complement inhibitors. Instead, they could benefit from better management of

liver dysfunction and/or vascular damage. Notably, albumin supplementation was found to improve

oxygenation in ARDS (Uhlig et al., 2014). This model also indicates that analysis of clinical trial data

for various therapeutic interventions should take into consideration seroconversion status, as results

could vary between Stage 1 and Stage 2 patients.

Given the cross-sectional nature of our study, our model should be challenged with longitudinal

analysis of the biosignatures reported here. Our study does not address differences between
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patients with mild, moderate, and severe disease, and our data does not include analysis of patients

admitted to ICU with life-threatening COVID19. Nevertheless, our model indicates that time span

between exposure to virus and seroconversion could be a key determinant of disease severity. The

longer an affected individual remains in Stage 1, the more likely that the potential harmful effects of

IFN hyperactivity and complement toxicity will be manifested, with increased likelihood of endothe-

lial and organ damage, thus setting the stage for more severe thrombotic events and vascular dam-

age in Stage 2. Notably, markers of disease severity could be found in either stage. For example,

high IFNA2 (Stage 1 marker) and strong hypoalbuminemia (Stage 2 marker) have been indepen-

dently associated with risk of severe COVID19 (Huang et al., 2020; Lucas et al., 2020). A delay in

seroconversion could potentially explain in part the high risk of severe COVID19 pathology in the

elderly, as B cell function and development of humoral immunity are decreased with age

(Frasca et al., 2011). Importantly, an analysis of ~2M COVID19 cases in the USA disclosed during

review of this manuscript confirms and expands on key aspects of our staging model, such as

decreased levels of key inflammatory markers later in the course of hospitalization, along with signifi-

cantly increased levels of WBCs and D-dimer (Bennett et al., 2021). Furthermore, this analysis sup-

ports the notion that disease severity is associated with increased and more prolonged inflammation

in Stage 1 (as assessed by CRP levels) along with higher levels of D-dimer later on (Bennett et al.,

2021).

In sum, our results support the existence of distinct pathophysiological states among hospitalized

COVID19 patients, with seroconversion status being potentially useful as a surrogate marker of

underlying processes. We hope these results will prompt additional investigations into the sequence

of pathological events in COVID19 and how to ameliorate them for therapeutic purposes.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Human CD45 Fluidigm Cat# 3089003B,
RRID:AB_2661851

Monoclonal-Clone:
HI30 Dilution: 1/200

Antibody Anti-Human CD57 Biolegend Cat# 322302,
RRID:AB_2661815

Mouse-Monoclonal-Clone:
HCD57 Dilution: 1/100

Antibody Anti-Human CD11c BD bioscience Cat# 555390,
RRID:AB_395791

Mouse-Monoclonal-Clone:
B-ly6 Dilution: 1/100

Antibody Anti-Human CD16 eBioscience Cat# 16-0167-85,
RRID:AB_11040983

Mouse-Monoclonal-Clone:
B73.1 Dilution: 1/50

Antibody Anti-Human CD196
(CCR6)

Biolegend Cat# 353402,
RRID:AB_10918625

Mouse-Monoclonal-Clone:
11a9 Dilution: 1/50
Stain live

Antibody Anti-Human CD19 Fluidigm Cat# 3142001B,
RRID:AB_2651155

Monoclonal-Clone: HIB19
Dilution: 1/100

Antibody Anti-Human CD123 Fluidigm Cat# 3143014B,
RRID:AB_2811081

Mouse-Monoclonal-Clone:
6H6 Dilution: 1/123

Antibody Anti-Human CCR5 Fluidigm Cat# 3144007A Monoclonal-Clone: NP6G4
Dilution: 1/25
Stain live

Antibody Anti-Human IgD Fluidigm Cat# 3146005B,
RRID:AB_2811082

Mouse-Monoclonal-Clone:
IA6-2 Dilution: 1/100

Antibody Anti-Human CD1c Miltenyi Cat# 130-108-032,
RRID: AB_2661165

Mouse-Monoclonal-Clone:
AD5-8E7 Dilution: 1/30

Antibody Anti-Human CD38 Biolegend Cat# 303502,
RRID:AB_314354

Mouse-Monoclonal-Clone:
HIT2 Dilution: 1/50

Antibody Anti-Human CD127 Fluidigm Cat# 3149011B,
RRID:AB_2661792

Monoclonal-Clone: A019D5
Dilution: 1/100
Stain live

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Human CD86 Fluidigm Cat# 3150020B,
RRID:AB_2687852

Monoclonal-Clone: IT2.2
Dilution: 1/100

Antibody Anti-Human ICOS Biolegend Cat# 313502,
RRID:AB_416326

Armenian hamster -Monoclonal-
Clone: DX29 Dilution: 1/50

Antibody Anti-Human CD141 Biolegend Cat# 344102,
RRID:AB_2201808

Mouse-Monoclonal-Clone:
M80 Dilution: 1/50

Antibody Anti-Human Tim3 Fluidigm Cat# 3153008B,
RRID:AB_2687644

Monoclonal-Clone: MBSA43
Dilution: 1/100

Antibody Anti-Human TIGIT Fluidigm Cat# 3154016B,
RRID:AB_2888926

Mouse-Monoclonal-Clone:
F38-2E2 Dilution: 1/50 Stain live

Antibody Anti-Human CD27 Fluidigm Cat# 3155001B,
RRID:AB_2687645

Mouse-Monoclonal-Clone:
L128 Dilution: 1/100

Antibody Anti-Human CXCR3 Fluidigm Cat# 3156004B,
RRID:AB_2687646

Monoclonal-Clone: G025H7
Dilution: 1/100
Stain live

Antibody Anti-Human
CD45RA

Biolegend Cat# 304102,
RRID:AB_314406

Mouse-Monoclonal-Clone:
HI100 Dilution: 1/50

Antibody Anti-Human PD-1 Biolegend Cat# 329941,
RRID:AB_2563734

Mouse-Monoclonal-Clone:
EH12.2H7 Dilution: 1/50

Antibody Anti-Human PDL1 Fluidigm Cat# 3159029B,
RRID:AB_2861413

Mouse-Monoclonal-Clone:
29E.2A3 Dilution: 1/100

Antibody Anti-Human CD14 Fluidigm Cat# 3160001B,
RRID:AB_2687634

Monoclonal-Clone:
M5E2 Dilution: 1/100

Antibody Anti-Human Tbet Fluidigm Cat# 3161014B,
RRID:AB_2858233

Monoclonal-Clone:
4b10 Dilution: 1/100

Antibody Anti-Human Ki67 Fluidigm Cat# 3162012B,
RRID:AB_2888928

Mouse-Monoclonal-Clone:
B56 Dilution: 1/100

Antibody Anti-Human CD33 Fluidigm Cat# 3163023B,
RRID:AB_2687857

Monoclonal-Clone:
WM53 Dilution: 1/100

Antibody Anti-Human CD95 Fluidigm Cat# 3164008B,
RRID:AB_2858235

Monoclonal-Clone:
DX2 Dilution:

Antibody Anti-Human Foxp3 Biolegend Cat# 14-4774-82,
RRID:AB_467552

Mouse-Monoclonal-Clone:
150D/E4 Dilution: 1/50

Antibody Anti-Human Eomes Biolegend Cat# 14-4877-82,
RRID:AB_2572882

Mouse-Monoclonal-Clone:
WD1928 Dilution: 1/100

Antibody Anti-Human CCR7 Fluidigm Cat# 3167009A,
RRID:AB_2858236

Monoclonal-Clone: G043H7
Dilution: 1/100Stain live

Antibody Anti-Human CD8a Fluidigm Cat# 3168002B Monoclonal-Clone: SK1
Dilution: 1/100

Antibody Anti-Human CD25 Fluidigm Cat# 3169003B,
RRID:AB_2661806

Monoclonal-Clone: 2A3
Dilution: 1/100 Stain live

Antibody Anti-Human CD3 Fluidigm Cat# 3170001B,
RRID:AB_2811085

Mouse-Monoclonal-Clone:
UCHT1 Dilution: 1/100

Antibody Anti-Human CXCR5 Fluidigm Cat# 3171014B,
RRID:AB_2858239

Monoclonal-Clone: 51505
Dilution: 1/100 Stain live

Antibody Anti-Human IgM Fluidigm Cat# 3172004B,
RRID:AB_2810858

Mouse-Monoclonal-Clone:
MHM-88 Dilution:
1/100 Stain live

Antibody Anti-Human HLA-DR Fluidigm Cat# 3173005B,
RRID:AB_2810248

Monoclonal-Clone:
L243 Dilution: 1/100

Antibody Anti-Human CD4 Fluidigm Cat# 3174004B,
RRID:AB_2687862

Monoclonal-Clone:
SK3 Dilution: 1/100

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Human CCR4 R and D Cat# MAB1567-500 Mouse-Monoclonal-Clone:
205410 Dilution: 1/50
Stain live

Antibody Anti-Human CD56 Miltenyi Cat# 130-113-312,
RRID:AB_2726090

Monoclonal-Clone: HCD56
Dilution: 1/200

Antibody Anti-Human CD11b Fluidigm Cat# 3209003B,
RRID:AB_2687654

Monoclonal-Clone: ICRF44
Dilution: 1/200

Commercial assay or kit U-PLEX Biomarker
Group 1 (hu) 71-Plex

Meso Scale Discovery (MSD) Cat# K15081K

Commercial assay or kit V-PLEX Vascular Injury
Panel 2 Human Kit

Meso Scale Discovery (MSD) Cat# K15198D

Commercial assay or kit V-PLEX Angiogenesis
Panel 1 Human Kit

Meso Scale Discovery (MSD) Cat# K15190D

Commercial assay or kit PAXgene Blood RNA Tubes PreAnalytiX/Qiagen Cat# 762165

Commercial assay or kit PAXgene Blood RNA Kit Qiagen Cat# 762164

Commercial assay or kit Universal Plus mRNA-Seq
with NuQuant, Human
Globin AnyDeplete

Tecan Cat# 0521-A01

Software, algorithm R R Foundation for
Statistical Computing

v4.0.1
RRID:SCR_001905

https://www.R-project.org/

Software, algorithm RStudio RStudio, Inc v1.3.959
RRID:SCR_000432

http://www.rstudio.com/

Software, algorithm Bioconductor N/A v3.11
RRID:SCR_006442

https://bioconductor.org/

Software, algorithm Tidyverse collection of
packages for R

N/A N/A
RRID:SCR_019186

https://www.tidyverse.org/

Software, algorithm limma package for R N/A v3.44.3
RRID:SCR_010943

https://bioconductor.org/packages/
release/bioc/html/limma.html

Software, algorithm CellEngine Primity Bio Inc N/A https://primitybio.com/
cellengine.html

Software, algorithm bcl2fastq Illumina, Inc v2.20.0.422
RRID:SCR_015058

https://support.illumina.com/
sequencing/sequencing_software/
bcl2fastq-conversion-software.html

Software, algorithm FASTQC N/A v0.11.5
RRID:SCR_014583

https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/

Software, algorithm FastQ Screen N/A v0.11.0
RRID:SCR_000141

https://www.bioinformatics.
babraham.ac.uk/projects/
fastq_screen/

Software, algorithm bbduk/BBTools N/A v37.99
RRID:SCR_016968

https://jgi.doe.gov/data-and-tools/bbtools/

Software, algorithm fastq-mcf/ea-utils N/A v1.05
RRID:SCR_005553

https://expressionanalysis.github.io/ea-utils/

Software, algorithm HISAT2 N/A v2.1.0
RRID:SCR_015530

http://daehwankimlab.github.io/hisat2/

Other Human genome
reference fasta

N/A GRCh38
RRID:SCR_014966

ftp://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_33/
GRCh38.primary_assembly.genome.fa.gz

Other Human genome
annotation GTF file

Gencode v33
RRID:SCR_014966

ftp://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_33/
gencode.v33.basic.annotation.gtf.gz

Software, algorithm Samtools N/A v1.5 http://www.htslib.org/

Software, algorithm HTSeq-count N/A v0.6.1
RRID:SCR_005514

https://htseq.readthedocs.io/en/master/

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm DESeq2 package for R N/A v1.28.1
RRID:SCR_015687

https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

Software, algorithm Hmisc package for R N/A v4.4–0 https://cran.r-project.org/web/
packages/Hmisc/index.html

Software, algorithm ggplot2 package for R N/A v3.3.1
RRID:SCR_014601

https://ggplot2.tidyverse.org/

Software, algorithm rstatix package for R N/A v0.6.0 https://cran.r-project.org/web/
packages/rstatix/index.html

Software, algorithm ComplexHeatmap
package for R

N/A v2.4.2
RRID:SCR_017270

https://www.bioconductor.org/
packages/release/bioc/html/
ComplexHeatmap.html

Software, algorithm ggforce package for R N/A v0.3.1 https://ggforce.data-imaginist.com/
reference/index.html

Study design, participant recruitment, and clinical data capture
Research participants were recruited and consented for participation in the COVID Biobank of the

University of Colorado Anschutz Medical Campus [Colorado Multiple Institutional Review Board

(COMIRB) Protocol # 20–0685]. Data was generated from deidentified biospecimens and linked to

demographics and clinical metadata procured through the Health Data Compass of the University of

Colorado under COMIRB Protocol # 20–1700. Participants were hospitalized either at Children’s

Hospital Colorado or at the University of Colorado Hospital. COVID status was defined by a positive

PCR result and/or antibody test within 14 days of the research blood draw. The control cohort con-

sisted of COVID19-negative research participants receiving medical care for a range of conditions,

none of them in critical condition at the time of the research blood draw. Cohort characteristics can

be found in Supplementary file 1.

Blood processing
Blood samples were collected into EDTA tubes, sodium heparin tubes, and PAXgene Blood RNA

Tubes (PreAnalytiX/Qiagen). After centrifugation, EDTA plasma was used for MS proteomics,

SOMAscan proteomics, as well as multiplex immunoassays using MSD technology for both cytokine

profiles and seroconversion assays. From sodium heparin tubes, PBMCs were obtained by the Ficoll

gradient method before cryopreservation and assembly of batches for MC analysis (see below).

Plasma proteomics by mass spectrometry
Plasma samples were digested in S-Trap filters (Protifi, Huntington, NY) according to the manufac-

turer’s procedure. Briefly, a dried protein pellet prepared from organic extraction of patient plasma

was solubilized in 400 mL of 5% (w/v) SDS. Samples were reduced with 10 mM DTT at 55˚C for 30

min, cooled to room temperature, and then alkylated with 25 mM iodoacetamide in the dark for 30

min. Next, a final concentration of 1.2% phosphoric acid and then six volumes of binding buffer

[90% methanol; 100 mM triethylammonium bicarbonate (TEAB); pH 7.1] were added to each sample.

After gentle mixing, the protein solution was loaded into an S-Trap filter, spun at 2000 rpm for 1

min, and the flow-through collected and reloaded onto the filter. This step was repeated three

times, and then the filter was washed with 200 mL of binding buffer three times. Finally, 1 mg of

sequencing-grade trypsin (Promega) and 150 mL of digestion buffer (50 mM TEAB) were added onto

the filter and digestion carried out at 47˚C for 1 hr. To elute peptides, three stepwise buffers were

applied, 200 mL of each with one more repeat, including 50 mM TEAB, 0.2% formic acid (FA) in H2O,

and 50% acetonitrile and 0.2% FA in H2O. The peptide solutions were pooled, lyophilized, and

resuspended in 1 mL of 0.1% FA. 20 mL of each sample was loaded onto individual Evotips for

desalting and then washed with 20 mL 0.1% FA followed by the addition of 100 mL storage solvent

(0.1% FA) to keep the Evotips wet until analysis. The Evosep One system (Evosep, Odense, Den-

mark) was used to separate peptides on a Pepsep column, (150 mm internal diameter, 15 cm) packed

with ReproSil C18 1.9 mm, 120A resin. The system was coupled with a timsTOF Pro mass
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spectrometer (Bruker Daltonics, Bremen, Germany) via a nano-electrospray ion source (Captive

Spray, Bruker Daltonics). The mass spectrometer was operated in PASEF mode. The ramp time was

set to 100 ms and 10 PASEF MS/MS scans per topN acquisition cycle were acquired. MS and MS/

MS spectra were recorded from m/z 100 to 1700. The ion mobility was scanned from 0.7 to 1.50 Vs/

cm2. Precursors for data-dependent acquisition were isolated within ±1 Th and fragmented with an

ion mobility-dependent collision energy, which was linearly increased from 20 to 59 eV in positive

mode. Low-abundance precursor ions with an intensity above a threshold of 500 counts but below a

target value of 20000 counts were repeatedly scheduled and otherwise dynamically excluded for 0.4

min. Raw data file conversion to peak lists in the MGF format, downstream identification, validation,

filtering, and quantification were managed using FragPipe version 13.0. MSFragger version 3.0 was

used for database searches against a Human isoform-containing UniProt fasta file (version 08/11/

2020) with decoys and common contaminants added. The identification settings were as follows:

Trypsin, Specific, with a maximum of two missed cleavages, up to two isotope errors in precursor

selection allowed for, 10.0 ppm as MS1 and 20.0 ppm as MS2 tolerances; fixed modifications: Car-

bamidomethylation of C (+57.021464 Da), variable modifications: Oxidation of M (+15.994915 Da),

Acetylation of protein N-term (+42.010565 Da), Pyrolidone from peptide N-term Q or C

(�17.026549 Da). The Philosopher toolkit version 3.2.9 (build 1593192429) was used for filtering of

results at the peptide and protein level at 0.01 FDR. Label-free quantification was performed by

AUC integration with matching between all runs using IonQuant.

Plasma proteomics by SOMAscan assays
125 mL EDTA plasma was analyzed by SOMAscan assays using previously established protocols

(Gold et al., 2012). Briefly, each of the 5000+ SOMAmer reagents binds a target peptide and is

quantified on a custom Agilent hybridization chip. Normalization and calibration were performed

according to SOMAscan Data Standardization and File Specification Technical Note (SSM-020)

(Gold et al., 2012). The output of the SOMAscan assay is reported in relative fluorescent units

(RFU).

Cytokine profiling and seroconversion by multiplex immunoassay
Multiplex immunoassays assays were performed on EDTA plasma aliquots following manufacturer’s

instructions (Meso Scale Discovery, MSD). A list of immune factors measured by MSD can be found

in Supplementary file 4. Values were extrapolated against a standard curve using provided calibra-

tors. Seroconversion assays against SARS-CoV-2 proteins and the control protein from the Flu A

Hong Kong H3 virus were performed in a multiplex immunoassay using the IgG detection readout

according to manufacturer’s instructions (MSD). Relative values were extrapolated against a stan-

dardized curve consisting of pooled COVID19 positive reference plasma (Johnson et al., 2020).

Mass cytometry analysis of immune cell types
Cryopreserved PBMCs were thawed, washed twice with Cell Staining Buffer (CSB) (Fluidigm), and

counted with an automated cell counter (Countess II , Thermo Fisher Scientific). Extracellular staining

of live cells was done in CSB for 30 min at room temperature, in 3–5 x 106 cells per sample. Cells

were washed with 1� PBS (Fluidigm) and stained with 1 mL of 0.25 mM cisplatin (Fluidigm) for 1 min

at room temperature for exclusion of dead cells. Samples were then washed with CSB and incubated

with 1.6% PFA (Electron Microscopy Sciences) for 10 min at room temperature. Samples were

washed with CBS and barcoded using a Cell-IDTM 20-Plex Pd Barcoding Kit (Fluidigm) of lantha-

nide-tagged cell reactive metal chelators to covalently label samples with a unique combination of

palladium isotopes, then combined. Surface staining with antibodies that work on fixed epitopes

was performed in CSB for 30 min at room temperature (see Supplementary file 11 and Key resour-

ces table for antibody information). Cells were washed twice with CSB and fixed in Fix/Perm buffer

(eBioscience) for 30 min, washed in permeabilization buffer (eBioscience) twice, then intracellular fac-

tors were stained in permeabilization buffer for 45 min at 4˚C. Cells were washed twice with Fix/

Perm Buffer and were labeled overnight at 4˚C with Cell-ID Intercalator-Ir (Fluidigm) for DNA stain-

ing. Cells were then analyzed on a Helios instrument (Fluidigm). To make all samples comparable,

pre-processing of MCmass cytometry data included normalization within and between batches via

polystyrene beads embedded with lanthanides as previously described (Finck et al., 2013). Files
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were debarcoded using the Matlab DebarcoderTool (Zunder et al., 2015). Then normalization again

between batches relative to a reference batch based on technical replicates (Schuyler et al., 2019).

Gating was performed using CellEngine (Primitybio). Gating strategy is summarized in Figure 1—fig-

ure supplement 1c–g and Supplementary file 12.

Whole-blood RNA library preparation and sequencing
RNA was purified from PAXgene Blood RNA Tubes (PreAnalytiX/Qiagen) using a PAXgene Blood

RNA Kit (Qiagen), according to the manufacturer’s instructions. RNA quality was assessed using an

Agilent 2200 TapeStation and quantified by Qubit (Life Technologies). Globin RNA depletion, poly-

A(+) RNA enrichment, and strand-specific library preparation were carried out using a Universal Plus

mRNA-Seq with NuQuant, Human Globin AnyDeplete (Tecan). Paired-end 150 bp sequencing was

carried out on an Illumina NovaSeq 6000 instrument by the Genomics Shared Resource at the Uni-

versity of Colorado Anschutz Medical Campus.

Biostatistics and bioinformatics analyses
Preprocessing, statistical analysis, and plot generation for all data sets were carried out using R (R

4.0.1/RStudio 1.3.959/Bioconductor v 3.11) (Huber et al., 2015; R Development Core Team, 2020;

Team R Studio, 2020), as detailed below.

MSD seroconversion data
Plasma concentration values (pg/mL) for IgGs recognizing SARS-Co-V-2 and Flu A Hong Kong H3

epitopes were adjusted for sex and age using the removeBatchEffect function from the limma pack-

age (v 3.44.3) (Ritchie et al., 2015). Distributions of sex/age-adjusted concentration values for each

epitope in COVID19 positive and COVID19 negative samples were compared using the Wilcoxon–

Mann–Whitney two-sample rank-sum test, with Benjamini–Hochberg correction of p-values and an

estimated false discovery rate (FDR) threshold of 0.1 (q < 0.1). To capture seroconversion as a single

value we calculated a ‘seroconversion index’ for each sample as follows. First, Z-scores were calcu-

lated from the adjusted concentration values for each epitope in each sample, based on the mean

and standard deviation of COVID19-negative samples. Second, the per-sample seroconversion index

was calculated as the sum of Z-scores for the four SARS-CoV-2 seroconversion assays. For compari-

son of multiple measurements from COVID19 positive samples with high seroconversion indices to

those with low seroconversion indices, or COVID19 negative samples, COVID19 positive samples

were divided into two equal-sized groups based on their seroconversion index, referred to as ‘sero-

low’ versus ‘sero-high’ groups.

Mass spectrometry proteomics data
Raw Razor intensity data were filtered for high abundance proteins by removing those with >70%

zero values in both COVID19 negative and COVID19 positive groups. For the remaining 407 abun-

dant proteins, 0 values (8363 missing values of 44,363 total measurements) were replaced with a ran-

dom value sampled between 0 and 0.5� the minimum nonzero intensity value for that protein. Data

was then normalized using a scaling factor derived from the global median intensity value across all

proteins/sample median intensity across all proteins (De Livera et al., 2012) and adjusted for sex

and age using the removeBatchEffect function from the limma package (v 3.44.3) (Ritchie et al.,

2015).

SOMAscan proteomics data
Normalized data (RFU) was imported and converted from a SOMAscan.adat file using a custom R

package (SomaDataIO) and adjusted for sex and age using the removeBatchEffect function from the

limma package (v 3.44.3) (Ritchie et al., 2015).

MSD cytokine profiling data
Plasma concentration values (pg/mL) for each of the cytokines and related immune factors measured

across multiple MSD assay plates was imported to R, combined, and analytes with >10% of values

outside of detection or fit curve range flagged. For each analyte, missing values were replaced with

either the minimum (if below fit curve range) or maximum (if above fit curve range) calculated
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concentration and means of duplicate wells used in all further analysis. Data was adjusted for sex

and age using the removeBatchEffect function from the limma package (v 3.44.3) (Ritchie et al.,

2015).

Mass cytometry data
Cell population frequencies, exported from CellEngine as percentages of various parental lineages,

were adjusted for sex and age using the removeBatchEffect function from the limma package (v

3.44.3) (Ritchie et al., 2015).

RNA-seq data
RNA-seq data yield was ~40–80 � 106 raw reads and ~32–71 � 106 final mapped reads per sample.

Reads were demultiplexed and converted to fastq format using bcl2fastq (bcl2fastq v2.20.0.422).

Data quality was assessed using FASTQC (v0.11.5) (https://www.bioinformatics.babraham.ac.uk/proj-

ects/fastqc/) and FastQ Screen (v0.11.0, https://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/). Trimming and filtering of low-quality reads were performed using bbduk from

BBTools (v37.99)(Bushnell et al., 2017) and fastq-mcf from ea-utils (v1.05, https://expressionanaly-

sis.github.io/ea-utils/). Alignment to the human reference genome (GRCh38) was carried out using

HISAT2 (v2.1.0)(Kim et al., 2019) in paired, spliced-alignment mode with a GRCh38 index with a

Gencode v33 annotation GTF, and alignments were sorted and filtered for mapping quality (MAPQ

> 10) using Samtools (v1.5)(Li et al., 2009). Gene-level count data were quantified using HTSeq-

count (v0.6.1)(Anders et al., 2015) with the following options (–stranded=reverse –minaqual=10

–type=exon –mode=intersection-nonempty) using a Gencode v33 GTF annotation file. Differen-

tial gene expression (COVID-positive versus COVID-negative) was evaluated using DESeq2 (version

1.28.1)(Love et al., 2014) in R (version 4.0.1), using q < 0.1 (FDR < 10%) as the threshold for differ-

entially expressed genes.

Correlation analysis
To identify features in each data set that correlate with Seroconversion Index in COVID19 positive

samples, Spearman rho values and p-values were calculated against the sex/age-adjusted values for

each data set using the rcorr function from the Hmisc package (v 4.4–0) (Feh, 2020), with Benjamini–

Hochberg correction of p-values and an estimated FDR threshold of 0.1. For visualization, XY scatter

plots with points colored by local density were generated using a custom density function and the

ggplot2 (v3.3.1) package (Wickham, 2016).

Comparison of seroconversion groups
Distributions of sex/age-adjusted concentration values for features in COVID19-negative samples

and COVID19-positive samples with low vs. high seroconversion indices were compared with pair-

wise Wilcoxon–Mann–Whitney two-sample rank-sum tests, using the wilcox_test function from the

rstatix package (v0.6.0) (Kassambara, 2020), with Benjamini–Hochberg correction of p-values and

an estimated FDR threshold of 0.1 (q < 0.1). To visualize the differences between COVID negative

samples and COVID positive samples with low vs. high seroconversion indices, Z-scores were calcu-

lated for each feature based on the mean and standard deviation of COVID-negative samples, and

visualized as heatmaps and/or modified sina plots using the ComplexHeatmap (v2.4.2) (Gu et al.,

2016), ggplot2 (v3.3.1), and ggforce (v0.3.1) packages (Pedersen, 2019).

Sample size estimates and replicates
Sample size was estimated based on previous published studies investigating autoinflammatory pro-

cesses in individuals with Down syndrome using technologies identical to those employed in this

study, such as cytokine profiling using multiplex immunoassays (Sullivan et al., 2017; Araya et al.,

2019; Powers et al., 2019); SOMAscan proteomics (Sullivan et al., 2017); and RNA-seq transcrip-

tome analysis (Araya et al., 2019; Powers et al., 2019; Sullivan et al., 2016; Waugh et al., 2019).

A formal power analysis was not performed before deciding on sample size for this study. Instead,

based on our studies of interferon-driven inflammation in Down syndrome, and assuming similar or

greater size effects in COVID19, we estimated that a sample size of 30+ controls versus 70+

COVID19 patients would suffice to identify statistically significant changes in cytokines, plasma
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proteins, mRNAs, and metabolites. Seroconversion assays were performed in duplicate for each

plasma sample, multiplexed immunoassays for cytokines were performed in duplicate for each

plasma sample, MC immune mapping was performed once for each individual fraction of PBMCs,

SOMAscan proteomics was completed once for each plasma sample, RNAseq was performed once

for each whole blood RNA sample, and mass spectrometry proteomics was performed once for each

plasma sample. Each research participant is considered a biological replicate for the purpose of the

comparisons in this study, such as COVID19 negative versus COVID19 positive, or sero-low versus

sero-high groups among COVID19 patients. Extreme outlier data points (above Q3 + 3xIQR or

below Q1 – 3xIQR) were removed.
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Additional files

Supplementary files
. Supplementary file 1. Cohort characteristics. Table summarizing cohort characteristics. Information

pertaining to less than 10 participants is indicated as <10 to prevent potential reidentification. For

clinical labs, values represent the mean ± standard deviation. Acronyms for clinical laboratory meas-

urements are as follows: BUN: blood urea nitrogen; CRP: C-reactive protein; ALT: alanine amino-

transferase; ALP: alkaline phosphatase; AST: aspartate aminotransferase; BNP: brain natriuretic

peptide. Comorbidities affecting each group are listed based on two different annotations: Carlson

and Elixhauser. Acronyms for comorbidities are as follows: CHF: chronic heart failure; DM: diabetes

mellitus; DMCX: diabetes with complications; METS: metastatic cancer; MI: myocardial infarction;

PUD: peptic ulcer disease; PVD: peripheral vascular disease; HTN: hypertension; PHTN: pulmonary

hypertension. Fisher’s exact test was used to calculate p-values for differences in % among groups,

and the Mann–Whitney test was used to calculate p-values for differences in clinical lab values.

. Supplementary file 2. Seroconversion versus mass spectrometry (MS) proteomics. Results of Spear-

man correlation analysis between seroconversion indices and proteins identified by MS. Column A

indicates the protein name, column B indicates the SwissProt ID, column C indicates the Spearman

rho value, column D indicates the p-value, and column E indicates the adjusted p-value using the

Benjamini–Hochberg method.

. Supplementary file 3. Seroconversion versus SOMAcan proteomics. Results of Spearman correla-

tion analysis between seroconversion indices and proteins identified by SOMAscan technology. Col-

umn A indicates the SOMAmer identification number, column B indicates the target protein

recognized by the SOMAmer, column C indicates the SwissProt ID, column D indicates the gene

symsol, column E indicates the Spearman rho value, column F indicates the p-value, and column G

indicates the adjusted p-value using the Benjamini–Hochberg method.

. Supplementary file 4. Seroconversion versus MSD cytokine profiling. Results of Spearman correla-

tion analysis between seroconversion indices and cytokines, chemokines, and other immune factors

measured by multiplex immunoassays using Meso Scale Discovery (MSD) technology. Column A indi-

cates the MSD analyte name, column B indicates the Spearman rho value, column C indicates the

p-value, and column D indicates the adjusted p-value using the Benjamini–Hochberg method.

. Supplementary file 5. Seroconversion versus mass cytometry (MC). Results of Spearman correlation

analysis between seroconversion indices and immune cell subsets measured by MC. Separate tabs

are used for the results obtained from different parent lineages: all live cells, all CD45+ live cells, B

cells, T cells, CD4+ T cells, CD8+ T cells, myeloid dendritic cells (mDCs), and monocytes. In each

tab, column A indicates the population measured, column B indicates parent lineage, column C indi-

cates the Spearman rho value, column D indicates the p-value, and column E indicates the adjusted

p-value using the Benjamini–Hochberg method.

. Supplementary file 6. Seroconversion versus immune factors. Results of Spearman correlation anal-

ysis between seroconversion indices and circulating immune factors measured by mass spectrome-

try, SOMAscan assays, or multiplex immunoassays with MSD technology. Column A indicates the

analyte name in the platform, column B indicates the name used for display in the corresponding fig-

ure, column C indicates the platform used to measure the indicated analyte, column D indicates the

Spearman rho value, column E indicates the p-value, and column F indicates the adjusted p-value

using the Benjamini–Hochberg method.

. Supplementary file 7. IFNA2 versus mass cytometry (MC). Results of Spearman correlation analysis

between levels of IFNA2 measured by multiplex immunoassays using MSD technology versus

immune cell subsets measured by MC. Column A indicates the immune cell population among all

live cells, column B indicates the lineage used to calculate cell frequencies, column C indicates the

Galbraith et al. eLife 2021;10:e65508. DOI: https://doi.org/10.7554/eLife.65508 25 of 30

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.65508.sa1
https://doi.org/10.7554/eLife.65508.sa2
https://doi.org/10.7554/eLife.65508


Spearman rho value, column D indicates the p-value, and column E indicates the adjusted p-value

using the Benjamini–Hochberg method.

. Supplementary file 8. Seroconversion versus complement. Results of Spearman correlation analysis

between seroconversion indices and components of the complement pathways measured by mass

spectrometry or SOMAscan assays. Column A indicates the unique identifier within the platform, col-

umn B indicates the name use for display in the corresponding figure, column C indicates the plat-

form used to measure the indicated analyte, column D indicates the Spearman rho value, column E

indicates the p-value, and column E indicates the adjusted p-value using the Benjamini–Hochberg

method.

. Supplementary file 9. Seroconversion versus hemostasis network. Results of Spearman correlation

analysis between seroconversion indices and factors involved in control of hemostasis measured by

mass spectrometry or SOMAscan assays. Column A indicates the unique identifier within the plat-

form, column B indicates the name used for display in the corresponding figure, column C indicates

the platform used to measure the indicated analyte, column D indicates the Spearman rho value, col-

umn E indicates the p-value, and column E indicates the adjusted p-value using the Benjamini–Hoch-

berg method.

. Supplementary file 10. Seroconversion versus clinical laboratory values. Results of Spearman corre-

lation analysis between seroconversion indices and clinical laboratory values closest to the time of

the research blood draw. Column A indicates the clinical laboratory parameter, column B indicates

the Spearman rho value, column C indicates the p-value, and column D indicates the adjusted

p-value using the Benjamini–Hochberg method.

. Supplementary file 11. Mass cytometry (MC) antibody table. List of antibodies used in MC. Column

A indicates the antibody target, column B indicates the element conjugated to the antibody, column

C indicates the mass of the element, column D indicates the manufacturer, column E indicates the

catalog number, column F indicates the clone number, and column G indicates the type of stain pro-

tocol used (fixed, live, or fixed with permeabilization).

. Supplementary file 12. Immune cell type definition. List of immune cell subsets defined by mass

cytometry. Column A indicates the population identified, column B indicates definition based on gat-

ing strategy employed, and column C indicates the parent lineage.

. Transparent reporting form

Data availability

All data generated for this manuscript is made available through the online researcher gateway of

the COVIDome Project, known as the COVIDome Explorer, which can be accessed at http://covi-

dome.org/. Differences between COVID19 negative and positive patients can be visualized in the

’Impact of COVID19’ dashboards for each -omics dataset. Differences between sero-low and sero-

high COVID19 patients can be visualized in the ’Impact of Seroconversion’ dashboards. The mass

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the

PRIDE partner repository (67) with the dataset identifier PXD022817. The mass cytometry data has

been deposited in Flow Repository under the link: https://flowrepository.org/id/RvFrSYioKeU-

dYHXdkTD9TQPAXt4PqdkB5eie82h11JgAGSCQIneLKpcKd81Nzgwq. The SOMAscan Proteomics,

MSD Cytokine Profiles, and Sample Metadata files have been deposited in Mendeley under entry

doi:10.17632/2mc6rrc5j3.1. The RNA-seq data have been deposited in NCBI Gene Expression

Omnibus, with the accession number GSE167000 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE167000).

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Baxter R 2020 COVID CytoF https://flowrepository.
org/id/RvFrSYioKeU-
dYHXdkTD9TQ-
PAXt4PqdkB5eie82h11J-
gAGSCQI-

Flow Repository, FR-
FCM-Z367
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neLKpcKd81Nzgwq

Hansen KC 2021 COVIDome Mass Spec Proteomics https://www.ebi.ac.uk/
pride/archive/projects/
PXD022817

PRIDE, PXD022817

Galbraith MD, Espi-
nosa JM

2020 COVIDOme datasets https://dx.doi.org/10.
17632/2mc6rrc5j3.1

Mendeley Data, 10.
17632/2mc6rrc5j3.
1

Galbraith MD, Espi-
nosa JM

2021 PolyA RNA-seq from whole blood
of Sars-COV2-negative and -
positive subjects

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE167000

NCBI Gene
Expression Omnibus,
GSE167000
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