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Abstract What role do regions like the dorsolateral prefrontal cortex (dlPFC) play in normative 
behavior (e.g., generosity, healthy eating)? Some models suggest that dlPFC activation during 
normative choice reflects controlled inhibition or modulation of default hedonistic preferences. 
Here, we develop an alternative account, showing that evidence accumulation models predict trial-
by-trial variation in dlPFC response across three fMRI paradigms and two self-control contexts (altru-
istic sacrifice and healthy eating). Using these models to simulate a variety of self-control dilemmas 
generated a novel prediction: although dlPFC activity might typically increase for norm-consistent 
choices, deliberate self-regulation focused on normative goals should decrease or even reverse this 
pattern (i.e., greater dlPFC response for hedonistic, self-interested choices). We confirmed these 
predictions in both altruistic and dietary choice contexts. Our results suggest that dlPFC response 
during normative choice may depend more on value-based evidence accumulation than inhibition of 
our baser instincts.

Editor's evaluation
This paper will be of interest to neuroscientists studying decision-making and the frontal lobe. 
On balance, the data provide more support for the view that the dorsolateral prefrontal cortex is 
involved in reading out the evidence in favor of different choice alternatives than the view that this 
region implements control processes that bias choices towards normative goals.

Introduction
Self-control dilemmas typically involve tradeoffs between short-term, hedonic considerations and 
longer-term or more abstract standards and values. For example, social interactions often force an 
individual to weigh self-interest against norms favoring equity and other-regard. Similarly, dietary 
decisions often require weighing the immediate pleasure of consumption against personal stan-
dards or societal norms favoring healthy eating. Understanding when, why, and how people choose 
normatively preferred responses (e.g., generosity over selfishness, healthy over unhealthy eating, 
etc.) has represented a central goal of the decision sciences for decades. What neural and computa-
tional processes must be engaged to support more normative behavior? What makes such choices 
frequently feel so conflicted and effortful, and how can we make them easier? To what extent does 
following social or personal norms depend on activation in brain regions associated with inhibitory 
control, such as the dorsolateral prefrontal cortex (dlPFC)?
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Previous research has provided a wealth of evidence suggesting that dlPFC activation is associated 
with normative choices in both the social and non-social domain. For instance, compared to unhealthy 
food choices, healthier choices in successful dieters were accompanied by greater activation in a 
posterior region of the dlPFC (Hare et al., 2009). Greater dlPFC response in a similar region has also 
been observed when individuals make normatively favored choices in both social decision making 
(Strombach et al., 2015; Cutler and Campbell-Meiklejohn, 2019) and intertemporal choice (Luo 
et  al., 2012; McClure et  al., 2004). Moreover, activation in the dlPFC increases when individuals 
explicitly focus on eating healthy (Hare et al., 2011a) or on decreasing craving for food (Kober et al., 
2010). Electrical disruption of this area also decreases patience (Figner et al., 2010) and reduces 
normative behavior in cooperative contexts like the Ultimatum game (Ruff et al., 2013). Collectively, 
these results have been taken to support the notion that the dlPFC may be recruited to modulate 
values or bias choices in favor of normative responses, perhaps especially when those responses 
conflict with default preferences. Such findings are also consistent with the notion that this region 
might play a more general role in inhibitory control.

Yet, a variety of results seem inconsistent with this view. For example, researchers often fail to 
observe increased dlPFC recruitment when individuals make pro-social or intertemporally normative 
choices (Zaki and Mitchell, 2011; Tusche et al., 2016; Magen et al., 2014). Moreover, electrical 
disruption of the dlPFC has been observed both to decrease appetitive valuation of foods (Camus 
et al., 2009) and to increase generous behavior in altruistic choice tasks like the Dictator game (Ruff 
et al., 2013). Such findings conflict with the idea that this region consistently promotes normative 
concerns over immediate, hedonistic desires. Thus, it remains unclear how to predict whether and 
when one might observe a positive association between dlPFC response and choices typically associ-
ated with successful self-control.

Here, we propose a computational account of fMRI BOLD response in the dlPFC that may resolve 
many of these apparent inconsistencies. This account draws on prior research in both perceptual and 
value-based decision making, which consistently finds that the posterior dlPFC region associated with 
both normative ‘self-control success’ and inhibitory control tasks also activates during choices that 
are more difficult to discriminate in simple perceptual and value-based choices lacking a self-control 
conflict (e.g., Heekeren et al., 2004; Noppeney et al., 2010; Pedersen et al., 2015). Our account is 
also inspired by findings that the dlPFC may be one hub in a larger neural circuit – encompassing addi-
tional regions like the dorsal anterior cingulate cortex [dACC], supplementary motor area, and inferior 
frontal gyrus/anterior insula [IFG/aIns] – that selects actions for execution using a process of evidence 
accumulation toward a threshold for response (Hanks et al., 2015; Hare et al., 2011b; Pisauro et al., 
2017; Gluth et al., 2012; Rodriguez et al., 2015). Based on this evidence, we developed a computa-
tional model of self-control dilemmas, rooted in the logic of evidence accumulation, that successfully 
predicts not only when an individual will choose in a normative rather than hedonistic (In the following 
results, we examine choices in two domains often associated with self-control:altruistic choice and 
healthy eating. We use the term ‘normative’ choices to describe generous and healthy decisions in 
these contexts, respectively. To contrast with normative choices, we refer to both selfish and unhealthy 
decisions using the term ‘hedonistic’ choices, although we acknowledge that decisions about money, 
even if selfish, would not be considered hedonistic in the classical sense of referring to sensory plea-
sure. Instead, we here use the term hedonistic in the sense of promoting immediate self-gratification. 
Similarly, we use the term ‘hedonic attribute’ to refer to attributes associated with immediate self-
gratification (i.e., self-serving outcomes, food tastiness), whether or not they are directly linked to 
sensory pleasure.) fashion, but also when, why, and to what degree response in the dlPFC will be 
recruited during that process. We also note that we focus here on inhibitory control-related regions of 
the dlPFC rather than value-related dlPFC regions, which lie in somewhat more anterior areas of the 
lateral prefrontal cortex and frontal pole (Tusche and Hutcherson, 2018; Plassmann et al., 2007). 
Our model also applies in theory when observing similar relationships to other brain areas frequently 
associated with conflict and inhibitory control, including regions of the IFG/aIns and dACC.

Based on work examining simple perceptual and value-based choices (Milosavljevic et al., 2010; 
Krajbich et al., 2010; Busemeyer et al., 2019), we assume that the brain makes decisions through 
a process of value-based attribute integration and evidence accumulation (Figure 1). More specifi-
cally, choices are resolved by accumulating information about the value of choice-relevant informa-
tion (attributes), weighted by their momentary goal relevance, until a critical threshold for choice is 

https://doi.org/10.7554/eLife.65661


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Hutcherson and Tusche. eLife 2022;11:e65661. DOI: https://doi.org/10.7554/eLife.65661 � 3 of 36

reached. Some of these attributes are associated with hedonism (e.g., self-regarding concerns in 
altruistic choice), and some are associated with social norms and standards for behavior (e.g., other-
regarding concerns). For expository purposes, we refer to these respectively as hedonic and normative 
attributes. Intuitively, whether a process of value-based evidence accumulation results in a hedonistic 
or normative choice depends not only on the magnitude of hedonic and normative attributes, but 
also on their weight: higher weights on normative attributes lead to more norm-consistent responses.

What role does the dlPFC play in the process of choice? The observation of increased posterior 
dlPFC response when people choose consistently with normatively favored goals (e.g., healthy over 
unhealthy choices) has been taken to suggest that this region acts either to modulate the processing 
of attribute values or their weights in favor of normatively favored goals (Hare et al., 2009; Hare 
et al., 2011a), or to inhibit hedonistic reward-related responding (Lopez et al., 2014; Heatherton 
and Wagner, 2011). In contrast, we propose that activity in this region reflects processes related 
to the evidence accumulation stage of decisions. This suggests that dlPFC response during norma-
tive choice represents a downstream consequence of valuation processes, rather than a direct causal 
influence upon them. To support this argument, we use a value-based drift diffusion model (DDM, 
Figure 1) to simulate when and why we might observe greater activity in the dlPFC (and regions with 

Figure 1. Attribute-based drift diffusion model (DDM) of normative choice. Input. Each option’s hedonic and normative attributes (e.g., high tastiness 
and low healthiness for the sundae) are weighted by their current importance (e.g., wTaste [wT] and wHealth [wH]) and summed to construct relative option 
values [VO1 – VO2]. Model. In the computational model (upper right panel), these values, corrupted by momentary noise at time t [εt], serve as the inputs 
to an evidence accumulation process (Et) representing the two options (Sunday vs. apple). This evidence accumulates over time, moving by an increment 
dE at each moment, until it hits one of two predefined thresholds, determining the simulated response time (RT), the simulated choice, and the 
simulated neural activity (the sum of the absolute value of the evidence from t=0 to t=RT). Choices are classified as normative if the option with higher 
normative attribute value is selected (in this example, higher healthiness, i.e., the apple in option 2). Simulation. Simulating this process thousands of 
times (lower right panel) allows distributions to be constructed for the expected frequency of hedonistic and normative choices, RTs, and average neural 
activity, mean(neural), for each type of choice.
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similar response profiles) when resolving a choice. As we describe below, these simulations suggest 
that normative choices should be associated with greater neural activation in the dlPFC only when 
two things are true: hedonic attribute values directly oppose normative attribute values, and hedonic 
attributes receive more weight as inputs to the evidence accumulation process. In contrast, when 
normative attributes receive more weight, hedonistic choices should produce greater activity in the 
dlPFC and other areas associated with response selection.

We then used these observations to make two predictions. First, if people by default favor hedonic 
over normative attributes, then most studies will observe greater dlPFC response when people 
choose the normatively favored option. This prediction does not strongly distinguish our account 
from alternatives. However, our model makes a second, more novel prediction: if a normally hedo-
nistic decision maker focuses on normative goals, this should reduce activation in the dlPFC when 
choosing the normatively favored option. A straightforward reading of an attribute-weighting account 
predicts the opposite: a normally hedonistic individual who deliberately attempts to focus on norma-
tive responding should show increased activation in the dlPFC in order to alter attribute weighting 
in favor of normative goals (Lopez et al., 2014; Kelley et al., 2015). We test these two alternative 
predictions across three datasets and two canonical self-control contexts in which people frequently 
struggle to align their actual behaviors with normative goals: altruistic and dietary choices. In all cases, 
results supported the predictions of an evidence accumulation account. These findings raise new and 
important questions regarding the role of the dlPFC – and effortful self-control more generally – in 
promoting normative choice.

Results
Simulating the dilemma of self-control
Although self-control dilemmas can take a variety of forms, for expository purposes, we here take 
a single, typical self-control dilemma: a decision maker deciding whether to indulge in a decadent 
snack (e.g., an ice cream sundae) or opt for something healthier (e.g., an apple). This example allows 
us to capture two critical features: first, self-control dilemmas typically involve making decisions about 
options that vary in the magnitude or value of hedonic and normative attributes (e.g., tastiness and 
healthiness). Second, the decision maker must weigh these attributes based on goals that can vary in 
their relative strength at different times and in different contexts. At a nice restaurant, tastiness may 
be prioritized. When trying to lose weight, healthiness is prioritized. We used simulations to explicitly 
capture these two features.

Simulations were realized using a value-based DDM (Hare et al., 2011b) in which an evidence 
signal capturing hedonic and normative attributes, weighted by their current subjective importance, 
accumulates toward a choice-determining threshold (see Methods for details). This model generated 
predictions for how magnitudes and weights for hedonic and normative attributes influence the like-
lihood of a virtuous (i.e., healthy) choice, response time (RT), and neural response. These simulations 
yielded three key observations about behavior and neural response, which we describe in the context 
of food choice but apply in theory across any self-control dilemma that requires weighing hedonic 
rewards against normative values and goals.

Observation 1: The likelihood of a normative choice depends on the value 
of hedonic and normative attributes
To capture the idea that some choices (e.g., ice cream vs. Brussels sprouts) represent more of a self-
control conflict than others (e.g., strawberries vs. lard), we simulated a single decision maker facing 
choices between hypothetical options that independently varied the relative value of normative and 
hedonic attributes (e.g., the foods’ relative healthiness and tastiness). In the context of food choice, 
we classified a simulated choice as normative (healthy) when the simulation selected the option with 
higher normative attribute values (higher healthiness). Choices were classified as hedonistic (unhealthy) 
otherwise. To determine the effect of current behavioral goals, we simulated the decision maker’s 
choices for a variety of different weights on healthiness (wHealth) and tastiness (wTaste).

Figure 2a illustrates how variation in tastiness and healthiness of an option relative to the alter-
native affects a decision maker’s general propensity to make a healthy choice (i.e., averaging over 
different instances of wTaste and wHealth). As can be seen, the magnitude and sign of the two attributes 
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matter: she tends to choose more healthily when one option dominates on both healthiness and 
tastiness (no-conflict trials). She chooses less healthily when one option is tastier while the other is 
healthier (conflict trials). She is least likely to choose normatively when the difference in tastiness 
is large, and the difference in healthiness is small. Thus, our simulations make the commonsense 
prediction that attribute values matter in determining the overall likelihood that an individual makes 
a healthy/normative choice.
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Figure 2. Simulating the dilemma of self-control. An evidence accumulation model (drift diffusion model [DDM]) can be used to simulate decision 
making for any self-control context requiring an integration of normative and hedonistic considerations (dietary choices displayed, integrating relative 
tastiness and healthiness). Heat maps display simulated healthy/unhealthy choices for binary choices consisting of a proposed option vs. a default 
option. Both options are characterized by attribute values such as the perceived tastiness and healthiness of the two food options, with plot axes 
capturing the relative value difference in tastiness (x-axis) and healthiness (y-axis) of the proposal vs. the default. For example, for each heat map, 
the upper right-hand quadrant shows likelihood of a healthy choice when the proposed option was both tastier and healthier than the default. The 
upper left-hand quadrant illustrates the likelihood of a healthy choice when proposed foods were healthier but less tasty than the default and so forth. 
Warmer colors indicate a higher likelihood of choosing the healthier option. (a) On average across multiple different goals (i.e., different weights on 
different attributes), the likelihood of a healthy choice depends on the relative attribute values of one option vs. another. Healthy choices are less 
likely when tastiness and healthiness conflict (conflict trials: one option is clearly better on one attribute, but worse on the other). (b) Specific goals 
prioritizing tastiness or prioritizing healthiness alter the frequency of healthy choice, although it still depends on the relative values of both tastiness 
and healthiness. Four example decision makers with different weights on healthiness and tastiness (wTaste, wHealth) are displayed for comparison. (c) The 
overall likelihood of a healthy choice (averaged separately for all combinations of conflict or no-conflict choices) depends on attribute weights. Goals 
prioritizing tastiness (darker bars) produce fewer healthy choices than goals prioritizing healthiness (lighter bars), but only when tastiness and healthiness 
conflict. (d) The drift diffusion model can also simulate expected neural activity (i.e., aggregate activity summed over decision time: ‍

∑
Time |Evidence|‍) 

when choosing healthy [H] or unhealthy [UH] options, as a function of relative attribute values of available options and different goals. Bars display the 
overall difference in neural activity for H compared to UH choices for goals prioritizing tastiness (darker bars) and healthiness (lighter bars), divided 
as a function of attribute conflict. In no-conflict trials, healthy choices elicit less activity regardless of goal (i.e., Activity H < Activity UH). In conflict trials, 
however, healthy choices elicit more activity (i.e., Activity H > Activity UH), but only when goals prioritize tastiness (dark gray bars). Identical results are 
obtained when substituting response time (RT) for neural response (see Figure 2—figure supplement 1). Similar results are also obtained when using a 
different formulation of the evidence accumulation process (see Appendix 2 and Appendix 1—figure 1).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Computational simulations of response time (RT).

https://doi.org/10.7554/eLife.65661
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Observation 2: The likelihood of a normative choice depends on weights 
given to normative and hedonic attributes
We next attempted to capture the idea that individuals might vary in the goals that they prioritize, 
and also that the same individual might vary from context to context in those goals. In this case, 
the essence of self-control is to prioritize (i.e., assign a higher weight to) normative attributes like 
healthiness, or to deprioritize (i.e., assign a lower weight to) hedonic attributes like tastiness. We thus 
simulated the effects of different goal states by assuming different weights on hedonic and normative 
attributes (i.e., tastiness and healthiness). We show four example simulations in Figure 2b. Unsurpris-
ingly, the decision maker chooses healthily less frequently when the weight on tastiness is higher than 
weight on healthiness. However, these differences are starkest in conflict trials, and essentially vanish 
for no-conflict trials (Figure 2c).

Observation 3: Normative choices result in higher neural response only if 
attributes conflict and the decision maker weighs hedonic attributes more
The last and most important goal of our computational model simulations was to examine how neural 
response in a control region like the dlPFC (assuming its activity correlates with evidence accumu-
lation) might depend on weights given to hedonic and normative attributes (Figure 2d). We char-
acterized this simulated response as the absolute value of the accumulated evidence at each time 
point, summed over the duration of the choice, as this is what should contribute to observable BOLD 
responses.

Comparing differences in simulated neural response for healthy and unhealthy choices yields 
two important conclusions. First, when options do not conflict on healthiness or tastiness (i.e., one 
option is better on both), healthy choices generally elicit less activity than unhealthy ones (Figure 2d). 
Notably, for no-conflict trials, this holds true irrespective of whether a decision maker is currently prior-
itizing tastiness or healthiness. Second, and more importantly, when attributes conflict, neural activity 
during healthy vs. unhealthy choices shows a striking dependence on an individual’s goals (i.e., the 
relative balance of wHealth and wTaste). In conflict trials, hedonism-favoring goals (i.e., wTaste > wHealth) result 
in higher activity on average when choosing healthily. In contrast, when goals prioritize normative 
attributes like healthiness (i.e., wHealth > wTaste), simulated neural responses are lower on average for 
healthy compared to unhealthy choices (Figure 2d). Thus, the neural response is positively associated 
with normative choice (i.e., greater neural activity to choose normatively instead of hedonistically) only 
when the decision maker places a higher weight on hedonistic than normative attributes. The same is 
true of simulated RTs, which are often used as a proxy for both choice difficulty and the presence of 
control (Figure 2—figure supplement 1). Thus, the logic of evidence accumulation models suggests 
that the observation that normative choices activate brain areas associated with cognitive control 
might simply indicate that hedonic attributes are currently weighed more highly.

Testing computational predictions using fMRI data
The DDM accurately predicts dlPFC activity across a variety of contexts
It is currently unknown whether activity in the dlPFC region frequently associated with inhibition and 
self-control might reflect activation patterns in the DDM during self-control. Preliminary evidence 
suggests that at least one region of the dlPFC correlates with evidence accumulation signals in simple 
choice (Hare et al., 2011b). We thus began by verifying that trial-by-trial simulated neural activity in 
the DDM correlated with activity in this region for complex, multi-attribute choices typical of different 
real-world self-control dilemmas. To assess the generalizability of this finding, we examined this across 
different choice contexts. We also show in supplementary analyses that this result does not depend on 
the particular form of the computational model but applies using an alternate formulations of a basic 
process of evidence accumulation to a threshold (see Appendix 2 for the example of an attribute-
based neural DDM (anDDM) and Appendix 1—figure 1). Note, however, that finding a correlation 
within this region could occur because the dlPFC performs the precise computations carried out by 
the DDM, or could occur if the dlPFC performs separate computational functions that activate propor-
tionally to evidence accumulation activity (e.g., RT). In either case, we would expect the trial-by-trial 
activity of the dlPFC to correlate with predictions of the DDM.

Our analysis focused on three previously collected fMRI datasets. Dataset 130 (N=51) and Dataset 
222 (N=49) utilized an Altruistic Choice Task trading off different monetary outcomes for self and an 
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anonymous partner in a modified version of a Dictator game (Figure 3a and b, see Methods for 
details). Dataset 3 utilized a Food Choice Task (Figure 3c), collected on three separate samples of 
participants (Sample 3a22 N=36; Sample 3b N=336; Sample 3c31 N=45, respectively), with different 
foods varying in tastiness and healthiness (see Methods for details). In Dataset 1 (altruistic choice), 
choices were made with the instruction to simply choose the most-preferred option (simulating natural 
choice contexts without experimentally manipulating goals/attribute weights). In Datasets 2 and 3, 
participants made choices in three separate conditions that manipulated goals/attribute weights by 
instructing participants to focus on different normative or hedonistic attributes (a point we return 
to below). All three datasets involved trials involving conflict between hedonic and normative attri-
butes (conflict trials). Studies in Dataset 3 also included trials without such conflict, allowing us to test 
differential predictions of the computational model for conflict and no-conflict contexts (Figure 2). 
Because the three samples comprising Dataset 3 had an identical design, and neural results indicated 
no significant differences across the studies in regions of interest for the key analysis of normative vs. 
hedonistic choice, we report the results below collapsed across the samples (but see Figure 4—figure 
supplement 2 for a comparison of results across samples).

We predicted that dlPFC activity should mirror the simulated activity of the DDM during self-control 
dilemmas. To avoid concerns about circular analysis and double dipping (Kriegeskorte et al., 2009), 
we tested the core predictions of the computational model using an independent dlPFC cluster as 
our primary region of interest (ROI). The selected dlPFC ROI was predictively associated with the term 
‘inhibitory control’ in a text-based meta-analysis of functional neuroimaging studies (Dockès et al., 
2020) (see Methods). However, to provide further evidence that neural activity in this dlPFC region 
is associated with predictions of the DDM, we also implemented supplementary analyses on the 
whole-brain level examining neural correlates of the DDM, both within and beyond the dlPFC. This 
analysis confirmed that activity in an area of dlPFC nearly identical to the area associated with inhib-
itory control consistently varies in the manner predicted by the DDM across several different choice 
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Figure 3. fMRI task designs. (a) In Dataset 1, participants made choices involving tradeoffs between monetary payoff for another person ($Other; 
normative attribute) and for themselves ($Self; hedonic attribute) in an Altruistic Choice Task. (b) In Dataset 2, participants made choices similar to the 
Altruistic Choice Task in Study 1, while we manipulated the weights on normative and hedonic attributes using instructions presented at the beginning 
of each task block. These instructions asked participants to focus on different pro-social motivations (ethical considerations, partner’s feelings) as they 
made their choice. (c) In Dataset 3, we examined the generalizability of the model-based predictions in another choice domain. Here, participants 
performed a Food Choice Task in which the weights on food’s healthiness (normative attribute) and tastiness (hedonic attribute) were manipulated. In all 
studies, participants had 4 s to decide, and gave their response on a 4-point scale from ‘Strong No’ to ‘Strong Yes’.
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contexts (see Figure 4a–c for visualization of dlPFC regions correlated with DDM predictions, as well 
as Appendix 4 for further details of whole-brain results).

Recruitment of the dlPFC when choosing normatively only occurs when 
goals are hedonistic and attributes conflict (Observation 3)
We first set out to confirm the central prediction of our simulations concerning the relationship between 
normative choices and activity in the dlPFC. In particular, models suggesting that the dlPFC promotes 
normative choices or inhibits prepotent responses (Hare et al., 2009; Hare et al., 2011a; Heatherton 
and Wagner, 2011) imply that norm-consistent choices should be accompanied by greater activation 
in the dlPFC (as has been observed previously). Moreover, this should be especially true when people 
focus on normative goals (Hare et al., 2011a; Kober et al., 2010), since those goals support norm-
sensitive behavior and might require the override of default hedonistic preferences (Lopez et al., 
2014; Wagner et al., 2013). The DDM makes the opposite prediction. While neural activity in the 
model (and by extension the dlPFC) can be higher for normative compared to hedonistic choices, this 
should be true only when goals lead to a stronger weighting of hedonic attributes and attribute values 
conflict (Figure 2d). Thus, if a regulatory focus on normative attributes increases their weight in the 
evidence accumulation process, this should increase normative choices, but result in lower, not higher, 
neural activity for those choices. We tested these predictions by performing an ROI analysis in the 
dlPFC, examining the contrast of activity for normative compared to hedonistic choices in different 
contexts. In Dataset 1 (altruistic choice), this involved choices made only during natural, unregulated 
decision making. In Dataset 2 (altruistic choice) and Dataset 3 (food choice), we examined choices 
made under different regulatory goals that were designed to increase or decrease weights on hedonic 
and normative attributes (i.e., payoffs for self and other in altruistic choice, tastiness and healthiness 
in food choice). As described above, we focused on an area predictively associated with the term 
‘inhibitory control’ using the meta-analytic tool NeuroQuery (Dockès et al., 2020) (see Figure 4a–c 
[blue] for an illustration of the ROI). Results were similar when using other definitions of this ROI (see 
Appendix 3, ‘Alternative ROI specifications’ and Appendix 2—figure 1, Appendix 3—figure 1), as 
well as when focusing on other regions associated with the DDM at a whole-brain level (see Appendix 
4 and Appendix 4—figures 1 and 2).

Generous vs. selfish choices (Dataset 1). In Dataset 1, choices were defined as normative (i.e., 
generous) if the participant selected the option with less money for themselves and more money 
for their partner. Choices were defined as hedonistic (i.e., selfish) otherwise. Weights from the best-
fitting model parameters indicated that subjects naturally placed more weight on their own outcomes 
(mean wSelf=0.0043 ± 0.0011 s.d.) than the other person’s outcomes (mean wOther = 0.0018 ± 0.0018, 
paired-t50=14.465, p<2.2 × 10–16) or on fairness (i.e., |Self – Other|, mean wFairness = 0.0011 ± 0.0032, 
paired-t50=7.33, p=1.829 × 10–9) (see Supplementary file 1). Given the higher weight on self-interest, 
a hedonic attribute, and the fact that all trials in this study involved conflict between normative and 
hedonic attributes, we predicted that we should observe greater neural response on average when 
people chose generously. We further predicted that individual differences in activation between 
generous and selfish choices should correlate negatively with individual differences in the relative 
weight on payoffs to other, a normative attribute, compared to payoffs for the self, a hedonic attribute. 
In other words, subjects who place more relative weight on the normative attribute should actually 
show less activation in the dlPFC during normative choice (see Figure 4d for both average simulated 
predictions and individual difference predictions based on the weights fitted to participants in Dataset 
1). An ROI analysis of BOLD response for generous vs. selfish choices in the inhibitory control dlPFC 
ROI supported both predictions (Figure 4g). We observed a significant increase in average response 
during generous compared to selfish choices (paired-t43=2.13, p=0.04, Cohen’s d=0.32), confirming 
our prediction of higher dlPFC activity for normative choices. Moreover, for our primary dlPFC ROI, 
when correlating individual differences in weights on other vs. self (i.e., wOther – wSelf) with differences in 
dlPFC BOLD response for generous vs. selfish choices, we observed a significant negative relationship 
of roughly the same magnitude as predicted by simulations (r=–0.31, p=0.04). A supplemental whole-
brain analysis confirmed that this pattern was specific to the dlPFC, as well as regions of dACC and 
IFG/aIns that were also associated with the DDM, rather than a general property of neural activity (see 
Appendix 4—figures 1 and 2, and Supplementary file 4 for details).

https://doi.org/10.7554/eLife.65661
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Figure 4. BOLD responses in the left dorsolateral prefrontal cortex (dlPFC) during self-control dilemmas. Top (dlPFC): Trial-by-trial BOLD response 
in the dlPFC correlates significantly with predicted activity of the drift diffusion model (DDM) across three separate datasets. This includes responses 
during altruistic choice (a, b) and dietary choice (c). Hot colors display DDM-related responses thresholded for display purposes at p<0.001 (a and 
c) and p<0.005 (b), uncorrected. The location of this activity was anatomically similar to an area of the dlPFC associated with inhibitory control in a 
meta-analysis (Dockès et al., 2020) (blue region of interest [ROI] displayed in each panel), which served as our primary, independently selected ROI to 
test predictions of the computational model (d-f). Middle (Model Simulations): Given participants’ observed attribute weights, we simulated expected 
neural response during normative vs. hedonistic choice, using the DDM, for all trials in Dataset 1 (d), as well as separately for each condition in Dataset 
2 (e) and Dataset 3 (f). Bottom (dlPFC Results): Within the independently defined dlPFC ROI associated with inhibitory control (blue voxels in a–c), BOLD 
response during normative choice vs. hedonistic choice when attributes conflict, in (g) Dataset 1 (N=50) for all trials, as well as in (h) Dataset 2 (N=49), 
and (i) Dataset 3 (N=113) as a function of regulatory goals. Regulatory goals were designed to decrease hedonic weights and increase normative 
weights on choice (Dataset 2: Ethics, Partner; Dataset 3: Health) or to emphasize weights on hedonic attributes (Dataset 3: Taste). Only conflict trials 
are considered across datasets. As predicted, normative choices activate the dlPFC, but only when goals result in a greater weight on hedonistic than 

Figure 4 continued on next page
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Regulatory effects on generous vs. selfish responding (Dataset 2). In Dataset 2 (also anonymous 
altruistic decision making and conflict trials only), we sought to replicate and extend these results. 
More specifically, we sought to test the DDM prediction that if regulatory goals increase the weight 
on normative attributes, this should result in decreased activation in the dlPFC when choosing norma-
tively. Note that this prediction complements the negative correlation between dlPFC response and 
the balance of normative vs. hedonistic weights across subjects, but extends it to a within-subject 
prediction: even in participants who under normal circumstances might show greater activation in 
the dlPFC during generosity, interventions that shift weights in favor of normative attributes should 
reduce, rather than enhance, such differences. To manipulate weights on hedonic and normative attri-
butes, we used an instructed cognitive regulation manipulation in which we asked participants on 
different trials either to ‘Respond Naturally’ (mirroring the natural preferences expressed by partici-
pants in Study 1) or to focus on one of two different goals (‘Focus on Ethics’ [Ethics], ‘Focus on your 
Partner’s Feelings’ [Partner]) that both emphasize normative attributes, but in different ways (see 
Methods for details). To confirm that the manipulation influenced attribute weights, we performed 
one-way repeated-measures ANOVAs with condition (Natural, Ethics, Partner) as a fixed effect and 
best-fitting attribute weight parameters wSelf, wOther, and wFairness as dependent variables. This analysis 
confirmed that our manipulation yielded significantly different weights on the attributes across the 
conditions (all F2,96 > 13.54, all p<6.59 × 10–6, see Methods for details of model fitting). As expected, 
weights for self-interest (a hedonic attribute, wSelf) were highest in the Natural condition (MNatural = 
0.0073 ± 0.0035  s.d.), lower in the Ethics condition (MEthics = 0.0061 ± 0.0047), and lowest in the 
Partner condition (MPartner = 0.0037 ± 0.0065). By contrast, weights on the partner’s outcomes and 
fairness (attributes related more strongly to social norms) increased with regulation (wOther: MNatural 
= 0.0010 ± 0.0038, MEthics = 0.0041 ± 0.0045, MPartner = 0.0051 ± 0.0038; wFairness: MNatural = 0.0017 
± 0.0033, MEthics = 0.0053 ± 0.0046, MPartner = 0.0024 ± 0.0035) (see Supplementary file 1for more 
details on parameters).

Having confirmed that the regulatory focus manipulation altered weights on hedonic and norma-
tive attributes, we next asked if this manipulation affected BOLD response during generous vs. selfish 
choice in the dlPFC, consistent with predictions of the DDM. In particular, given that all trials involved 
conflict between normative and hedonic attributes, we predicted that in the Natural condition, where 
participants generally placed higher weight on self-interest (a hedonic attribute), generous choices 
should elicit higher activation. In contrast, in the Ethics and Partner conditions, which elicited more 
equal or even higher weight on normative attributes (i.e., other’s outcomes and fairness), this differ-
ence should disappear or even reverse. In other words, the model predicts that in some cases, selfish 
choices should elicit the greatest activity in the dlPFC. Predictions of the DDM given the specific attri-
bute weights observed in this study are illustrated in Figure 4e.

To test these predictions in the neural data, we performed one-way repeated-measures ANOVAs 
with condition (Natural, Ethics, Partner) as a fixed effect and average BOLD response in the dlPFC 
ROI for the contrast of generous vs. selfish choice as the dependent variable. This analysis revealed a 
significant effect of condition on dlPFC response (F2,96 = 5.91, p=0.004). Post hoc planned comparisons 
confirmed that in the Natural condition, generous choices elicited significantly greater activity in the 
dlPFC than hedonic choices (t48=2.16, p=0.04, Cohen’s d=0.31, Figure 4h), replicating the observed 
difference during Natural choices of Study 1. By contrast, in the Ethics and Partner focus conditions, 
generous choices no longer elicited significantly greater activation. Instead, selfish choices elicited 
greater activation, although the effect did not reach statistical significance. However, the key test of 

normative attributes. Contexts that increase normative attribute weights yield less dlPFC activity during normative choices (Dataset 2: Ethics, Partner; 
Dataset 3: Health). *p<0.05 based on one-sample t-tests against 0, or paired-tests between conditions; **p<0.01. Error bars show standard error of 
the mean. Similar results were obtained from a left dlPFC region associated with dietary self-control in dieters (Hare et al., 2009), as well as a right-
hemisphere version of the inhibitory control ROI (see Appendices 2-3 and Appendix 2—figure 1 and Appendix 3—figure 1 for details).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Model fits to behavior.

Figure supplement 2. Alternative visualization of model fits to behavior.

Figure supplement 3. Healthy vs. unhealthy choices by sample in Dataset 3.

Figure 4 continued
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our predictions was confirmed: the difference in activation between generous vs. selfish choice in both 
the Partner and Ethics conditions differed significantly from the difference in the Natural condition 
(G vs. S, Partner vs. Natural: t48=2.57, p=0.01, Cohen’s d=0.36; G vs. S, Ethics vs. Natural: t48=3.13, 
p=0.003, Cohen’s d=0.45). Thus, in the same individuals, the association between generous choices 
and higher activation in the dlPFC depended on whether goals emphasized selfishness rather than 
social norms (Figure 4h). Supplemental whole-brain analyses and examination of individual differ-
ences confirmed these findings (see Supplementary file 4 and Appendix 5 for details).

Regulatory effects on healthy vs. unhealthy choice (Dataset 3). In Dataset 3, we sought to repli-
cate the finding that a regulatory focus on normative attributes reduces activation in the dlPFC in 
a different, non-social domain: healthy eating. During the Food Choice Task in Dataset 3, attribute 
weights were manipulated by instructing participants either to ‘Respond Naturally’, ‘Focus on Health’, 
or ‘Focus on Taste’ while making their choice. Normative (i.e., healthy) choices were defined as 
selecting the food with higher subjectively perceived healthiness (see Methods for details). Note that 
the ‘Focus on Health’ instruction aimed to increase the weight on healthiness (wHealth), a normative 
attribute. Extending results in Dataset 2, the ‘Focus on Taste’ condition was designed to enhance the 
weight on tastiness (wTaste), the hedonic attribute, which should preserve or even enhance the difficulty 
of normative choices that we observed in natural choice settings in Datasets 1 and 2. This allowed us 
to verify that our findings are specifically driven by changes in weights, not simply because we asked 
participants to perform a cognitive task.

To confirm that the regulatory manipulation influenced attribute weights, we performed one-way 
repeated-measures ANOVAs, similar to Dataset 2, with condition (Natural, Taste, Health) as a fixed 
effect and estimated attribute weight parameters wTaste and wHealth as dependent variables. Because 
Dataset 2 combined data from three individual participant samples (see Methods for details), we also 
included Study as an additional factor in the analysis. Here, we report the effect of the manipula-
tion on attribute weights across all studies (Supplementary file 1, but see Supplementary file 2 for 
results in each sample separately). This analysis confirmed that our manipulation yielded significantly 
different weights on the different attributes across the conditions (all F2,220 > 44.43, all p<2.2 × 10–16). 
As expected, weights on tastiness (a hedonic attribute) were highest in the Taste and Natural condi-
tions (MTaste = 0.0056 ± 0.0043, MNatural = 0.0058 ± 0.0036), and lowest in the Health condition (MHealth = 
0.0027 ± 0.0033). Weights on healthiness (a normative attribute) showed the opposite pattern, being 
lowest in the Taste condition (MTaste = 0.0002 ± 0.0022), similar though slightly higher in the Natural 
condition (MNatural = 0.0005 ± 0.0021), and highest in the Health condition (MHealth = 0.0042 ± 0.0035).

Next, we generated predictions for the pattern of dlPFC response on the subset of trials involving 
conflict. For each condition, we used each individual’s best-fitting weights to simulate neural responses 
using the DDM (Figure 4f). These simulations predicted that healthy compared to unhealthy choices 
should on average elicit the greatest activation in the dlPFC in the Taste and Natural conditions 
(though unexpectedly, the model predicted a non-significantly smaller difference in Taste trials). More 
importantly, the model predicted that this difference should be significantly smaller in the Health 
condition. Because observed weights on tastiness and healthiness in the Health condition were 
similar in strength, the within-condition comparison between healthy and unhealthy choices was not 
predicted to be significant. To test these predictions, we performed a one-way repeated-measures 
ANOVA, similar to Dataset 2, with condition (Natural, Taste, Health) as a fixed effect and the average 
dlPFC BOLD response in the contrast of healthy vs. unhealthy choice (limited to trials with attribute 
conflict) as the dependent variable. We also included sample (i.e., Sample 3a, 3b, 3c) as a factor 
interacting with condition, but observed no differences in dlPFC activity as either a main effect of 
sample (F2,101 = 2.15, p=0.12) or as a modifier of condition effects (F4,177 = 1.52, p=0.19). We thus 
report results collapsed across studies (but see Figure  4—figure supplement 2 for visualizations 
of results separated by study). As predicted by the simulations (Figure 4f), this analysis revealed a 
significant effect of condition on dlPFC response (F2,177 = 4.11, p=0.02). Follow-up t-tests confirmed 
the predicted direction of dlPFC activation (Figure 4i). BOLD response during healthy compared to 
unhealthy choices was significantly greater in the Natural condition for the dlPFC (paired-t100=2.35, 
p=0.02, Cohen’s d=0.24, within-condition comparison). As predicted, in the Health condition, healthy 
vs. unhealthy choices elicited comparable dlPFC responses (paired-t97=0.86, p=0.39, Cohen’s d=0.09, 
within-condition comparison) and even showed a trend toward greater activity for unhealthy choices. 
Importantly, the reduction of the difference in activity during healthy vs. unhealthy choices between 
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Natural and Health conditions was significant (paired-t93=2.58, p=0.01, Cohen’s d=0.27). Response for 
healthy vs. unhealthy choice in the Taste condition lay in between these two extremes, as predicted 
by the model. While the comparison of healthy vs. unhealthy choices in the Health vs. Taste condition 
was not significant (paired-t97=1.35, p=0.18, Cohen’s d=0.15), we attribute this discrepancy to the 
fact that the Taste condition had very few healthy choices per individual. Thus, the comparison of 
healthy vs. unhealthy choices was significantly noisier to estimate, and based on a smaller number of 
subjects (N=84). Nevertheless, our primary hypothesis was confirmed: in the same individuals, healthy 
choices could be accompanied by higher activation in brain regions typically associated with cognitive 
control (when goals naturally emphasized hedonism), or matched or even lower activation (when goals 
emphasized health norms). Supplemental whole-brain analyses confirmed that this pattern of results 
was specific to the dlPFC and other regions associated with the DDM (see Appendix 4—figures 1 
and 2, and Supplementary file 4 for details).

Absence of regulatory effects in the absence of conflict (Dataset 3)
Our analyses so far focused on conflict trials, since simulations suggest that these trials show the 
biggest differences as a function of attribute weights (Figure  2). The design of Dataset 3, which 
included a subset of trials with no attribute conflict, also allowed us to test one further prediction of 
the DDM. In Observation 3, we found that normative choices should be associated with increased 
neural activity when hedonic and normative attributes conflict but the reverse when they do not 
(Figure 2d). Moreover, the DDM suggests little to no differences in response across goal contexts 
favoring hedonism or health norms. This suggests that, in contrast to conflicted choices, there should 
be less effect of regulatory focus on dlPFC response during no-conflict choices.

To test this prediction, we first performed a one-way repeated-measures ANOVA with condition 
(Natural, Taste, Health) as a fixed effect and the average BOLD in the dlPFC for the contrast of healthy 
vs. unhealthy choice as the dependent variable, focusing only on the subset of trials with no-conflict 
between tastiness and healthiness of a food (i.e., when the value of the option was positive or nega-
tive for both). As before, we also included sample (3a, 3b, 3c) as a factor in this analysis. Because we 
found a non-significant difference across studies in dlPFC response during unconflicted trials (F4,209 = 
2.26, p=0.06), we report the results for Dataset 3 below collapsed across samples. As predicted, when 
examining only non-conflict trials, there was no significant influence of regulatory condition on the 
difference in neural activity between healthy and unhealthy choice (F2,213 = 0.357, p=0.7). Given this 
lack of effect across conditions, we averaged the three conditions together to analyze the main effect 
of healthy vs. unhealthy choice. This analysis indicated that healthy choices were accompanied by a 
non-significantly lower response in this region (paired-t104=0.21, p=0.84, Cohen’s d=0.02). In other 
words, as expected from model simulations (Figure 2d), activation in the dlPFC for normative choices 
when normative and hedonic attributes did not conflict is generally low, and shows no significant 
effect of regulatory focus.

Discussion
When and why do normative choices – which conform to abstract standards and social rules – recruit 
regions associated with cognitive control like the dlPFC? Simulated activity from an attribute-based 
DDM suggests a straightforward answer: normative behavior may only trigger the dlPFC when norma-
tive attributes conflict with hedonic ones, and the decision maker values hedonic attributes more. 
Across three separate fMRI datasets and two different choice domains (generosity and healthy eating), 
we show several results that confirm predictions of the DDM. First, we show that activation in the 
dlPFC correlates consistently with predicted neural responses of the DDM across all contexts exam-
ined. Second, we show that even in individuals who show a natural bias toward selfishness, regulatory 
instructions to focus on socially normative attributes increase generosity, but reduce dlPFC response 
when choosing generously. Third, this pattern replicated in the domain of healthy eating, suggesting 
a general principle that may apply across a variety of self-control dilemmas. Our results provide empir-
ical support for recent theories positing that successful self-control – defined as choosing long-term 
or abstract benefits over hedonic, immediate gratification (Duckworth, 2011) – depends importantly 
on value computations. They stand in contrast to the predictions of models of posterior dlPFC func-
tion suggesting that the strength with which the dlPFC activates during choice determines whether 
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prepotent hedonistic responses are resisted (Lopez et al., 2014; Kelley et al., 2015; Wagner et al., 
2013; Hofmann et al., 2009). Our results point to a modified conceptualization of the role played by 
the dlPFC in promoting normative choice.

A large literature, generally consistent with models that assume normative behavior requires 
controlled processing, suggests that the dlPFC activates when prepotent responses conflict with 
desired normative outcomes (Aron et al., 2004; Garavan et al., 1999). The neural activity in the DDM, 
which arises from evidence accumulation signals, is in some ways consistent with such an interpreta-
tion. However, it calls into question assumptions that prepotency equates to hedonism, or even to 
automaticity (Bargh, 1994) more generally. Instead, our model suggests that the ‘prepotent response’ 
may correspond, at least in the realm of value-based decision making, to choices consistent with the 
choice attribute that is currently receiving higher weight, regardless of the source of that weight. In 
other words, even when higher weights on normative attributes derive primarily from a deliberative, 
regulatory focus, as in our final two datasets (Hare et al., 2011a; Tusche and Hutcherson, 2018; 
Schmidt et al., 2018), this yields reduced activity in the dlPFC when making normative choices. Mech-
anistically, these patterns result from the fact that higher weights on normative attributes reduce the 
computation required for neural accumulation signals to trigger a normative response. Thus, while 
virtuous choices associated with successful self-control may sometimes recruit the posterior dlPFC, 
manipulations that increase the weight on normative attributes, either by making it more salient in the 
exogenous environment or focusing endogenous attention toward it, should both promote normative 
behavior and make it easier to accomplish.

This observation may help to explain why some researchers have found evidence consistent with 
greater response in the dlPFC promoting normative choice (Hare et al., 2009; Cutler and Campbell-
Meiklejohn, 2019; Hare et al., 2011a; Ruff et al., 2013; Hakimi and Hare, 2015; Baumgartner 
et al., 2011), while others have not (Zaki and Mitchell, 2011; Tusche et al., 2016; Magen et al., 
2014). Variations that influence the weight on normative attributes – whether across individuals, goal 
contexts, or paradigms – will tend to reduce statistical significance and increase heterogeneity in the 
link between neural activation in the dlPFC and normative choice. Fortunately, our model provides a 
way to predict both when and why dlPFC activity will be observed. For example, in the domain of inter-
temporal choice, our model predicts that making future outcomes more salient should amplify their 
weight in the choice process, promoting patience while decreasing dlPFC activation. This is exactly 
what is observed empirically (Magen et al., 2014). Thus, researchers would do well to interpret activa-
tion of the dlPFC for a particular kind of choice (be it generous or selfish, healthy or unhealthy, patient 
or impatient) with caution. Such a pattern may say less about whether the dlPFC (and by extension, 
cognitive control more generally) is required to inhibit instinctual responses and preferences, and 
more about what kinds of attributes are most salient or valuable at the moment.

Our results have important implications for theories of self-control suggesting that the dlPFC 
promotes self-control by modulating attribute weights in the choice process (Hare et  al., 2009; 
Baumgartner et al., 2011; Rudorf and Hare, 2014). The region of dlPFC that correlated with the 
DDM in our datasets is nearly identical to areas previously found when dieters made healthy compared 
to unhealthy choices (Hare et al., 2009), and when participants were required to recompute values 
based on contextual information (Rudorf and Hare, 2014). Yet, we find that the relationship between 
self-control ‘success’ and ‘failure’ in this region attenuates when participants actively focus on health: 
dlPFC now responds non-significantly more strongly to unhealthy choices. These results thus seem 
incongruent with the notion that this area down-regulates weight on norm-inconsistent considerations 
and up-regulates norm-consistent ones, since we observed decreased responses in this area in the 
context of increased normative choice and increased weight on normative attributes (Figure 4, c.f. 
Tusche and Hutcherson, 2018). Instead, this region appeared to correlate with the evidence accumu-
lation stage of decisions, rather than with the evidence construction stage, responding during deci-
sion conflict generally, regardless of whether that conflict derived from greater weighting of hedonic 
or normative attributes.

We emphasize, however, that our results and conclusions apply narrowly to the area of dlPFC exam-
ined here. The evidence accumulation-related dlPFC region in this study, which also corresponds to 
the area identified by the meta-analytic ‘inhibitory control’, lies posterior and dorsal to another dlPFC 
area that we have observed, in these same datasets, to track hedonistic and normative attributes 
in a goal-consistent manner and to serve as a candidate for mediating regulation-induced changes 
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(Tusche and Hutcherson, 2018). Furthermore, gray matter volume in this more anterior dlPFC area, 
but not in the posterior dlPFC region identified here, correlates with regulatory success (Schmidt 
et al., 2018). Thus, while some areas of the dlPFC may indeed play an important role in promoting 
self-regulation and normative behavior by altering attribute weights in decision value, we suspect that 
they are anatomically and computationally distinct from the region of the posterior dlPFC sometimes 
assumed to serve this role. Future work will be needed to better delineate subregions of the dlPFC, 
and to determine the unique role each one plays in promoting normative choices.

The correspondence between predictions of the DDM and activation patterns in the dlPFC makes 
it tempting to conclude that this region performs this computational function. While this hypothesis 
is consistent with results from single-cell recordings (Hanks et  al., 2015; Hunt et  al., 2018), we 
also acknowledge that the dlPFC has been associated with many computational functions and roles, 
not all of which are mutually incompatible. Thus, it is possible that the dlPFC region observed here 
performs some sort of process that is correlated with, but not identical to, the neuronal computations 
of the DDM. Indeed, although we found that dlPFC responses mostly conformed to predictions of 
the DDM, we also found a few notable divergences. For example, during unconflicted trials, the DDM 
predicts that hedonistic choices should be strongly associated with greater activity than normative 
choices. While we observed a weak effect in this direction in Dataset 3 (the only dataset in which 
this prediction could be tested), it was not significant. Similarly, in Dataset 2, the DDM predicted 
that the comparison of generous vs. selfish choices should be lower when focused on one’s partner 
compared to when focusing on ethics, while the empirical data showed no difference. While some of 
these discrepancies could be due simply to the noisiness inherent to fMRI (especially in studies that 
were originally designed to address other questions), it is also possible that they serve as clues that 
the computational function of the dlPFC may be strongly correlated with, but importantly distinct 
from, the evidence accumulation process itself. Future work, including computational modifications or 
additions to the DDM, and recordings from other modalities like EEG or intracranial recordings (Hunt 
et al., 2018), may help to elucidate the precise computational functions served by this area and the 
ways in which it promotes adaptive choice and normative behavior. Our work serves to highlight the 
value of computational models for understanding the neural and psychological computations involved 
in self-control (Tusche and Bas, 2021). Work extending these findings to other domains of normative 
choice, such as moral decision making or intertemporal choice, may also help to identify the common-
alities and differences across different self-control dilemmas.

Methods
Computational model simulations
Our attribute value-based DDM (Figure  1) assumes that brain areas involved in decision making 
(particularly those that convert preferences into action) demonstrate activity that correlates with an 
evidence accumulation process shaped by the weighted value of attributes on each trial. A choice 
results at time t’, the first moment at which the accumulated evidence signal EA exceeds one of two 
predetermined thresholds or barriers ±B. The total RT is t’ plus a constant non-decision time (ndt) 
that accounts for perceptual and motor delays. The instantaneous evidence accumulation signal EAt 
represents the amount of information favoring choice of one option over another at time t and is 
captured by the equation

	﻿‍
EAt = EAt−1 +

∑
i

(
wiAttrib1

i − wiAttrib2
i

)
+ C + εt‍�

where ‍Attrib1
i ‍ represents the value of option 1 for attribute i, C represents a constant bias in the drift 

which is positive (negative) for consistent biases toward option 1 (option 2), and ‍εt‍ represents instan-
taneous Gaussian noise distributed as ~N(0, 0.1) in simulations. In our simulations, we assumed two 
independent attributes: one related to hedonism (e.g., tastiness of a food) and one related to norms 
and standards (e.g., healthiness), although in principle any number and type of attribute could occur. 
Using these equations allowed us to simulate the dynamically evolving evidence accumulation signal, 
and to derive distributions of both RTs and neural response, which we assumed was proportional to 
the total accumulated evidence summed over the time of the decision (i.e., 

‍

∑
t

��EAt
��
‍
). We label the 
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final output (i.e., choice) of the system as ‘normative’ if it results in selecting the option with the higher 
unweighted value for the normative attribute (e.g., the option with higher healthiness).

To simulate everyday self-control dilemmas using this framework, we simulated choices between 
two options representing different combinations of hedonistic and normative attributes, allowing the 
relative value difference between an option and its alternative on a given attribute to vary inde-
pendently in the arbitrarily chosen range [-3,–2, …+2,+3]. This permitted us to explore how the likeli-
hood of a normative choice changes depending on how much better or worse one of the two options 
is along hedonic and normative attribute dimensions, as well as what happens when the relative values 
of the two attributes conflict (i.e., take opposite signs) or do not.

Our simulations also sought to capture the notion that a decision maker can vary from moment to 
moment in their commitment to and desire for hedonistic vs. normative goals. For example, a dieter 
may begin to relax the importance they place on norm-consistent attributes like healthiness once 
they reach their target weight, resulting in more unhealthy choices. In the main text (and Figure 2), 
we describe simulations for four different goal contexts with different asymmetric combinations of 
weights: two had higher weights on tastiness, a hedonic attribute (i.e., wT = 0.05, wH = 0.02, and wT 
= 0.04, wH = 0.03) and two with higher weights on healthiness, a normative attribute (wT = 0.03, wH = 
0.04, and wT = 0.02, wH = 0.05). For simplicity, we assumed that all choices used a choice-determining 
threshold ±B = 0.15, selected to produce RTs in the range typically observed in human subjects. 
Thus, for illustration purposes, we simulated a decision maker in four different contexts with different 
weights on the two attributes, facing 49 distinct choices representing different combinations of attri-
bute values. To ensure that our conclusions held across a variety of weights, we also simulated an 
additional 32 different goal contexts, fully covering the factorial combination of weights on wT and wH 
in the range of 0–0.05 (0.01 increments). Using these values and weights, we simulated hedonistic and 
normative choice frequencies, total neural activation, and RTs for each of the different hypothetical 
option pairs/attribute combinations, probing the effects of attribute weights, attribute magnitudes, 
and attribute conflict (i.e., match or mismatch between the signs of normative and hedonic attribute). 
The results of these simulations are displayed in Figure 2. Code is available at https://osf.io/eqvwd/.

Experimental datasets
To test predictions of the DDM, we re-analyzed existing choice task data. Details about portions of 
Datasets 1, 2, and 3, as well as neuroimaging parameters, have been reported previously (Hare et al., 
2011a; Tusche and Hutcherson, 2018; Hutcherson et al., 2015; Schmidt et al., 2018). Here, we 
highlight in brief the most important details for the current work.

Participants
For Dataset 130, we analyzed data from a study with 51 male volunteers (mean age 22). For Dataset 222, 
we analyzed data from a study with 49 volunteers (26 male, mean age 28, range 19–40). For Dataset 3, 
we combined data from three studies using a dietary choice task (Study 3a22 N=36 individuals, mean 
age 29 from Dataset 2 returning to the lab for a separate session on a separate day; Study 3b6 N=33 
individuals, mean age 24.8; Study 3c31 N=44 individuals, mean age 24.8). Caltech’s Internal Review 
Board approved all procedures for Dataset 1, Dataset 2, and Studies 3a and 3b of Datasets 3. The 
Internal Review Board at INSEAD approved all procedures for Study 3c. Participants in all studies 
provided informed consent prior to participation.

Tasks and stimuli
Altruistic Choice Task (Datasets 1 and 2). We examined self-control dilemmas pitting self-interest 
against generosity using an Altruistic Choice Task for Datasets 1 and 2. On every trial in the fMRI 
scanner, the participant chose between a proposed pair of monetary prizes for herself and a real 
but anonymous partner, or a constant default prize-pair for both ($50 in Dataset 1, $20 in Dataset 2) 
(Figure 3a–b). Proposed prizes in the prize-pair varied from $0 to $100 in Dataset 1 and $0 to $40 in 
Dataset 2, and always involved one individual receiving an amount less than or equal to the default, 
while the other individual received more. Thus, on every trial, the participant had to choose between 
generous behavior (benefitting the other at a cost to oneself) and selfish behavior (benefitting oneself 
at a cost to the other).

https://doi.org/10.7554/eLife.65661
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Upon presentation of the proposal, participants had up to four seconds to indicate their choice 
using a 4-point scale (Strong No, No, Yes, Strong Yes), allowing us to simultaneously measure both 
their decision and strength of preference at the time of choice. The direction of increasing preference 
(right-to-left or left-to-right) varied for each round of the task in Dataset 1, and across participants in 
Dataset 2. If the subject did not respond within 4 s, both individuals received $0 for that trial.

To increase the anonymity of choices, the participant’s choice was implemented probabilistically: 
in 60% of trials, she received his chosen option, while in 40% of trials, her choice was reversed and 
she received the alternative, non-chosen option. This reversal meant that while it was always in the 
participant’s best interest to choose according to her true preferences, her partner could never be 
sure about the actual choice made. Probabilistic implementation does not strongly influence the 
choices participants make (Tusche and Hutcherson, 2018; Hutcherson et al., 2015), but permits 
more plausible anonymity, increasing the self-control challenge involved in choosing generously. The 
participants were informed that the passive partners were aware of the probabilistic implementation, 
and the outcome was revealed on every trial 2–4 s following the response. At the end of the task, one 
trial was randomly selected and implemented according to the participant’s choice in the selected 
trial.

Dataset 1 included 180 trials total, with no specific instructions for how to respond. Dataset 2 
included 270 trials, 90 each in three instructed focus conditions (Figure 3b). See the Manipulating 
normative goals (Datasets 2 and 3) section below for details on these instructions.

Dietary Choice Task (Dataset 3): We examined self-control dilemmas in a second context pitting 
hedonism against healthy eating using a Dietary Choice Task for Dataset 3. Sample 3a was collected 
in our laboratory and completed on a subset of participants from Dataset 2. Samples 3b and 3c 
were collected in other research labs, but had nearly identical structure. We thus describe common 
elements among all tasks, highlighting minor differences where relevant.

Prior to the main choice task, participants rated a set of different foods for their healthiness and 
tastiness (200 foods in Study 3a, 180 in Studies 3b and 3c). For Study 3a, these ratings were used to 
select a pool of 90 foods that covered a range of health and taste ratings. For all three studies, they 
were used to select a neutral reference food rated as neutral on both health and taste. This neutral 
food served as individuals’ default option for each choice (similar to the monetary default option in 
the Altruistic Choice Task).

On each trial in the fMRI scanner (270 trials in Study 3a, 180 in Studies 3b–c), participants saw one 
selected food (Figure 3c) and had to decide whether they would prefer to eat the displayed food 
or the reference food. As in the Altruistic Choice Task, participants had up to 4 s in Study 3a and 3 s 
in Studies 3b–c to indicate their choice using a 4-point scale (Strong No, No, Yes, Strong Yes). If the 
subject did not respond within the time limit, one of the foods was selected randomly. To match the 
instructed goal manipulation used in the Altruistic Choice Task, participants completed trials each in 
one of three instructed focus conditions (90 trials per condition in Study 3a, 60 trials per condition in 
Studies 3b–c). See the Manipulating normative goals (Datasets 2 and 3) section below for details. In 
all three studies, one trial was randomly selected at the end and implemented.

In Study 3a, to match the probabilistic outcome used in the Altruistic Choice Task, the partic-
ipant’s choice was also implemented probabilistically in the Food Choice Task. In 60% of trials, 
participants received the chosen option, while in 40% of trials the choice was reversed and she 
received the alternative, non-chosen option. To reduce the length of the task, participants did not 
see this outcome on every trial. Instead, three trials were selected randomly at the end of each 
scan, and participants viewed their choice as well as the probabilistic outcome on that trial. In 
Studies 3b–c participants simply received their choice on a randomly chosen trial at the end of the 
experiment.

Manipulating normative goals (Datasets 2 and 3)
Our computational model simulations suggested that the extent to which normative choices are 
associated with greater neural response depends to a large extent on the priority or weight given 
to normative vs. hedonic attributes. We thus capitalized on the design of Datasets 2 and 3, which 
manipulated attention to different attributes (and corresponding weights), allowing us to test specific 
predictions of the DDM.

https://doi.org/10.7554/eLife.65661
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Manipulation of altruistic goals (Dataset 2)
To manipulate attention to different attributes, during the Altruistic Choice Task in Dataset 2, partic-
ipants completed trials in three instructed focus conditions: Respond Naturally, Focus on Ethics, and 
Focus on Partner. During Natural trials, participants were told to allow whatever feelings and thoughts 
came most naturally to mind, and to just choose according to their preferences on that trial. During 
Ethics trials, participants were asked to focus on doing the right thing during their choices. They were 
encouraged to think about the justice of their choice, as well as its ethical or moral implications, and 
to try to bring their actions in line with these considerations. During Partner trials, participants were 
asked to focus on their partner’s feelings during their choices. They were encouraged to think about 
how the other person would be affected, as well as whether they would be happy with the choice, and 
to bring their actions in line with these considerations.

Each participant completed 90 trials per condition, presented in randomly interleaved blocks of 
10 trials. A detailed set of instructions informing participants of their task for the upcoming block of 
trials was presented for 4 s prior to the block, and participants were asked to focus on the specific 
instruction for all trials within that block.

Manipulation of health goals (Dataset 3)
Analogous to the Altruistic Choice Task in Dataset 2, healthy eating was manipulated in three exper-
iments (Studies 3a–c) using an instructed focus manipulation. Each participant completed all three 
attentional conditions (90 trials per condition in Study 3a, 60 trials per condition in Studies 3b–c, 
randomly interleaved blocks): Natural Focus, Taste Focus, or Health Focus. During Natural trials, partic-
ipants were told to allow whatever feelings and thoughts came most naturally to mind and to choose 
according to their preferences on that trial. During Taste trials, participants were asked to focus on 
how tasty each food was and try to bring their actions in line with this consideration. During Health 
trials, participants were asked to focus on the health implications of their choice. As in the Altruistic 
Choice Task, attentional instructions were given prior to each block of 10 trials, and participants were 
asked to focus on the specific instruction given for all trials within a block. However, participants knew 
that they would receive the outcome of one of their choices and were told that they should choose 
according to their preferences regardless of the instruction, thus encouraging participants to choose 
in a way that reflected their current decision value for the item.

Defining normative choice
Behavioral definition of generosity
All choices involved a tradeoff between maximizing outcomes for the self or the other. We there-
fore label specific decisions as normative (i.e., generous) if the participant accepted a proposal when 
$Self < $Other or rejected one when $Self > $Other. Choices were labeled as hedonistic (i.e., selfish) 
otherwise.

Behavioral definition of healthy choice
In the Dietary Choice Task, we separately examined trials requiring a tradeoff between taste and 
health (i.e., conflict trials where a food was rated either as healthy but not tasty, or as unhealthy but 
tasty) as well as trials with no tradeoff (i.e., no-conflict trials where a food was both tasty and healthy, 
or both unhealthy and not tasty). In both cases, we label specific decisions as normative (i.e., healthy) 
if the participant either accepted a healthy food or rejected an unhealthy food. All other choices were 
labeled as hedonistic (i.e., unhealthy).

Computational model fitting
We used a Bayesian model-fitting approach to identify the best-fitting model parameters of the DDM 
(i.e., attribute-specific weight parameters W, a drift constant C, threshold B, and non-decision time 
ndt) to account for choices and RTs, separately for each participant in each study and each condition 
in Datasets 2 and 3. More specifically, we obtained estimates of the posterior distribution of each 
parameter using the differentially evolving Monte-Carlo Markov chain sampling method and MATLAB 
(MATLAB, 2016) code developed by Holmes and Trueblood, 2018. This method uses the DDM 
described above (computational model simulations) to simulate the likelihood of the observed data 
(i.e., choices and RTs) given a specific combination of parameters. We then used this likelihood to 
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construct a Bayesian estimate of the posterior distribution of the likelihood of the parameters given 
the data.

For each individual fit, we used 3 × N chains, where N is the number of free parameters (6 in 
Datasets 1 and 2, 5 in Dataset 3), using uninformative, uniformly distributed priors and constraining 
parameter values as shown in Supplementary file 1 based on previous work (Tusche and Hutch-
erson, 2018; Hutcherson et al., 2015) and theoretical bounds. To construct the estimated posterior 
distributions of each parameter, we sampled 1500 iterations per chain after an initial burn-in period 
of 500 samples. Best-fitting values of each parameter were computed as the mean over the posterior 
distribution for that parameter. These parameter values (see Supplementary file 1) were used to 
simulate trial-by-trial neural activation for use in the GLMs described below. Importantly, parameter 
values identified by this fitting procedure suggested that the model provided a good fit to behavior 
across all three datasets (Figure 4—figure supplement 1). The analysis of the values of individual 
chains using the Gelman-Rubin statistic (Gelman and Rubin, 1992) indicated good convergence to 
the posterior distribution for each parameter (all ‍R < 1.05‍).

Neuroimaging analyses
GLM 1a: Neural Correlates of the DDM (Dataset 1). We used GLM 1a to identify brain regions where 
activation varied parametrically according to the predictions of the DDM in Dataset 1 (Altruistic Choice 
Task). We hypothesized that this analysis would identify brain areas such as the dlPFC commonly asso-
ciated with cognitive control and provide further data-driven support for the independent dlPFC-ROI. 
For each trial, we determined the BOLD approximation of the DDM as the value consisting of the 
sum total of the simulated neural response, averaged over all simulations terminating in the observed 
choice on that trial within ±250 ms of the observed RT. This estimate was then used as a parametric 
regressor, modulating a boxcar function with onset at the beginning of the choice period and having 
a duration of the RT on that trial (see Appendix 1 for further detail on selecting the best regressor). 
To simulate expected DDM activation on each trial, we generated 10,000 simulations using the best-
fitting parameters for each participant and the estimated value of the proposal and default on each 
trial (i.e., wSelf*$Self + wOther*$Other + wFairness*|$Self − $Other|+C).

Then, for each subject, we estimated a GLM with AR(1) and the following regressors of interest: 
(R1) A boxcar function for the choice period on all trials (duration = RT on that trial). (R2) R1 modulated 
by the subject’s stated preference on that trial (1=Strong No, 4=Strong Yes). (R3) R1 modulated by the 
estimated activation of the DDM on that trial. (R4) A boxcar function of 3 s specifying the outcome 
period on each trial. (R5) R4 modulated by the outcome for the self on each trial. (R6) R4 modulated 
by the outcome for the partner on each trial. (R7) A boxcar function (duration = 4 s) specifying missed 
trials. Parametric modulators were orthogonalized to each other in SPM (https://www.fil.ion.ucl.ac.uk/​
spm/). Regressors of non-interest included six motion regressors as well as session constants.

We then computed subject-level contrasts of the DDM parametric modulator (R3) against an 
implicit baseline. Finally, to test the hypothesis that DDM responses might correlate with activation 
in the dlPFC at the group level, we subjected this contrast to a one-sample t-test against zero (as 
implemented in SPM), thresholded at a whole-brain cluster-corrected value of p<0.05, using a cluster-
defining threshold of p<0.001.

GLM 1b: Neural correlates of the DDM (Dataset 2)
GLM1b was similar to GLM1a, except that we estimated regressors for each goal condition separately. 
R1, R4, and R7 were boxcar functions representing the choice period for the Natural, Ethics, and 
Partner conditions, respectively. R2, R5, and R8 modulated R1, R4, and R7 with the decision value on 
that trial. R3, R6, and R9 modulated R1, R4, and R7 using the estimated activation of the DDM on that 
trial. A single contrast representing neural correlates of the DDM was constructed by combining R3, 
R6, and R9 at the subject-level and performing a one-sample t-test against zero. We report results, 
thresholded at a voxel-wise p<0.001 and a whole-brain cluster-corrected level of p<0.05.

GLM1c: Neural correlates of the DDM (Dataset 3)
GLM1c was similar to GLM1b but applied to the Food Choice Task in Studies 3a–c. R1, R4, and 
R7 were boxcar functions representing Natural, Taste, and Health focus conditions. R2, R5, and R8 
were parametric modulators representing the decision value on that trial, and R3, R6, and R9 were 
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modulators consisting of the estimated DDM activity on that trial. Correlates of the DDM were iden-
tified in this study thresholded at a voxel-wise p<0.001 and a whole-brain cluster-corrected level of 
p<0.05.

GLM 2a: Generous vs. Selfish decisions in Altruistic Choice (Dataset 1). We used GLM 2a to test 
predictions about neural activation on trials in which subjects chose generously or selfishly. The anal-
ysis was carried out in two steps.

First, for each subject, we estimated a GLM with AR(1) and the following regressors of interest: (R1) 
A boxcar function for the choice period on trials when the subject chose selfishly. (R2) R1 modulated 
by the decision value of their 4-point preference response (i.e., Strong No to Strong Yes) at the time 
of choice. (R3) A boxcar function for the choice period on trials when the subject chose generously. 
(R4) R3 modulated by the decision value on that trial. Regressors of non-interest included six motion 
regressors as well as session constants.

Second, we computed the subject-level contrast image [R3 – R1], which identified brain regions 
with differential responses for generous compared to selfish choices. Seven subjects were excluded 
from this analysis for having fewer than 4 generous choices over the 180 trials. To test predictions of 
the DDM in regions previously associated with self-control, we conducted analyses of this contrast 
[Generous – Selfish] in several independently selected ROIs (see Independently defined ROIs section 
below). Independent ROIs helped avoid circular analysis and ‘double-dipping’ (Kriegeskorte et al., 
2009). We also report the results of these contrasts for two other brain areas (dACC, IFG/anIns) iden-
tified as correlating with predictions of the DDM at the whole-brain level across all three datasets (see 
Appendix 4 and Figure 4—figure supplements 5–6).

Finally, as a supplementary analysis, we examined if any voxels beyond the ROI regions demon-
strated a significant effect in any condition, using a whole-brain analysis thresholded at p<0.001, 
uncorrected (see Supplementary file 4).

GLM 2b: Generous vs. Selfish decisions in Altruistic Choice (Dataset 2). We used GLM 2b to test 
predictions about activation on trials in which the subject chose generously or selfishly in Dataset 2, 
and to compare how instructed attention altered these responses. GLM2b was similar to GLM2a, 
except that we estimated regressors for each goal condition separately. All unreported details match 
GLM2a. Regressors of interest consisted of the following: (R1) A boxcar function for the choice period 
on trials when the subject chose selfishly in Natural Focus trials. (R2) R1 modulated by the decision 
value of 4-point preference response (i.e., Strong No to Strong Yes) expressed at the time of choice. 
(R3) A boxcar function for the choice period on trials when the subject chose generously in Natural 
Focus trials. (R4) R3 modulated by the decision value. (R5–8) Analogous regressors for generous 
and selfish choices during Ethics Focus trials. (R9–12) Analogous regressors for generous and selfish 
choices during Partner Focus trials. (R13–15) A boxcar function of 3 s duration signaling the outcome 
period for Natural, Ethics, or Partner Focus trials. (R16–18) R13–15 modulated by the amount received 
by the subject at the outcome phase for Natural, Ethics, or Partner Focus trials. (R19–21) R13–15 
modulated by the amount received by the partner at the outcome phase for Natural, Ethics, or Partner 
Focus trials.

We then computed the subject-level contrast images [R3 – R1], [R7 – R5], and [R11 – R9], which 
identified regions with differential responses for generous compared to selfish choices in each goal 
condition. We computed the average value of each of these contrasts within the same ROIs specified 
above for GLM2a. As a supplementary analysis, we also asked whether any voxels beyond these 
regions demonstrated a significant effect in any condition, using a whole-brain analysis thresholded at 
p<0.001, uncorrected (see Supplementary file 4).

GLM 2c: Healthy vs. Unhealthy decisions in the Food Choice Task (Dataset 3). GLM 2c was analo-
gous to GLM 2b but examined healthy vs. unhealthy choices in the Dietary Choice Task, separately 
for conflicted trials (i.e., healthy but not tasty foods, or tasty but unhealthy foods) and for unconflicted 
trials (i.e., healthy and tasty foods, or unhealthy and not tasty foods). It included the following regres-
sors of interest: (R1) A boxcar function for the choice period when the subject made a healthy choice 
in Natural Focus trials with conflict. (R2) R1 modulated by the decision value of behaviorally expressed 
preference at the time of choice. (R3) A boxcar function for the choice period when the subject made 
an unhealthy choice in Natural trials with conflict. (R4) R3 modulated by the decision value on that 
trial. (R5–8) Analogous regressors for healthy and unhealthy choices during conflicted Taste Focus 
trials. (R9–12) Analogous regressors for healthy and unhealthy choices during conflicted Health Focus 
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trials. (R13) Healthy choices on unconflicted Natural Focus trials. (R14) Unhealthy choices on uncon-
flicted Natural Focus trials. (R15–16) R13 and R14 modulated by preference. (R17–20) Analogous 
regressors for healthy and unhealthy choice on unconflicted Health Focus trials. (R21–24) Analogous 
regressors for healthy and unhealthy choice on unconflicted Taste Focus trials. Subject-level contrast 
images of healthy vs. unhealthy choices, in each condition separately and separately for conflicted vs. 
unconflicted trials, were computed in a manner identical to GLM2b. We analyzed activation for these 
contrasts specifically within the independently defined ROIs described below. As a supplementary 
analysis, we also report results at the whole-brain level at p<0.001, uncorrected, in Supplementary 
file 4. Unreported details are as in GLM 2a.

Independently defined ROIs
Our primary hypothesis is that regions previously associated with self-control might actually be 
performing computations related to post-valuation evidence accumulation, rather than pre-valuation 
modulation of attribute weights. Although our DDM neural results at the whole-brain level confirmed 
that activation in the dlPFC correlated with the DDM, we sought to avoid circularity by testing our 
primary predictions about dlPFC activation in ROIs defined independently of the main contrast. 
Toward this end, we tested activation in three ROIs. As our primary ROI, we created a left dlPFC ROI 
by defining a region associated with the term ‘inhibitory control’ in the meta-analytic database Neuro-
Query, thresholded at Z=5 (see Figure 4, top panel, blue region). To examine the specificity of our 
dlPFC results for the right vs. left hemisphere, in a supplemental analysis (see Appendix 3), we flipped 
our dlPFC-ROI over the left-right axis (creating a second, bilaterally matched ROI). Finally, to provide 
further evidence for the robustness of our main results, we used a third independent-identified left 
dlPFC-ROI functionally defined by the contrast of healthy vs. unhealthy choice in a seminal fMRI study 
of dieters (Hare et al., 2009).
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3a, 3b, and 3c. Parameter values were estimated using a differential-evolution Markov chain Monte 
Carlo method developed by Holmes and Trueblood, 2018. Parameters beginning with w indicate 
weighting parameters applied to tastiness and healthiness vs. the default as well as a constant bias 
toward the displayed food. B: choice-defining threshold. ndt: non-decision time. A priori constraints 
on the parameters, determined based on previous work and on theoretical limits, restricted them 
to the range indicated. Columns indicated by different subscripts (a–c) differ significantly from each 
other at p < 0.05, corrected for multiple comparisons.

•  Supplementary file 3. Table S3. Neural correlates of the drift diffusion model (DDM) across 
datasets. Regions are reported at a voxel level of p < 0.001, uncorrected and a whole-brain FWE 
cluster-corrected level of p < 0.05, unless otherwise noted. * Distinct peak within larger cluster. † 
Significant at p < 0.005, uncorrected, reported for completeness.

•  Supplementary file 4. Table S4. Neural correlates of normative vs. hedonistic choice across 
datasets. Regions are reported at a voxel-level threshold of p < 0.001, uncorrected, and a minimum 
volume of k = 10 voxels, unless otherwise noted. * Significant at p < 0.005, uncorrected and 
minimum volume of k=20 voxels, reported for completeness. ** Distinct peak within larger cluster, 
reported for completeness.

•  Transparent reporting form 

Data availability
Analysis code, ROI masks, and behavioral data for all studies, as well as functional imaging data for 
Dataset 1, is available on the Open Science Framework at https://osf.io/eqvwd/. Functional imaging 
analysis data for Datasets 2 and 3a is available on the Open Science Framework at https://osf.io/​
wa4cs/. Functional imaging data for Dataset 3b is available at https://osf.io/3rne9/. Because it is part 
of a larger on-going study examining neural correlates of obesity, functional imaging data for Dataset 
3c is not yet publicly available. However, requests for access to raw neuroimaging data can be made 
by contacting Dr. Hilke Plassmann (https://www.insead.edu/faculty-research/faculty/hilke-plassmann). 
All pre-processed ROI data and computational modeling data used for analysis and to create figures 
is available on the Open Science Framework at https://osf.io/eqvwd/. These data serve as source data 
for Figure 4 in the main text, and Appendix Figures 2-5.
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Tusche A, Hutcherson 
C

2018 Cognitive regulation alters 
social and dietary choice 
by changing attribute 
representations in domain-
general and domain-
specific brain circuits

https://​osf.​io/​wa4cs/ Open Science Framework, 
wa4cs

Hutcherson C, Tusche 
A

2022 A neurocomputational 
model of normative choice

https://​osf.​io/​eqvwd/ Open Science Framework, 
eqvwd

Hutcherson C, Tusche 
A, Hare T

2022 Data repository: Focusing 
attention on the health 
aspects of foods changes 
value signals in vmPFC and 
improves dietary choice

https://​osf.​io/​3rne9/ Open Science Framework, 
3rne9
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Appendix 1
Choosing an appropriate fMRI regressor for the DDM model (GLMs 1a, 
b, and c)
The DDM produces a dynamic accumulation signal that builds over hundreds of milliseconds. This 
raises a question about the appropriate way to model this signal in the hemodynamic response, 
which evolves more slowly over 5–10 s. To determine the appropriate regressor for GLMs 1a, b, 
and c, we simulated 5000 instantiations of the DDM for every subject and trial in Dataset 2, using a 
time step of 5 ms. For each subject, we then averaged the 5000 simulations at each time point to 
produce a single time course of total activity for a given set of trials. We convolved this simulated 
time course with the canonical form of the hemodynamic response function (HRF) to construct an 
expected BOLD time series given the inputs. We refer to this as the ideal BOLD. We then compared 
the shape of the ideal BOLD to two different possible instantiations within a traditional GLM analysis 
in SPM. Version 1 consisted of a parametric modulator of a stick function placed at the onset of the 
trial, consisting of the total activity in the DDM for each trial, ‍

∑RT
t=1

��E (
t
)��

‍ . Version 2 consisted of a 
parametric modulator identical to Version 1, but modulating a boxcar function placed at the onset 
of the trial with a duration equal to RT for that trial. Each of these regressors was convolved with the 
canonical form of the HRF and correlated with the ideal time series to determine the one providing 
the closest match.

Results suggested that version 2 provided a closer match (Pearson’s r ranging from 0.90 to 0.99, 
average = 0.95) compared to version 1 (Pearson’s r ranging from 0.64 to 0.93, average = 0.82). 
Importantly, a parametric regressor consisting simply of the observed RT on each trial modulating 
a boxcar of duration equal to the RT also provided an excellent, and even slightly better, match 
(Pearson’s r ranging from 0.93 to 0.99, average = 0.97). We thus suspect that it might be difficult in 
practice to distinguish between computations related solely to the DDM from those related to RT. 
Note also that the inclusion of the unmodulated boxcar function with a duration equal to the RT 
on each trial controls for non-specific activation related to RTs that does not build over time in the 
manner expected based on the DDM, although this unmodulated regressor is itself highly correlated 
with the predicted BOLD signal from the DDM (average r=0.96). Despite this high correlation, 
simulations suggested that both the mean-centered DDM parametric modulator and the mean-
centered RT parametric modulator continue to show a significant association with the DDM-related 
BOLD signal even after including the unmodulated boxcar regressor in the model (both p<0.0001). 
Thus, we think that these two parametric modulators provide good markers of candidate regions for 
the evidence accumulation function.
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Appendix 1—figure 1. Simulating the dilemma of self-control using the attribute-based neural drift diffusion 
model (anDDM). (a) An evidence accumulation model (anDDM) can be used to simulate decision making for any 
self-control context requiring an integration of normative and hedonistic considerations (dietary choices displayed, 
integrating relative tastiness, and healthiness). (b) On average across multiple different goals, the likelihood of a 
healthy choice depends on the relative attribute values of one option vs. another, and is less likely when tastiness 
and healthiness conflict. Warmer colors indicate a higher likelihood of choosing the healthier option. (c) As with 
the DDM, specific goals prioritizing tastiness or prioritizing healthiness alter the frequency of healthy choice, 
although it still depends on the relative values of both tastiness and healthiness. Four example, decision makers 
with different weights on healthiness and tastiness are displayed for comparison. (d) The overall likelihood of a 
healthy choice (averaged separately for all combinations of conflict or no-conflict choices) depends on weights. 
Goals prioritizing tastiness (darker bars) produce fewer healthy choices than goals prioritizing healthiness (lighter 
bars), but only when tastiness and healthiness conflict. (e) The computational model can also simulate expected 
neural activity (i.e., aggregate activity in the two neuronal pools, summed over decision time: ) when choosing 
Appendix 1—figure 1 continued on next page
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healthy [H] or unhealthy [UH] options, as a function of relative option values and different goals. Bars display the 
overall difference in neural activity for H compared to UH choices for goals prioritizing tastiness (darker bars) 
and healthiness (lighter bars), divided as a function of attribute conflict. In no-conflict trials, healthy choices elicit 
less activity regardless of the goal (i.e., Activity H Activity UH), but only when goals prioritize tastiness. (f) Neural 
activation in the left dlPFC match estimates of the anDDM on that trial (displayed at p < 0.001, uncorrected in left 
and right-most images, p = 0.005, uncorrected in middle image). Blue region of interest (ROI) indicates the left 
dlPFC area identified as correlating with self-control using the meta-analytic database NeuroQuery (Dockès et al., 
2020).

Appendix 1—figure 1 continued
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Appendix 2
Alternative computational model specification (anDDM)
In the main paper, we used the canonical form of the DDM (Rudorf and Hare, 2014) to simulate 
choices, RTs, and neural response. However, other work( Hare et al., 2011b) by Hare and colleagues 
has proposed that accumulator activity is best described by a variant of this model, which we hereafter 
refer to as an anDDM. The anDDM reported on by Hare and colleagues has the advantage of being 
more neurobiologically plausible. However, because initial efforts to fit choices using this alternative 
specification of the choice process indicated relatively poorer convergence of key computational 
parameters (as measured by the Gelman-Rubin statistic, i.e., R-hat > 1.1 for several parameters), as 
well as issues in properly identifying the values of some of the parameters in this model, we opted 
in favor of describing results in terms of the simpler DDM in the main text. However, here, we show 
that results are similar for all key analyses if this more neurally plausible model is used instead.

Similar to the DDM, the anDDM assumes that the brain makes decisions through a process of 
value-based attribute integration and competition. However, in contrast to the DDM, which uses 
a single, one-dimensional evidence accumulation process, in the anDDM choices are resolved 
via evidence accumulation in two spatially intermingled populations of neurons representing the 
options under consideration (here denoted as Option 1 and Option 2), with instantaneous firing 
rates (FR) at time t of FR1(t) and FR2(t). At the beginning of the choice period FR1(0)=FR2(0)=0. In the 
version of this model reported on here, firing rates in each population evolve dynamically from the 
onset of choice based on the sum total of excitatory inputs (detailed below). A choice results at time 
t’, the first moment at which the firing rate of one of the two populations exceeds a predetermined 
threshold or barrier B. The total RT is t’ plus a constant non-decision time (ndt) that accounts for 
perceptual and motor delays (see Appendix 1—figure 1a).

Firing rates in the two pools evolve noisily over time according to the following two equations:

	﻿‍




FR1
(
t
)

= max
(
0,
(
v1 − v2

)
+ ε1

(
t
))

FR2
(
t
)

= max
(
0,
(
v2 − v1

)
+ ε2

(
t
))




‍�

where the noise terms ‍εx
(
t
)
‍ are normally distributed ~ N(0,.1), and ‍v1‍ and ‍v2‍ represent external 

inputs proportional to the overall values of Options 1 and 2, determined by the weighted sum of 
their choice-relevant attribute values:

	﻿‍
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

v1 =
∑

i wiAttrib1
i

v2 =
∑
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i


 .

‍�

Thus, each pool’s activity receives an external input proportional to its value relative to the other 
option. We also tested several variants of this basic neural model, including lateral inhibition between 
the two neuronal pools, recurrent excitation/inhibition of each pool onto itself, and raw rather than 
relative values (i.e., ‍v1‍ and ‍v2‍ rather than ‍v1‍ − ‍v2‍) as inputs to each neuronal pool. However, model-
fitting exercises generally indicated that the simpler model, with no lateral inhibition or recurrent 
excitation, provided the most parsimonious fit to the data, and that the values of parameters related 
to lateral inhibition and recurrent excitation showed poor identifiability. We thus proceeded with 
simulations of neural activity using the simple model with two independently evolving accumulators.

In our simulations, we assumed that value inputs to the accumulators depend on two independent 
attributes: one related to hedonism (e.g., tastiness of a food) and one related to norms and 
standards (e.g., healthiness), although in principle, any number and type of attribute could occur. 
Using these equations allowed us to simulate the dynamically evolving activation across the two 
neuronal populations, and to derive distributions of both response times (RTs) and neural response. 
As with the DDM, we label the final output (i.e., choice) of the system as ‘normative’ if it results in 
selecting the option with the higher unweighted value for the normative attribute (e.g., the option 
with higher healthiness).

To establish comparability between the predictions of the DDM and the anDDM, we focus here 
on two results described in the main text using the DDM: behavioral predictions and the neural 
prediction that activity in the dlPFC is associated with predicted response. To establish that the 
anDDM made similar behavioral predictions, we engaged in a similar set of simulation exercises as 
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in the main text, but substituting the anDDM model described above for the DDM. As expected, we 
observed nearly identical predictions of the anDDM regarding the relationship between choices, RTs, 
neural response, and the weights on hedonistic vs. virtuous attributes. To illustrate this comparability, 
we recreated Figure  2 of the main manuscript (which shows predictions of the DDM) using the 
anDDM (see Appendix 1—figure 1b-e).

Unsurprisingly, given the close correspondence of predictions, we found similar results both 
behaviorally and neurally when using the anDDM instead of the DDM to examine responses. When 
fitting the anDDM to choices, we found that weights on attributes correlated highly with weights 
identified using the DDM (r values ranging from 0.98 to 0.99). Furthermore, we found highly similar 
regions of the dlPFC in Datasets 1, 2, and 3 when using the anDDM’s predicted activity instead 
of the DDM in GLMs that were otherwise identical to GLMs 1a–c reported in the main text (see 
Appendix 1—figure 1). Thus, our conclusions are robust to alternative model specifications, and 
likely represent a general principle of decision making via evidence accumulation.
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Appendix 2—figure 1. BOLD responses in a left dorsolateral prefrontal cortex (dlPFC) region associated with 
self-control in dieters. Top (dlPFC): Trial-by-trial BOLD response in the dlPFC correlates significantly with predicted 
activity of the drift diffusion model (DDM) across three separate datasets. This includes responses during altruistic 
choice (a, b) and dietary choice (c). Hot colors display DDM-related responses thresholded for display purposes at 
p < 0.001 (a and c) and p < 0.005 (b), uncorrected. The location of this activity was anatomically similar to an area 
of the dlPFC associated with self-control in dieters (Hare et al., 2009) (green region of interest [ROI] displayed 
in each panel), which served as a supplementary ROI in which to test predictions of the computational model 
(d–i). Middle (Model Simulations): Given participants’ observed attribute weights, we simulated expected neural 
response during normative vs. hedonistic choice, using the DDM, for all trials in Dataset 1 (d), as well as separately 
for each condition in Dataset 2 (e) and Dataset 3 (f). Bottom (dlPFC Results): Within the independently defined 
Appendix 2—figure 1 continued on next page
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dlPFC ROI associated with self-control in dieters (green voxels in a–c), BOLD response during normative choice vs. 
hedonistic choice when attributes conflict, in (g) Dataset 1 (N = 50) for all trials, as well as in (h) Dataset 2 (N = 49) 
and (i) Dataset 3 (N = 113) as a function of regulatory goals. Regulatory goals were designed to decrease hedonic 
weights and increase normative weights on choice (Dataset 2: Ethics, Partner; Dataset 3: Health) or to put weights 
on hedonic attributes (Dataset 3: Taste). Only conflict trials are considered across datasets. As predicted, normative 
choices activate the dlPFC, but only when goals result in a greater weight on hedonistic than normative attributes. 
Contexts that increase normative attribute weights yield less dlPFC activity during normative choices (Dataset 
2: Ethics, Partner; Dataset 3: Health). *p < 0.05 based on one-sample t-tests against 0, or paired-tests between 
conditions; **p < 0.01. Error bars show standard error of the mean.

Appendix 2—figure 1 continued
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Appendix 3

Alternative ROI specifications
Left dlPFC region associated with self-control in dieters
In the main paper, we tested predictions of the DDM for the comparison of normative vs. hedonistic 
choice across our three datasets using an independent ROI based on a NeuroQuery (Lopez et al., 
2014) meta-analysis of inhibitory control. This ROI has the advantage of being based on activation 
across hundreds of studies and thousands of participants covering a variety of domains, as well as 
being linguistically associated with one of the key terms of interest from self-control (i.e., inhibitory 
control). However, alternative specifications of the dlPFC are possible. Here, we report the results 
of a second, alternative ROI, based on the results of a comparison of healthy vs. unhealthy food 
choices (thresholded at a voxel-level p=0.001, see Appendix 2—figure 1, green ROI) in a seminal 
study examining self-control success vs. failure (i.e., healthy vs. unhealthy choice) in dieters (N=371). 
(We thank Todd Hare for generously sharing a mask of this ROI with us.)

In Dataset 1 (unregulated altruistic choice), we replicated the result from the main manuscript 
that the dlPFC is more activated on generous compared to selfish choices (t43=2.09, p=0.04, 
Appendix 2—figure 1g), and similarly observed a marginally significant correlation with difference 
in weights on self vs. other (r=–0.27, p=0.08).

In Dataset 2, we replicated our observation that condition (Natural, Ethics, Partner) had a 
significant effect on the contrast of generous vs. selfish choices in this ROI (F2,96 = 6.63, p=0.002, 
Appendix 2—figure 1h), and confirmed that this was due to a significant difference in generous vs. 
selfish choices in the Natural condition (paired-t48=3.42, p=0.001) that disappeared in each of the 
other two conditions (G vs. S choice in Ethics vs. Natural paired-t48=3.59, p=0.001; G vs. S choice in 
Partner vs. Natural paired-t48=2.93, p=0.001).

Finally, we tested predictions in Dataset 3. While the repeated-measures of ANOVA of the 
effect of condition on healthy vs. unhealthy choice fell short of significance (F2,177 = 2.32, p=0.099, 
Appendix 2—figure 1i), planned post hoc comparisons showed similar effects to the ROI reported 
in the main paper. Healthy choices were associated with significantly greater activity than unhealthy 
choices in the Natural condition (paired-t100=2.34, p=0.02). However, this difference disappeared 
in the Health-focused condition (paired-t100=0.32, p=0.75), a drop that differed significantly from 
Natural trials (H vs. UH choice in Health vs. Natural trials paired-t93=1.98, p=0.05). As with the meta-
analytic ROI reported in the main paper, the contrast of healthy vs. unhealthy choices in the Taste 
condition was positive but non-significant, lay in between Natural and Health conditions, and did not 
differ significantly from either (both p>0.27).

Right dlPFC equivalent of the left dlPFC NeuroQuery ROI
Although our results have so far focused on left-hemisphere ROIs, we also sought to determine 
whether our results were comparable in the right hemisphere. Toward this end, we mirrored the 
NeuroQuery ROI used in the main manuscript over the midline, and performed a similar set of 
analyses of normative vs. hedonistic choice within each dataset. Results largely replicated findings in 
the left dlPFC (see Appendix 3—figure 1).

In Dataset 1, we find a significant difference between generous and selfish choices in the right 
dlPFC (paired-t43=4.56, p=0.00004). This effect is actually stronger than the corresponding effect in 
the left dlPFC (paired-t43 of effect in right vs. left dlPFC = 4.15, p=0.0001). We similarly observed 
a marginally significant correlation with difference in weights on self vs. other (Pearson’s r=–0.27, 
p=0.08).

In Dataset 2, we replicated all of our main findings in the right dlPFC. In Natural trials, generous 
choices elicited significantly more activity than selfish choices (paired-t48=2.20, p=0.03). We also 
observe a significant effect of condition on this difference (F2,96 = 5.14, p=0.008). Unpacking this, we 
observed that generous compared to selfish choices evoked non-significantly higher activity in the 
Ethics Focus condition, a difference that is marginally different from Natural trials (paired-t48=1.81, 
p=0.04, one-tailed). In contrast, generous decisions in the Partner Focus condition evoke non-
significantly lower activity compared to selfish decisions (paired-t48=1.37, p=0.18), a difference which 
is significantly lower than Natural trials (paired-t48=2.89, p=0.006).

In Dataset 3, we find similar though somewhat weaker results in the right dlPFC than in the 
left dlPFC. Specifically, we find that in the right dlPFC, healthy choices elicit significantly greater 
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activity than unhealthy choices in Natural trials (paired-t100=1.79, p=0.04, one-tailed). We also find a 
marginally significant effect of condition on this effect (F2,181 = 2.63, p=0.07), driven by a significantly 
reduced difference between healthy and unhealthy choices in the Health Focus condition compared 
to both Natural trials (difference of differences t93=1.86, p=0.03, one-tailed) and, unexpectedly, to 
Taste trials (t83=1.69, p=0.05, one-tailed).
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Appendix 3—figure 1. BOLD responses in the right dorsolateral prefrontal cortex (dlPFC) during self-control 
dilemmas. Top (dlPFC): Trial-by-trial BOLD response in the right dlPFC correlates significantly with predicted 
activity of the drift diffusion model (DDM) across three separate datasets. This includes responses during altruistic 
choice (a, b) and dietary choice (c). Hot colors display DDM-related responses thresholded for display purposes 
at p < 0.001, uncorrected. The location of this activity is anatomically similar to an area of the left dlPFC, mirrored 
over the x-axis to the right hemisphere, and associated with inhibitory control in a meta-analysis Dockès et al., 
2020 (blue ROI displayed in each panel), which served as a supplementary region of interest (ROI) in which to test 
predictions of the computational model (d–i). Middle (Model Simulations): Given participants’ observed attribute 
weights, we simulated expected neural response during normative vs. hedonistic choice, using the DDM, for all 
trials in Dataset 1 (d), as well as separately for each condition in Dataset 2 (e) and Dataset 3 (f). Bottom (dlPFC 
Results): Within the independently defined right dlPFC ROI (blue voxels in a–c), BOLD response during normative 
choice vs. hedonistic choice when attributes conflict, in (g) Dataset 1 (N = 50) for all trials, as well as in (h) Dataset 2 
(N = 49) and (i) Dataset 3 (N = 113) as a function of regulatory goals. Regulatory goals were designed to decrease 
hedonic weights and increase normative weights on choice (Dataset 2: Ethics, Partner; Dataset 3: Health) or to put 
weights on hedonic attributes (Dataset 3: Taste). Only conflict trials are considered across datasets. As predicted, 
normative choices activate the dlPFC, but only when goals result in a greater weight on hedonistic than normative 
attributes. Contexts that increase normative attribute weights yield less dlPFC activity during normative choices 
(Dataset 2: Ethics, Partner; Dataset 3: Health). *p < 0.05 based on one-sample t-tests against 0, or paired-tests 
between conditions; **p < 0.01. Error bars show standard error of the mean.
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Appendix 4
Additional regions correlating with the DDM
In the main paper, we focus on the effects of normative vs. hedonistic choice within the 
independent dlPFC ROI defined by a region associated with the term ‘inhibitory control’ in the 
meta-analytic database NeuroQuery. We also ran supplemental whole-brain analyses to identify 
other brain areas whose activity correlated with the DDM across all three datasets. In addition to 
the dlPFC, we identified two other regions in this data-driven analysis approach: the dACC (see 
Appendix 4—figure 1) and right IFG/aIns (see Appendix 4—figure 2) whose activity correlated 
with the DDM across all three datasets (p<0.001, FWE cluster corrected at p<0.05 within each of 
the three datasets). Here, we report analogous results on measures of BOLD response in these 
regions during normative vs. hedonistic choice, for the sake of completeness. Note that, these 
key tests of our theory are technically independent of the ROI definition (i.e., ROIs are defined 
by parametric correlation with evidence accumulation across multiple contexts and studies, not 
the contrast between normative and hedonistic choices). However, we acknowledge that there 
is conceptual overlap, and thus some concern about analytical circularity. We thus present these 
results for illustrative purposes only to supplement and extend the findings we observe in our fully 
independent dlPFC ROI. As can be see below, these supplemental results suggest that our dlPFC 
findings – which we focus on in the main text – are a general principle of areas correlating with 
DDM response.

dACC response during normative vs. hedonistic choices in Datasets 1, 
2, and 3
We began by examining whether activity in the dACC correlated with the contrast of normative 
(generous) vs. hedonistic (selfish) choices in Dataset 1. As expected, and similar to the dlPFC, 
this region showed a significantly greater response during generous compared to selfish choices 
(paired-t43=3.423, p=0.001, Appendix  4—figure 1g), and a negative correlation between the 
asymmetry of other vs. self weights and observed differences in generous vs. selfish choice (r=–0.37, 
p=0.01). Similarly, in Dataset 2, we observed a significant effect of normative goals on the difference 
in response between normative and hedonistic choices (F2,96 = 14.03, p=14.51 × 10–6). Follow-up 
t-tests confirmed that this was driven by a stronger response in the dACC to normative (generous) 
choices in Natural trials (paired-t48=3.67, p=0.0006) as well as significantly stronger response to 
hedonistic choices (paired-t48=2.3, p=0.03, difference from Natural paired-t48=4.46, p=4.92 × 10–5) 
during Partner-focused trials (Appendix 4—figure 1h). Finally, we replicated a similar pattern of 
effects in Dataset 3, showing a significant influence of normative (i.e., health-focused) goals on the 
contrast of normative vs. hedonistic choices (F2,181 = 3.23, p=0.04), which was driven by a marginally 
stronger response on normative (healthy) choices in the Natural condition (t100=1.84, p=0.04, one-
tailed), and a marginally stronger response on hedonistic (i.e., unhealthy) choices during Health 
Focus trials (paired-t100=1.73, p=0.04, one-tailed) (Appendix 4—figure 1i).

lIFG response during normative vs. hedonistic choices in Datasets 1, 2, 
and 3
We next examined whether activity in the left IFG correlated with the contrast of normative (generous) 
vs. hedonistic (selfish) choices in Dataset 1. As expected, and similar to both the dlPFC and the 
dACC, this region showed a significantly greater response during generous compared to selfish 
choices (paired-t43=3.14, p=0.003, Appendix 4—figure 2g), and a negative correlation between the 
asymmetry of other vs. self weights and observed differences in generous vs. selfish choice (r=–0.33, 
p=0.03). Similarly, in Dataset 2, we observed a significant effect of normative goals on the difference 
in response between normative and hedonistic choices (F2,96 = 22.46, p=2.56 × 10–7). Follow-up 
t-tests confirmed that this was driven by a stronger response in the IFG to normative (generous) 
choices in Natural trials (paired-t48=4.71, p=2.155 × 10–5) as well as significantly stronger response 
to hedonistic choices (paired-t48=2.78, p=0.008, difference from Natural paired-t48=5.1, p=5.717 × 
10–6) during Partner-focused trials (Appendix 4—figure 2h). Finally, we replicated a similar pattern 
of effects in Dataset 3, showing a significant influence of normative (i.e., health-focused) goals on the 
contrast of normative vs. hedonistic choices (F2,181 = 3.42, p=0.03), which was driven by a significantly 
stronger response on normative (healthy) choices in the Natural condition (t100=2.89, p=0.005), and 
a non-significantly stronger response on hedonistic (i.e., unhealthy) choices during Health Focus 
trials (paired-t100=1.07, p=0.29, difference between Health and Natural paired-t93=2.63, p=0.01) 
(Appendix 4—figure 2i).
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Appendix 4—figure 1. BOLD responses in the dorsal anterior cingulate cortex (dACC) during self-control 
dilemmas. Top (dACC): Trial-by-trial BOLD response in the dACC correlates significantly with predicted activity 
of the drift diffusion model (DDM) across three separate datasets (hot colors display DDM-related responses 
thresholded at p < 0.001, uncorrected for display purposes). This includes responses during altruistic choice (a, b) 
and dietary choice (c). Voxels of overlap across all three datasets are indicated in blue, and served as a region of 
interest (ROI) to extract BOLD responses during normative and hedonistic choices in each dataset (g–i). Here, we 
show for illustrative purposes only that activity in this same ROI shows similar patterns of response on normative 
vs. hedonistic choices as the left dlPFC and resembles model predictions (d–f). Middle (Model Simulations): 
Given participants’ observed attribute weights, we simulated expected neural response during normative vs. 
hedonistic choice, using the DDM, for all trials in Dataset 1 (d), as well as separately for each condition in Dataset 
2 (e) and Dataset 3 (f). Bottom (dACC Results): Within the dACC ROI associated with the DDM (blue voxels in a–c), 
BOLD response differed as predicted during normative choice vs. hedonistic choice when attributes conflict, in 
(g) Dataset 1 (N = 50) for all trials, as well as in (h) Dataset 2 (N = 49) and (i) Dataset 3 (N = 113) as a function of 
regulatory goals. Regulatory goals were designed to decrease hedonic weights and increase normative weights 
on choice (Dataset 2: Ethics, Partner; Dataset 3: Health) or to put weights on hedonic attributes (Dataset 3: Taste). 
Only conflict trials are considered across datasets. As predicted, normative choices activate the dACC, but only 
when goals result in a greater weight on hedonistic than normative attributes. Contexts that increase normative 
attribute weights yield less dACC activity during normative choices (Dataset 2: Ethics, Partner; Dataset 3: Health). 
+p < 0.05, one-tailed; *p < 0.05, two-tailed; **p < 0.01, two-tailed, based on one-sample t-tests against 0, or 
paired-tests between conditions. Error bars show standard error of the mean
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Appendix 4—figure 2. BOLD responses in the inferior frontal gyrus/anterior insula (IFG/aIns) during self-control 
dilemmas. Top (lIFG/anterior insula [aIns]): Trial-by-trial BOLD response in the lIFG/aIns correlates significantly 
with predicted activity of the drift diffusion model (DDM) across three separate datasets (hot colors display DDM-
related responses thresholded at Pp < 0.001, uncorrected for display purposes). This includes responses during 
altruistic choice (a, b) and dietary choice (c). Voxels of overlap across all three datasets are indicated in blue, and 
served as an region of interest (ROI) to extract BOLD responses during normative and hedonistic choices in each 
dataset (g–i). Here, we show for illustrative purposes only that activity in this same ROI shows similar patterns of 
response on normative vs. hedonistic choices as the left dlPFC and resembles model predictions (d–f). Middle 
(Model Simulations): Given participants’ observed attribute weights, we simulated expected neural response 
during normative vs. hedonistic choice, using the DDM, for all trials in Dataset 1 (d), as well as separately for each 
condition in Dataset 2 (e) and Dataset 3 (f). Bottom (lIFG/aIns Results): Within the lIFG/aIns ROI associated with 
the DDM (blue voxels in a–c), BOLD response differed as predicted during normative choice vs. hedonistic choice 
when attributes conflict, in (g) Dataset 1 (N = 50) for all trials, as well as in (h) Dataset 2 (N = 49) and (i) Dataset 3 (N 
= 113) as a function of regulatory goals. Regulatory goals were designed to decrease hedonic weights and increase 
normative weights on choice (Dataset 2: Ethics, Partner; Dataset 3: Health) or to put weights on hedonic attributes 
(Dataset 3: Taste). Only conflict trials are considered across datasets. As predicted, normative choices activate 
the dACC, but only when goals result in a greater weight on hedonistic than normative attributes. Contexts that 
increase normative attribute weights yield less lIFG/aIns activity during normative choices (Dataset 2: Ethics, 
Partner; Dataset 3: Health). * Pp < 0.05, two-tailed; ** Pp < 0.01, two-tailed, based on one-sample t-tests against 0, 
or paired-tests between conditions. Error bars show standard error of the mean.
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Appendix 5
Supplemental individual difference analyses for Datasets 2 and 3
The DDM predicts individual differences in the link between dlPFC activation and the relative weight 
given to normative vs. hedonic attributes. In particular, our model predicts that higher relative weight 
on virtuous vs. hedonic attributes should be negatively correlated with differences in dlPFC response 
when choosing virtuously vs. hedonistically under attribute conflict. In the main text, we presented 
evidence for just such a relationship in Dataset 1, which has the cleanest design for interpreting 
naturally occurring individual differences because it includes no instructed regulation component. 
Here, we report parallel analyses for the Natural conditions of Datasets 2 and 3.

Effects of individual differences in the relative weighting of virtuous vs. 
hedonistic attributes in Dataset 2 (altruistic choice)
In Dataset 2, the proposals shown to participants were adjusted on an idiosyncratic basis to elicit 
generous choice in approximately 30% of trials. Moreover, decisions in an altruistic context are 
driven not only by weights on self and other, but also weight on inequality. Both of these facts might 
obscure individual differences in the relative weighting of normative (i.e., wOther) vs. hedonic attributes 
(i.e., wSelf) in this dataset. We nevertheless analyzed the correlation between left dlPFC response on 
altruistic vs. selfish choices and the relative weights given to self vs. other considerations in the DDM 
in Natural Focus trials only. Although we did observe a negative correlation between these two 
variables, this relationship was not statistically significant (r47=–0.09, p=0.56).

Effects of individual differences in the relative weighting of virtuous vs. 
hedonistic attributes in Dataset 3 (food choice)
In Dataset 3, all participants were presented with similar choices in the Natural condition, permitting 
a cleaner test of the influence of naturally occurring individual differences in relative weighting of 
tastiness and healthiness on dlPFC response. We thus analyzed the correlation between left dlPFC 
response on healthy vs. unhealthy choices (conflict trials only) and the relative weights given to 
healthiness vs. tastiness considerations in the DDM in Natural Focus trials only. As predicted, we 
observed a significant negative correlation between these two variables (r99=–0.28, p=0.002). Thus, 
participants who naturally used virtuous attributes more strongly than hedonic ones to guide their 
choices show less dlPFC activity. This result matches the finding in Dataset 1 and extends it to a 
different (non-social) choice domain.

https://doi.org/10.7554/eLife.65661
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