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Abstract Three-dimensional (3D) digital brain atlases and high-throughput brain-wide imaging

techniques generate large multidimensional datasets that can be registered to a common reference

frame. Generating insights from such datasets depends critically on visualization and interactive

data exploration, but this a challenging task. Currently available software is dedicated to single

atlases, model species or data types, and generating 3D renderings that merge anatomically

registered data from diverse sources requires extensive development and programming skills.

Here, we present brainrender: an open-source Python package for interactive visualization of

multidimensional datasets registered to brain atlases. Brainrender facilitates the creation of

complex renderings with different data types in the same visualization and enables seamless use of

different atlas sources. High-quality visualizations can be used interactively and exported as high-

resolution figures and animated videos. By facilitating the visualization of anatomically registered

data, brainrender should accelerate the analysis, interpretation, and dissemination of brain-wide

multidimensional data.

Introduction
Understanding how nervous systems generate behavior benefits from gathering multidimensional

data from different individual animals. These data range from neural activity recordings and anatomi-

cal connectivity, to cellular and subcellular information such as morphology and gene expression

profiles. These different types of data should ideally all be in register so that, for example, neural

activity in one brain region can be interpreted in light of the connectivity of that region or the cell

types it contains. Such registration, however, is challenging. Often it is not technically feasible to

obtain multidimensional data in a single experiment, and registration to a common reference frame

must be performed post hoc. Even for the same experiment type, registration is necessary to allow

comparisons across individual animals (Simmons and Swanson, 2009).

While different types of references can in principle be used, neuroanatomical location is a natural

and most commonly used reference frame (Chon et al., 2019; Oh et al., 2014; Arganda-

Carreras et al., 2018; Kunst et al., 2019). In recent years, several high-resolution three-

dimensional (3D) digital brain atlases have been generated for model species commonly used in neu-

roscience (Wang et al., 2020; Oh et al., 2014; Arganda-Carreras et al., 2018; Kunst et al., 2019).

These atlases provide a framework for registering different types of data across macro- and micro-

scopic scales. A key output of this process is the visualization of all datasets in register. Given the

intrinsically 3D geometry of brain structures and individual neurons, 3D renderings are more readily

understandable and can provide more information when compared to two dimensional images.

Exploring interactive 3D visualizations of the brain gives an overview of the relationship between

datasets and brain regions and helps generating intuitive insights about these relationships. This is
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particularly important for large-scale datasets such as the ones generated by open-science projects

like MouseLight (Winnubst et al., 2019) and the Allen Mouse Connectome (Oh et al., 2014). In

addition, high-quality 3D visualizations facilitate the communication of experimental results regis-

tered to brain anatomy.

Generating custom 3D visualizations of atlas data requires programmatic access to the atlas.

While some of the recently developed atlases provide an API (Application Programming Interface)

for accessing atlas data (Wang et al., 2020; Kunst et al., 2019), rendering these data in 3D remains

a demanding and time-consuming task that requires significant programming skills. Moreover, visu-

alization of user-generated data registered onto the atlas requires an interface between the user

data and the atlas data, which further requires advanced programming knowledge and extensive

development. There is therefore the need for software that can simplify the process of visualizing 3D

anatomical data from available atlases and from new experimental datasets.

Currently, existing software packages such as cocoframer (Lein et al., 2007), BrainMesh

(Yaoyao, 2020), and SHARPTRACK (Shamash et al., 2018) provide some functionality for 3D ren-

dering of anatomical data. These packages, however, are only compatible with a single atlas and

cannot be used to render data from different atlases or different animal species. Achieving this

requires adapting the existing software to the different atlases datasets or developing new dedi-

cated software all together, at the cost of significant additional efforts, often duplicated. An impor-

tant limitation of the currently available software is that it frequently does not support rendering of

non-atlas data, such as data from publicly available datasets (e.g. MouseLight) or produced by indi-

vidual laboratories. This capability is essential for easily mapping newly generated data onto brain

anatomy at high resolution and produce visualizations of multidimensional datasets. More advanced

software such as natverse (Bates et al., 2020) offers extensive data visualization and analysis func-

tionality, but currently, it is mostly restricted to data obtained from the Drosophila brain. Simple

Neurite Tracer (Arshadi et al., 2020), an ImageJ-based software, can render neuronal morphological

data from public and user-generated datasets and is compatible with several reference atlases. How-

ever, this software does not support visualization of data other than neuronal morphological recon-

structions nor can it be easily adapted to work with different or new atlases beyond the ones already

supported. Finally, software such as MagellanMapper (Young et al., 2020) can be used to visualize

and analyze large 3D brain imaging datasets, but the visualization is restricted to one data item (i.e.

images from one individual brain). It is therefore not possible to combine data from different sources

into a single visualization. Ideally, a rendering software should work with 3D mesh data instead of

3D voxel image data to allow the creation of high-quality renderings and facilitate the integration of

data from different sources.

An additional consideration is that existing software tools for programmatic neuroanatomical ren-

derings have been developed in programming languages such as R and Matlab, and there is cur-

rently no available alternative in Python. The popularity of Python within the neuroscientific

community has grown tremendously in recent years (Muller et al., 2015). Building on Python’s sim-

ple syntax and free, high-quality data processing and analysis packages, several open-source tools

directly aimed at neuroscientists have been written in Python and are increasingly used (e.g.,

Mathis et al., 2018; Pachitariu et al., 2017; Tyson and Rousseau, 2020b). Developing a python-

based software for universal generation of 3D renderings of anatomically registered data can there-

fore take advantage of the increasing strength and depth of the python neuroscience community for

testing and further development.

For these reasons, we have developed brainrender: an open-source python package for creating

high-resolution, interactive 3D renderings of anatomically registered data. Brainrender is written in

Python and integrated with BrainGlobe’s AtlasAPI (Claudi et al., 2020) to interface natively with dif-

ferent atlases without need for modification. Brainrender supports the visualization of data acquired

with different techniques and at different scales. Data from multiple sources can be combined in a

single rendering to produce rich and informative visualizations of multidimensional data. Brainrender

can also be used to create high-resolution, publication-ready images and videos (see Tyson and

Rousseau, 2020b; Adkins et al., 2020), as well as interactive online visualizations to facilitate the

dissemination of anatomically registered data. Finally, using brainrender requires minimal program-

ming skills, which should accelerate the adoption of this new software by the research community.

All brainrender code is available at the GitHub repository together with extensive online documenta-

tion and examples.
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Results

Design principles and implementation
A core design goal for brainrender was to generate a visualization software compatible with any ref-

erence atlas, thus providing a generic and flexible tool (Figure 1A). To achieve this goal, brainrender

has been developed as part of the BrainGlobe’s computational neuroanatomy software suite. In par-

ticular, we integrated brainrender directly with BrainGlobe’s AtlasAPI (Claudi et al., 2020). The

AtlasAPI can download and access atlas data from several supported atlases in an unified format.

Brainrender uses the AtlasAPI to access 3D mesh data from individual brain regions as well as meta-

data about the hierarchical organization of the brain’s structures (Figure 1B). Thus, the same pro-

gramming interface can be used to access data from any atlas (see code examples in Figure 2),

including recently developed ones (e.g. the enhanced and unified mouse brain atlas, Chon et al.,

2019).

The second major design principle was to enable rendering of any data type that can be regis-

tered to a reference atlas, either from publicly available datasets or from individual laboratories.

Brainrender can directly visualize data produced with any analysis software from the BrainGlobe

suite, including cellfinder (Tyson et al., 2020a) and brainreg (Tyson and Rousseau, 2020b). In addi-

tion, brainrender provides functionality for easily loading and visualizing commonly used data types

such as .npy files with cell coordinates or image data, .obj, and .stl files with 3D mesh data and .json

files with streamlines data for mesoscale connectomics. Additional information about the file formats

accepted by brainrender can be found in the online documentation. Brainglobe’s software suite also

includes imio which can load data from several file types (e.g. tiff and .nii), and additional file formats

can be loaded through the numerous packages provided by the python ecosystem. Finally, the exist-

ing loading functionality can be easily expanded to support user-specific needs by directly plugging

in custom user code into the brainrender interface (Figure 1A).

One of the goals of brainrender is to facilitate the creation of high-resolution images, animated

videos, and interactive online visualizations from any anatomically registered data. Brainrender uses

vedo as the rendering engine (Musy et al., 2019), a state-of-the-art tool that enables fast, high-qual-

ity rendering with minimal hardware requirements.

High-resolution renderings of rich 3D scenes can be produced rapidly (e.g. 10,000 cells in less

than 2 s) in standard laptop or desktop configurations. Benchmarking tests across different operat-

ing systems and machine configurations show that using a GPU can increase the framerate of inter-

active renderings by a factor of 3.5 (see Tables 1 and 2 in Materials and methods). This performance

increase, however, depends on the complexity of the pre-processing steps, such as data loading and

mesh generation, which run on the CPU. As one the main goals of brainrender is to produce high-

resolution visualizations, we have made the rendering quality independent of hardware configura-

tion, which only affects the rendering time. Animated videos and online visualizations can be pro-

duced with a few lines of code in brainrender. Several options are provided for easily customizing

the appearance of rendered objects, thus enabling high-quality, rich data visualizations that combine

multiple data sources.

Finally, we aimed for brainrender to empower scientists with little or no programming experience

to generate advanced visualizations of their anatomically registered data. To make brainrender as

user-friendly as possible we have produced extensive documentation, tutorials and examples for

installing and using the software. We have also developed a graphic user interface (GUI) to access

most of brainrender’s core functionality. This GUI can be used to perform actions such as rendering

of brain regions and labeled cells (e.g. from cellfinder) and creating images of the rendered data,

without writing custom python code (Figure 1C), (Video 1).

Visualizing brain regions and other structures
A key element of any neuroanatomical visualization is the rendering of the entire outline of the brain

as well as the borders of brain regions of interest. In brainrender, this can easily be achieved by

specifying which brain regions to include in the rendering. The software will then use BrainGlobe’s

AtlasAPI to load the 3D data and subsequently renders them (Figure 1B).

Brainrender can also render brain areas defined by factors other than anatomical location, such as

gene expression levels or functional properties. These can be loaded either directly as 3D mesh data
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Figure 1. Design principles. (A) Schematic illustration of how different types of data can be loaded into

brainrender using either brainrender’s own functions, software packages from the BrainGlobe suite, or custom

Python scripts. All data loaded into brainrender is converted to a unified format, which simplifies the process of

visualizing data from different sources. (B) Using brainrender with different atlases. Visualization of brain atlas data

from three different atlases using brainrender. Left, Allen atlas of the mouse brain showing the superficial (SCs)

and motor (SCm) subdivisions of the superior colliculus and the Zona Incerta (data from Wang et al., 2020).

Figure 1 continued on next page
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after processing with dedicated software (e.g., Tyson et al., 2020a; Song et al., 2020; Jin et al.,

2019; Figure 3A) or as 3D volumetric data (Figure 3E). For the latter, brainrender takes care of the

conversion of voxels into a 3D mesh for rendering. Furthermore, custom 3D meshes can be created

to visualize different types of data. For example, brainrender can import JSON files with tractogra-

phy connectivity data and create ‘streamlines’ to visualize efferent projections from a brain region of

interested (Figure 3B).

Brainrender also simplifies visualizing the location of devices implanted in the brain for neural

activity recordings or manipulations, such as electrodes or optical fibers. Post hoc histological

images taken to confirm the correct placement of the device can be registered to a reference atlas

using appropriate software, and the registered data can be imported into brainrender (Figure 3C).

This type of visualization greatly facilitates cross-animal comparisons and helps data interpretation

within and across research groups.

Finally, brainrender can be used to visualize any object represented by the most commonly used

file formats for 3D design (e.g. .obj, .stl), thus ensuring that brainrender can flexibly adapt to the

visualization needs of the user (Figure 3D).

Individual neurons and mesoscale connectomics
Recent advances in large field of view and whole-brain imaging allow the generation of brain-wide

data at single neuron resolution. Having a platform for visualizing these datasets with ease is critical

for exploratory data analyses. Several open-source software packages are available for registering

large amounts of such imaging data and automatically identify labeled cells (e.g. expressing fluores-

cent proteins) (Tyson et al., 2020a; Fürth et al., 2018; Goubran et al., 2019; Renier et al., 2016).

This processing step outputs a table of coordinates for a set of labeled cells, which can be directly

imported into brainrender to visualize a wealth of anatomical data at cellular resolution (Figure 4A).

Beyond the location of cell bodies, visualizing the entire dendritic and axonal arbors of single neu-

rons registered to a reference atlas is important for understanding the distribution of neuronal sig-

nals across the brain. Single-cell morphologies are often complex 3D structures and therefore poorly

represented in 2D images. Generating 3D interactive renderings is thus important to facilitate the

exploration of this type of data. Brainrender can be used to parse and render .swc files containing

morphological data, and it is fully integrated with morphapi, a software for downloading

Figure 1 continued

Middle, visualization of the cerebellum and tectum in the larval zebrafish brain (data from Kunst et al., 2019).

Right, visualization of the precentral gyrus, postcentral gyrus, and temporal lobe of the human brain (data from

Ding et al., 2016). (C) The brainrender GUI. Mouse, human, and zebrafish larvae drawings from scidraw.io (doi.

org/10.5281/zenodo.3925991, doi.org/10.5281/zenodo.3926189, doi.org/10.5281/zenodo.3926123).

Figure 2. Code examples. Example python code for visualizing brain regions in the mouse and larval zebrafish

brains. The same commands can be used for both atlases and switching between atlases can be done by simply

specifying which atlas to use when creating the visualization. Further examples can be found in brainrender’s

GitHub repository.
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Figure 3. Visualizing different types of data in brainrender. (A) Spread of fluorescence labeling following viral

injection of AAV2-CRE-eGPF in the superior colliculus of two FLEX-TdTomato mice. 3D objects showing the

injection sites were created using custom python scripts following acquisition of a 3D image of the entire brain

with serial two-photon tomography and registration of the image data to the atlas’ template (with brainreg,

Tyson et al., 2020a). (B) Streamlines visualization of efferent projections from the mouse primary motor cortex

following injection of an anterogradely transported virus expressing fluorescent proteins (original data from

Oh et al., 2014), downloaded from (Neuroinformatics NL with brainrender). (C) Visualization of the location of

several implanted neuropixel probes from multiple mice (data from Steinmetz et al., 2019). Dark salmon colored

tracks show probes going through both primary/anterior visual cortex (VISp/VISa) and the dorsal lateral geniculate

nucleus of the thalamus. (D) Single periaqueductal gray (PAG) neuron. The PAG and superior colliculus are also

shown. The neuron’s morphology was reconstructed by targeting the expression of fluorescent proteins in

excitatory neurons in the PAG via an intersectional viral strategy, followed by imaging of cleared tissue and manual

reconstruction of the neuron’s morphology with Vaa3D software. Data were registered to the Allen atlas with

SHARPTRACK (Shamash et al., 2018). The 3D data was saved as a .stl file and loaded directly into brainrender. (E)

Gene expression data. Left, expression of genes ‘brn3c’ and ‘nk1688CGt’ in the tectum of the larval zebrafish brain

(gene expression data from fishatlas.neuro.mpg.de, 3D objects created with custom python scripts). Right,

expression of gene ‘Gpr161’ in the mouse hippocampus (gene expression data from Wang et al., 2020),

Figure 3 continued on next page
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morphological data from publicly available datasets (e.g. from neuromorpho.org, Ascoli et al.,

2007; Figure 4B).

Producing figures, videos, and interactive visualizations with
brainrender
A core goal of brainrender is to facilitate the production of high-quality images, videos, and interac-

tive visualizations of anatomical data. Brainrender leverages the functionality provided by vedo

(Musy et al., 2019) to create images directly from the rendered scene. Renderings can also be

exported to HTML files to create interactive visualizations that can be hosted online. Finally, func-

tionality is provided to easily export videos from rendered scenes. Animated videos can be created

by specifying parameters (e.g. the position of the camera or the transparency of a mesh) at selected

keyframes. Brainrender then creates a video by animating the rendering between the keyframes.

This approach facilitates the creation of videos while retaining the flexibility necessary to produce

Figure 3 continued

downloaded with brainrender (3D objects created with brainrender). Colored voxels show voxels with high gene

expressions. The CA1 field of the hippocampus is also shown.

Figure 4. Visualizing cell location and morphological data. (A) Visualizing the location of labeled cells. Left,

visualization of fluorescently labeled cells identified using cellfinder (data from Tyson and Rousseau, 2020b).

Right, visualization of functionally defined clusters of regions of interest in the brain of a zebrafish larvae during a

visuomotor task (data from Markov et al., 2020). (B) Visualizing neuronal morphology data. Left, three secondary

motor cortex neurons projecting to the thalamus (data from Winnubst et al., 2019, downloaded with morphapi

from neuromorpho.org, Ascoli et al., 2007). Right, morphology of cerebellar neurons in larval zebrafish (data from

Kunst et al., 2019), (downloaded with morphapi). In the left panel of (A and B), the brain outline was sliced along

the midline to expose the data.
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richly animated sequences (Videos 2–5). All

example figures and videos in this article were

generated directly in brainrender, with no further

editing.

Discussion
In this article, we have presented brainrender, a python software for creating 3D renderings of

anatomically registered data.

Brainrender addresses the current lack of python-based and user-friendly tools for rendering ana-

tomical data. Being part with BrainGlobe’s suite of software tools for the analysis of anatomical data

brainrender facilitates the development of integrated analysis pipelines and the re-usability of soft-

ware tools across model species, minimizing the need for additional software development. Finally,

brainrender promises to improve how anatomically registered data are disseminated both in scien-

tific publications and in other media (e.g., hosted online).

Limitations and future directions
With brainrender, we aimed to make the rendering process as simple as possible. Nevertheless,

some more technically demanding pre-processing steps of raw image data are necessary before

they can be visualized in brainrender. In particular, a critical step for visualizing anatomical data is

the registration to a reference template (e.g., one of the atlases provided by the AtlasAPI). While

this step can be challenging and time-consuming, the brainglobe suite provides software to facilitate

this process (e.g., brainreg and bg-space), and alternative software tools have been developed

before for this purpose (e.g., Song et al., 2020; Jin et al., 2019). Additional information about data

registration can be found in brainglobe’s and brainrender’s online documentation, as well as in the

examples in brainrender’s GitHub repository. A related challenge is integrating new anatomical

atlases into the AtlasAPI. While we anticipate that most users will not have this need, it is a non-triv-

ial task that requires considerable programming skills. We believe that brainglobe’s AtlasAPI greatly

facilitates this process, which is presented in Claudi et al., 2020 and has extensive online

documentation.

Brainrender has been optimized for rendering quality instead of rendering performance. Other

commonly used software tools like napari (Sofroniew and Lambert, 2020) and ImageJ are dedi-

cated to visualizing N-dimensional image data and perform very well even on large datasets. When

comparing brainrender with other software, it is important to note brainrender is intended to work

primarily with mesh data and not 3D image data. Although it can display image data (e.g., with the

Volume actor), this functionality is not as fully developed as that using mesh data. A direct bench-

marking comparison between brainrender and napari shows that brainrender is 5� slower than

napari at visualizing image data, but 20� faster at visualizing mesh data. In both cases, however,

brainrender achieves superior rendering quality. Other software packages dedicated to high-

Video 1. Example brainrender GUI usage. Short

demonstration of how brainrender’s GUI can be used

to interactively visualize brain regions, labeled cells,

and custom meshes.

https://elifesciences.org/articles/65751#video1

Video 2. Animated video created with brainrender.

Visualization of neuronal morphologies for two layer 5b

pyramidal neurons in the secondary motor area of the

mouse brain. Winnubst et al., 2019, downloaded with

morphapi from neuromorpho.org. The secondary

motor area and thalamus are also shown.

https://elifesciences.org/articles/65751#video2
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performance rendering, such as Blender, can han-

dle mesh data with a performance that surpasses

brainrender. Their use, however, comes with the

large overhead of learning a very complex soft-

ware to generate what most often will be simple

renderings. It also requires that the users them-

selves take care of downloading, storing, and

accessing mesh data from the anatomical atlases.

Nevertheless, the rendering performance of

brainrender could be a target for improvement in

future versions, both for images and for mesh

data, through optimizing the Actor classes. While

we have designed brainrender usage to require

minimal programming expertise, installing python

and brainrender may still prove challenging for

some users. In the future, we aim to make brain-

render a stand-alone application that can be sim-

ply downloaded and locally installed, either

through Docker containers or through executable files. Further possible improvements include the

development of plug-ins for loading of data from file formats other than those already supported,

and improvements to the GUI functionality. Moreover, in addition to images and videos, brainrender

can be used to export renderings as HTML files and generate online 3D interactive renderings. Cur-

rently, however, embedding renderings into a web page remains far from a trivial task. Further

developments on this front should make it possible to easily host interactive renderings online,

therefore improving how anatomically registered data are disseminated both in scientific publica-

tions and in other media. While we plan to continue developing brainrender in the future, we wel-

come contributions from the community. Users should feel encouraged to contribute irrespective of

their programming experience, and we note that the programming ability of many biologists is often

better than what they perceive it to be. We especially welcome contributions aimed at improving

the user-experience of brainrender, at any level of interaction. Contributions can involve active

development of brainrender’s code base, but they can also be bug reports, features request,

improvements with the online documentation, and help answering users’ questions.

Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Software,
algorithm

Numpy https://doi.org/
10.1038/s41586-
020-2649-2

RRID:SCR_008633

Software,
algorithm

Vtk https://doi.org/
10.1016/j.softx.
2015.04.001

RRID:SCR_015013

Software,
algorithm

Vedo https://zenodo.
org/record/4287635

Software,
algorithm

BrainGlobe
Atlas API

https://doi.org/
10.21105/joss.02668

Software,
algorithm

Pandas https://doi.org/
10.5281/zenodo.
3509134

Software,
algorithm

Matplotlib doi: 10.1109/MCSE.
2007.55

RRID:SCR_008624

Software,
algorithm

Jupyter doi:10.3233/978-1-61499-649-1-87 RRID:SCR_018416

Video 3. Animated video created with brainrender.

Frontal view of all brain regions in the Allen Mouse

Brain atlas as the brain is progressively ’sliced’ in the

rostro-caudal direction.

https://elifesciences.org/articles/65751#video3
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Brainrender’s workflow
Brainrender is written in Python three and

depends on standard python packages such as numpy, matplotlib, and pandas (Harris et al., 2020;

Hunter, 2007; The pandas development team, 2020) and on vedo (Musy et al., 2019) and Brain-

Globe’s AtlasAPI (Claudi et al., 2020). Extensive documentation on how to install and use brainren-

der can be found at docs.brainrender.info, and we provide here a only brief overview of the

workflow in brainrender. The GitHub repository also contains detailed examples of Python scripts

and Jupyter notebooks (Kluyver et al., 2016). All brainrender’s code is open-source and has been

deposited in full in the GitHub repository and at PyPI (a repository of Python software) under a per-

missive BSD 3-Clause license. We welcome any user to download and inspect the source code, mod-

ify it as needed, or contribute to brainrender’s development directly.

Brainrender can be installed in any python environment using python version � 3.6.0. We recom-

mend the creation of an anaconda or virtual environment with an appropriate python version for use

with brainrender. Installing brainrender is then as simple as ‘pip install brainrender’ although addi-

tional optional packages might have to be installed separately (e.g., to access data from the Allen

Institute).

The central element of any visualization produced by brainrender is the Scene. A Scene controls

which elements (Actors) are visualized and coordinates the rendering, the position of the camera’s

point of view, the generation of screenshots and animations from the rendered scene, and other

important actions.

Actors can be added to the scene in several ways. When loading data directly from a file with 3D

mesh information (e.g. .obj), an Actor is generated automatically to represent the mesh in the ren-

dering. When rendering data from other sources (e.g. from a .swc file with neuronal morphology or

from a table of coordinates of labeled cells), dedicated functions in brainrender parse the input data

and generate the corresponding Actors. Actors in brainrender have properties, such as color and

transparency, that can be used to specify the appearance of a rendered actor accordingly to the

Table 1. Machine configurations used for benchmark tests.

N OS CPU GPU

1 Macos Mojave 10.14.6 2.3 ghz Intel Core i9 Radeon Pro 560 � 4 GB GPU

2 Ubuntu 18.04.2 LTS x86 64 Intel i7-8565U (x) @ 4.5 ghz NO GPU

3 Windows 10 Intel(R) Core i7-7700HQ 2.8 ghz NO GPU

4 Windows 10 Intel(R) Xeon(R) CPU E5-2643 v3 3.4 ghz NVIDIA geforce GTX 1080 Ti

Video 4. Animated video created with brainrender.

Visualization of the location of three implanted

neuropixel probes from multiple mice (data from

Steinmetz et al., 2019). Every 0.5 s, a subset of the

probes’ electrodes that detected a neuron’s action

potential are shown in salmon to visualize neuronal

activity.

https://elifesciences.org/articles/65751#video4

Video 5. Animated video created with brainrender

showing the location of cells labeled by targeted

expression of a fluorescent protein identified with

cellfinder (data from Tyson et al., 2020a). In dark blue:

streamline visualization of efferent projections from the

retrosplenial cortex following injection of an

anterogradely transported virus expressing fluorescent

proteins (data from Oh et al., 2014).

https://elifesciences.org/articles/65751#video5
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user’s aesthetic preferences. Brainrender’s Scene and Actor functionality use vedo as the rendering

engine (GitHub repository; Musy et al., 2019).

In addition to data loaded from external files, brainrender can directly load atlas data containing,

for example, the 3D meshes of individual brain regions. This is done via BrainGlobe’s AtlasAPI to

allow the same programming interface in brainrender to visualize data from any atlas supported by

the AtlasAPI. Brainrender also provides additional functionality to interface with data available from

Table 2. Benchmark tests results.

The number of actors refers to the total number of elements rendered, and the number of vertices refers to the total number of mesh

vertices in the rendering.

Test Machine GPU # actors # vertices FPS Run duration

10 k cells 1 Yes 3 1,029,324 24.76 0.81

2 No 3 1,029,324 22.46 1.16

3 No 3 1,029,324 20.00 1.41

4 Yes 3 1,029,324 100.00 1.34

100 k cells 1 Yes 3 9,849,324 18.87 3.23

2 No 3 9,849,324 14.91 4.34

3 No 3 9,849,324 0.43 7.94

4 Yes 3 9,849,324 1.20 1.13

1 M cells 1 Yes 3 98,049,324 2.65 31.01

2 No 3 98,049,324 2.55 96.49

3 No 3 98,049,324 0.03 86.75

4 Yes 3 9,8049,324 0.13 36.57

Slicing 10 k cells 1 Yes 3 237,751 37.64 0.96

2 No 3 237,751 39.10 1.25

3 No 3 237,751 26.32 1.88

4 Yes 3 237,751 200.00 1.34

Slicing 100 k cells 1 Yes 3 276,092 31.79 7.77

2 No 3 276,092 25.98 9.09

3 No 3 276,092 21.28 16.88

4 Yes 3 276,092 111.11 9.65

Slicing 1 M cells 1 Yes 3 275,069 11.23 91.31

2 No 3 275,069 5.39 104.79

3 No 3 275,069 5.03 158.99

4 Yes 3 275,069 37.04 97.43

Brain regions 1 Yes 1678 1,864,388 9.38 11.78

2 No 1678 1,864,388 7.61 27.40

3 No 1678 1,864,388 6.49 46.79

4 Yes 1678 1,864,388 11.90 35.83

Animation 1 Yes 8 96,615 9.91 18.98

2 No 8 96,615 22.12 12.63

3 No 8 96,615 15.15 11.92

4 Yes 8 96,615 47.62 12.29

Volume 1 Yes 12 49,324 1.79 2.31

2 No 12 49,324 1.66 1.95

3 No 12 49,324 3.55 2.15

4 Yes 12 49,324 23.26 1.21
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projects that are part of the Allen Institute Mouse Atlas and Mouse Connectome projects

(Wang et al., 2020; Oh et al., 2014). These projects provide an SDK (Software Development Kit) to

directly download data from their database, and brainrender provides a simple interface for down-

loading gene expression and connectomics (streamlines) data. All atlas and connectomics data

downloaded by brainrender can be loaded directly into a Scene as Actors.

Visualizing morphological data with reconstructions of individual neurons can be done by loading

these type of data directly from .swc files or by downloading them in Python using morphapi – soft-

ware from the BrainGlobe suite that provides a simple and unified interface with several databases

of neuron morphologies (e.g., neuromorpho.org, Ascoli et al., 2007). Data downloaded with mor-

phapi can be loaded directly into a brainrender scene for visualization.

Example code
As a demonstration of how easily renderings can be created in brainrender, the Python code (Fig-

ure 5) illustrates how to create a Scene and add Actors by loading 3D data from an .obj file and

then adding brain regions to the visualization. Brainrender’s GitHub repository provides several sim-

ple and concise examples about how to use brainrender to load user data, atlas data, to edit ren-

dered meshes (e.g., to change color or cut them with a plane), to save screenshots from rendered

scenes, and to create animated videos.

While brainrender is intended to be mainly a visualization tool, simple analyses can be carried out

directly by leveraging functionality from either vedo or BrainGlobe’s AtlasAPI. For example, Vedo

can access properties of actors added to a brainrender scene, which could be used to measure the

distance between two actors or to check if two actors’ meshes intersect (Figure 6A). Similarly, Brain-

Globe’s AtlasAPI provides methods to, for example, check whether a point (defined by a set of coor-

dinates) is contained in a brain region of interest or to retrieve brain regions that are above or below

a brain region of interest in the atlas’ hierarchy (Figure 6B).

The code and data used to generate the figures and videos in this article are made freely avail-

able at brainrender’s GitHub repository and provides examples of more advanced usage of brainren-

der’s functionality.

Figure 5. Code examples. (A) Example code to visualize a set of labeled cells coordinates using the Points actor

class. (B) Code example illustrating how to override brainrender’s default settings and how to use custom camera

settings. (C) Code example showing how custom mesh objects saved as .obj and .stl files can be visualized in

brainrender. (D) Example usage of brainrender’s Animation class to create custom animations. Further examples

can be found in brainrender’s GitHub repository.
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Benchmark tests
We designed a series of benchmark tests aimed at evaluating brainrender’s performance with differ-

ent combinations of hardware and operating system. We used five tests designed to cover most

aspects of brainrender’s functionality:

. rendering large numbers (14, 16, 17) of cells using the Points actor.

. using a plane to ‘slice’ the same number of cells (using the Scene.slice method).

. rendering more than 1000 individual meshes representing brain regions from the Allen insti-
tute’s mouse brain.

. making a short (3 s, 10 fps) animation of a spinning brain with several brain regions’ meshes
displayed.

. rendering (10 times) a 3D image representing the voxel-wise expression levels of gene Gpr161
in the mouse brain (data from the Allen Institute).

For each test, we estimated the time necessary to complete the test script as well as the frame

rate of the interactive rendering. Four machines were used for benchmark tests (see Table 1). The

results of the benchmark tests (see Key resource table) illustrate that although a GPU improves per-

formance, in the absence of a dedicated GPU brainrender can handle rich interactive visualizations

Figure 6. Advanced code examples. (A) Example code to measure the distance between actors and if a given

actor is contained in a target brain region. Left: virus injection volumes (red and gray) reconstructed from virus

injections targeted at the superior colliculus (magenta). Gray colored injection volumes show data from the Allen

Mouse Connectome Oh et al., 2014. Right: example code to measure the distance between the center of two

brainrender actors and to check if an actor’s center is contained in a brain region of interest. (B) Code example

illustrating how check if a point (e.g., representing a labeled cell) is in a brain region of interest. Left: visualization

of reconstructed probe positions from several individual animals, data from Steinmetz et al., 2019. Probe

channels located in the thalamus (red) are highlighted. Right: example code showing how to use BrainGlobe’s

AtlasAPI to verify whether a point (here representing a probe channel) is contained in a brain region of interest or

any of its substructures. Further examples can be found in brainrender’s GitHub repository.
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(for most user cases, the number of rendered mesh vertices is much lower than that used in the

tests).
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