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Abstract

Background: Rapid identification and investigation of healthcare-associated infections (HCAIs) is

important for suppression of SARS-CoV-2, but the infection source for hospital onset COVID-19

infections (HOCIs) cannot always be readily identified based only on epidemiological data. Viral

sequencing data provides additional information regarding potential transmission clusters, but the

low mutation rate of SARS-CoV-2 can make interpretation using standard phylogenetic methods

difficult.
Methods: We developed a novel statistical method and sequence reporting tool (SRT) that

combines epidemiological and sequence data in order to provide a rapid assessment of the

probability of HCAI among HOCI cases (defined as first positive test >48 hr following admission)

and to identify infections that could plausibly constitute outbreak events. The method is designed

for prospective use, but was validated using retrospective datasets from hospitals in Glasgow and

Sheffield collected February–May 2020.
Results: We analysed data from 326 HOCIs. Among HOCIs with time from admission �8 days, the

SRT algorithm identified close sequence matches from the same ward for 160/244 (65.6%) and in

Stirrup et al. eLife 2021;10:e65828. DOI: https://doi.org/10.7554/eLife.65828 1 of 30

TOOLS AND RESOURCES

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.65828
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


the remainder 68/84 (81.0%) had at least one similar sequence elsewhere in the hospital, resulting

in high estimated probabilities of within-ward and within-hospital transmission. For HOCIs with

time from admission 3–7 days, the SRT probability of healthcare acquisition was >0.5 in 33/82

(40.2%).
Conclusions: The methodology developed can provide rapid feedback on HOCIs that could be

useful for infection prevention and control teams, and warrants further prospective evaluation. The

integration of epidemiological and sequence data is important given the low mutation rate of

SARS-CoV-2 and its variable incubation period.
Funding: COG-UK HOCI funded by COG-UK consortium, supported by funding from UK Research

and Innovation, National Institute of Health Research and Wellcome Sanger Institute.

Introduction
Nosocomial transmission of SARS-CoV-2 presents a significant health risk to both vulnerable patients

and to healthcare workers (HCWs) (Kursumovic et al., 2020; Wang et al., 2020; Leclerc et al.,

2020; The DELVE Initiative, 2020; Shah et al., 2020). There is a variable incubation period, extend-

ing up to day 14 from exposure to the virus in symptomatic cases (Lauer et al., 2020). It is also

known that transmission is possible from asymptomatic or presymptomatic carriers (He et al., 2020;

Rivett et al., 2020; Oran and Topol, 2020; Lucey et al., 2021), complicating identification of

hospital acquisition among hospital onset COVID-19 infections (HOCIs) and tracing of likely sources

of infection.

There is now substantial evidence from retrospective studies that genome sequencing of epi-

demic viruses, together with standard infection prevention and control (IPC) practice, better

excludes nosocomial transmissions and better identifies routes of transmission than IPC investigation

alone (Brown et al., 2019; Houldcroft et al., 2018; Roy et al., 2019). The development of rapid

sequencing methods capable of generating pathogen genomes within 24–48 hr has recently created

the potential for clinical IPC decisions to be informed by genetic data in near-real time

(Meredith et al., 2020). Although SARS-CoV-2 has a low mutation rate (Fauver et al., 2020), suffi-

cient viral diversity exists for viral sequences to provide information regarding potential transmission

clusters (van Dorp et al., 2020). However, phylogenetic methods alone cannot reliably identify

linked infections, and the need for clinical teams to gather additional patient data presents chal-

lenges to the timely interpretation of SARS-CoV-2 sequence data.

To overcome these barriers, we have developed a sequence reporting tool (SRT) that integrates

genomic and epidemiological data from HOCIs to rapidly identify closely matched sequences within

the hospital and assign a probability estimate for nosocomial infection. The output report is

designed for prospective use to reduce the delay from sequencing to impact on IPC practice. The

work was conducted as part of the COVID-19 Genomics (COG) UK initiative, which sequences large

numbers of SARS-CoV-2 viruses from hospitals and the community across the UK (COVID-19 Geno-

mics UK (COG-UK), 2020). Here we describe the performance of the SRT using COG-UK sequence

data for HOCI cases collected from Glasgow and Sheffield between February and May 2020 and

explore how it may have provided additional useful information for IPC investigations.

Materials and methods
The SRT methodology is applied to HOCI cases, defined here as inpatients with first positive SARS-

CoV-2 test or symptom onset >48 hr after admission, without suspicion of COVID-19 at admission.

The SRT algorithm returns an estimate of the probability that each HOCI acquired their infection

post-admission within the hospital, with information provided on closely matching viral sequences

from the ward location at sampling and wider hospital. Results for individual HOCIs are evaluated in

relation to the IPC classification system recommended by Public Health England (PHE), based on

interval from admission to positive test: 3–7 days post admission = indeterminate healthcare-associ-

ated infection (HCAI); 8–14 days post admission = probable HCAI; >14 days post admission = defi-

nite HCAI (Public Health England, 2020). We also applied the PHE definition of healthcare-

associated COVID-19 outbreaks (Public Health England, 2020) (i.e. �2 cases associated with spe-

cific ward, with at least one being a probable or definite HCAI) to ward-level data, and for each
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outbreak evaluated whether there was one or more distinct genetic cluster. This was determined by

consecutive linkage of each HOCI into clusters using a two single-nucleotide polymorphism (SNP)

threshold (with HOCIs assigned to a genetic cluster if a sequence match to any member). Sequences

with <90% genomic coverage were excluded from all analyses.

Data collection and processing
Glasgow
During the first wave of SARS-CoV-2, the MRC-University of Glasgow Centre for Virus Research col-

lected residual clinical samples from SARS-CoV-2-infected individuals following diagnosis at the

West of Scotland Specialist Virology Centre. Samples were triaged for rapid sequencing using

Oxford Nanopore Technologies (ONT) for suspected healthcare-related infections or Illumina

sequencing in all other cases (details in Appendix 1).

Sheffield
Residual clinical samples from SARS-CoV-2-positive cases diagnosed at Sheffield Teaching Hospitals

NHS Foundation Trust were sequenced at the University of Sheffield using ARTIC network protocol

(ARTIC Network, 2020) and ONT. Throughout the epidemic, members of the IPC team were noti-

fied by the laboratory and by clinical teams of positive results and reviewed relevant areas to ensure

optimisation of practice and appropriate management of patients. Electronic reports were created

contemporaneously, including an assessment as to whether suspected linked cases were present

based on ward-level epidemiology. As part of SRT validation, these reports were accessed retro-

spectively by a study team member blind to the sequencing data and each included HOCI case was

defined as being thought unlinked to other cases, a presumed index case in an outbreak or a pre-

sumed secondary case.

HOCI classification algorithm
The sequence matching and probability score algorithm is run separately for each ‘focus sequence’

corresponding to a HOCI. We use associated metadata to assign other previously collected sequen-

ces to categories representing where the individual may be part of a SARS-COV-2 transmission

network:

. Unit reference set: individual could be involved with transmission on same unit (ward/ICU, etc.)
as focus sequence (look-back interval: 3 weeks)

. Institution reference set: individual could be involved with transmission in same institution/hos-
pital as focus sequence (look-back interval: 3 weeks)

. Community reference set: individual could be involved with transmission outside of focus
sequence institution (look-back interval: 6 weeks)

It is possible for samples to be members of multiple reference sets. For example, an outpatient

may be involved in SARS-CoV-2 transmission at the institution they attended and/or in community

transmission.

For each run of the algorithm, pairwise comparisons are conducted between the focus sequence

and each sequence within the unit reference set, institution reference set and community reference

set. A reference set sequence is considered a close match to the focus sequence if there is a maxi-

mum of two SNP differences between them. This choice was based on reported healthcare-associ-

ated outbreak events (Meredith et al., 2020; Rockett et al., 2020) and the overall mutation rate of

SARS-CoV-2 (details in Appendix 1).

Probability calculations
We use an expression of Bayes theorem to estimate probabilities for post-admission infection of

each focus case divided by exposure on the unit, within the rest of the institution and from visitors (if

allowed). An estimate of the prior probability (Pprior) of post-admission infection for each focus case

is modified to a posterior probability according to the information provided by the sequence data.

The algorithm is based on sound statistical principles, but involves heuristic approximations.

In symptomatic focus cases, we base Pprior on the time interval (t) from admission to date of

symptom onset or first positive test (if date of symptom onset not recorded). We calculate Pprior = F
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(t), where F() is the cumulative distribution function of incubation times (Lauer et al., 2020) (deriva-

tion in Appendix 1).

In theory, it would be optimal to use all of the information in the exact sequences observed. How-

ever, with the goal of constructing a computationally simple algorithm, we base our calculations on

the probability of observing a similar sequence (within two SNPs) to that actually observed for each

focus case conditional on each potential infection source/location: infection in the community, cur-

rent unit/ward or elsewhere in the hospital/institution, or from a visitor. For the unit and hospital, we

estimate this probability using the observed sequence match proportion (on pairwise comparison to

the focus sequence) in the unit reference set and institution reference set, respectively. For commu-

nity- or visitor-acquired infection, we use a weighted proportion of matching sequences in the com-

munity reference set, with weightings determined by a calibration model that describes geographic

clustering of similar sequences among community-acquired infections (described in Appendix 1).

The geographic weighting model was fitted separately for each study site using sequences strongly

thought to represent community-acquired infection: all community-sampled sequences and patients

presenting to the Emergency Department with COVID-19, excluding those recorded as being

HCWs.

Software
The analysis was conducted in R (v. 4.0.2, R Foundation, Vienna) using sequence processing and

comparison functions from ape (v. 5.4) and geospatial functions in the PostcodesioR (v. 0.1.1) and

gmt packages (v. 2.0). R code to run the algorithm is available (Stirrup, 2021), and it has also been

implemented as a standalone SRT for prospective use (HOCI Sequence Reporting Tool working

group, 2020) within COV-GLUE (Singer et al., 2020).

Results

Study populations
Glasgow
The Glasgow dataset included 1199 viral sequences (available as of 23 June 2020): 426 were derived

from community sampling sites, 351 from patients presenting to Emergency Department or acute

medical units, 398 from hospital inpatients and 24 from outpatients. Limited data were available

regarding the total number of HCWs testing positive and their identification among community sam-

ples, but 15 sequences were recorded as being from HCWs. First positive test dates ranged from 3

March to 27 May 2020. All consensus sequences had genomic coverage >90%.

We applied the SRT algorithm to data from three hospitals with required metadata available, for

which 128/246 inpatient cases with sequences were HOCIs. Two of these patients had been trans-

ferred from another hospital within 14 days prior to their positive test and were not processed as

focus sequences. One inpatient without recorded sampling location was excluded, leaving 125

HOCIs for analysis. Population sequencing coverage was 536/1578 (34.0%) overall for patients at the

three hospitals and 128/328 (39.0%) for HOCIs specifically (Appendix 1—figure 1).

Sheffield
The Sheffield dataset included 1630 viral sequences with accompanying metadata (available as of 10

October 2020): 714 were from inpatients, 117 were from outpatients and 799 were from HCWs. For

this retrospective evaluation, 447/714 inpatient samples taken on date of admission were assumed

to represent community-onset cases and used to calibrate the model. First positive test dates

ranged from 23 February to 30 May 2020. One sequence with genome coverage <90% was dropped

from further analysis (an inpatient on date of admission). 201 of the inpatients were HOCIs. Popula-

tion sequencing coverage was 714/977 (73.1%) overall for inpatients, 201/261 (77.0%) for HOCIs

specifically and 799/962 (83.1%) for HCWs.

Comparison to standard PHE classification
SRT algorithm results in comparison to standard PHE classifications are summarised in Figure 1 and

Table 1. The majority of HOCI cases in Glasgow (78/125, 62.4%) and over a third in Sheffield (71/

201, 35.3%) met the definition of a definite HCAI and so are known to have acquired the virus post-

Stirrup et al. eLife 2021;10:e65828. DOI: https://doi.org/10.7554/eLife.65828 4 of 30

Tools and resources Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.65828


admission irrespective of sequencing results. The probable HCAI cases formed the next largest

group at each site. Overall, the SRT algorithm identified close sequence matches from the same

ward for 66.4% of definite and 64.2% of probable HCAIs, indicating likely within-ward transmission

(examples in case studies). When one or more close sequence match was identified on the focus

sequence’s ward, the SRT probability of infection on the ward was >0.5 in 185/189 cases (Figure 2).

For indeterminate HCAIs, the SRT probability of HCAI was >0.5 in 33/82 (40.2%), and in 27/33

(81.8%) a close sequence match on the ward was present. Overall, 14/125 (11.2%) HOCIs in Glasgow

and 175/201 (87.1%) in Sheffield had at least one close sequence match to a HCW sample, reflecting

the much greater availability of sequences from HCWs in the Sheffield dataset.

In 16/244 (6.6%) cases that met the probable or definite HCAI definitions, there was no sequence

match within the hospital; this is likely due to incomplete sequence data from SARS-CoV-2 hospital-

ised cases and staff (with population sequencing coverage <40% patients and very limited for staff

from Glasgow and » 75% of patients and staff in Sheffield) and the presence of asymptomatic and/

or undiagnosed carriers. To reflect this the SRT will report ‘This is a probable/definite HCAI based

on admission date, but we have not found genetic evidence of transmission within the hospital’ in

Figure 1. Plots of posterior probability of healthcare-associated infection (HCAI) against prior probability of HCAI. Plot of the posterior probability of

healthcare-associated infection (HCAI) for (a) Glasgow and (b) Sheffield hospital onset COVID-19 infection cases from the sequence reporting tool

algorithm against the prior probability of HCAI based only on time from admission to diagnosis, grouped by standard infection prevention and control

classification recommended by Public Health England. Marginal histograms are displayed with bin-widths of 0.05.
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such situations. There were 26 HOCIs in the Sheffield dataset for whom it was recorded that visitors

were allowed on the ward at time of sampling. In three of these, the estimated probability of infec-

tion from a visitor was between 0.4 and 0.5 (all had �18 days from admission and no ward close

sequence matches).

Within the Sheffield dataset, we identified six wards with two genetically distinct outbreak clus-

ters (of two or more patients) and three wards with three distinct outbreaks (see Case study 2). Stan-

dard IPC assessment had classified each as a single outbreak. We also identified 10 and 44 HOCIs in

the Glasgow and Sheffield datasets, respectively, with no apparent genetic linkage to other HOCI

cases on the ward but who met the PHE definition of inclusion within an outbreak event (Table 2).

Comparison to local IPC conclusions in Sheffield
Contemporaneous notes by IPC teams in Sheffield classified 18/201 HOCIs as the index case in out-

breaks. IPC staff defined an index case as the first detected in an environment regardless of prior

inpatient stay and, correspondingly, of these 14/18 were the first sequence on their ward and one

was the second (the first 1 day earlier from a different bay on the ward was also recorded as an

index case, and IPC staff deemed a ward outbreak with unclear index or possibly two index cases).

Of the 18 index cases, 11 showed at least one subsequent close sequence match on the same ward

(the two index cases on a single ward were not genetically similar, and for 1/18 there were no

Table 1. Summary of sequence reporting tool outputs for the Glasgow and Sheffield datasets, according to standard IPC definitions

recommended by Public Health England regarding likelihood of HCAI.

Glasgow data Sheffield data

IPC classification IPC classification

Indeterminate
HCAI

Probable
HCAI

Definite
HCAI

Indeterminate
HCAI

Probable
HCAI

Definite
HCAI

n HOCI cases 20 27 78 62 68 71

Time from admission to sample*, days 4.5 (3–6) 11 (9-13) 48 (26-83) 5 (4–6) 9 (8–13) 22 (17–31)

Summary of sequence matches returned for each HOCI case

Close sequence match on ward 5 (25.0) 15 (55.6) 53 (68.0) 24 (38.7) 46 (67.6) 46 (64.8)

No close sequence match on ward, but match within
hospital

8 (40.0) 7 (25.9) 19 (24.4) 34 (54.8) 21 (30.9) 21 (29.6)

No close sequence match anywhere within hospital 7 (35.0) 5 (18.5) 6 (7.7) 4 (6.5) 1 (1.5) 4 (5.6)

Close sequence match to one or more HCW 1 (5.0) 0 (0) 13 (16.7) 55 (88.7) 61 (89.7) 59 (83.1)

No close sequence match anywhere within dataset 2 (10.0) 1 (3.7) 4 (5.1) 4 (6.5) 1 (1.5) 4 (5.6)

Probability calculations

Prior probability of HCAI† 0.39 (0.11–0.66) 0.97 (0.92–
0.99)

1.00 (1.00–
1.00)

0.49 (0.29–0.66) 0.92 (0.86–
0.99)

1.00 (1.00–
1.00)

Posterior probability of HCAI‡ 0.33 (0.02–0.67) 0.98 (0.96–
1.00)

1.00 (1.00–
1.00)

0.40 (0.11–0.80) 0.98 (0.93–
1.00)

1.00 (0.99–
1.00)

Posterior probability of HCAI‡ category

Low (<30%) 10 (50.0) 4 (14.8) 2 (2.6) 25 (40.3) 0 (0) 0 (0)

Moderately low (�30% and <50%) 2 (10.0) 0 (0) 0 (0) 12 (19.4) 0 (0) 0 (0)

Medium (�50% and <70%) 4 (20.0) 0 (0) 0 (0) 4 (6.5) 5 (7.4) 3 (4.2)

High (�70% and <85%) 3 (15.0) 0 (0) 0 (0) 8 (12.9) 7 (10.3) 2 (2.8)

Very high (�85%) 1 (5.0) 23 (85.2) 76 (97.4) 13 (21.0) 56 (82.4) 66 (93.0)

Data shown as median (interquartile range) or n (%).

*Or first +ve test where known.

†Based on time from admission.

‡From source on ward or within hospital.

HCAI: healthcare-associated infection; HOCI: hospital onset COVID-19 infection; HCW: healthcare worker; IPC: infection prevention and control.
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subsequent sequences from the ward). The median SRT probability of HCAI was 0.70 (IQR 0.22–

1.00, range 0.04–1, >0.5 in 12/18).

A further 144/201 HOCIs were classified as being part of local outbreaks, and among these the

median SRT probability of HCAI was 0.98 (IQR 0.89–1.00, range 0.02–1.00, >0.5 in 129/144) with

one or more close sequence match on the same ward in 104/144. The remaining 39/201 HOCIs,

including 10 that were not recorded as HOCIs at the time, were classified by the IPC teams as not

being part of local outbreaks. Among these the median SRT probability of HCAI was 0.74 (IQR 0.23–

0.99, range 0.02–1.00, >0.5 in 23/39), with one or more close sequence matches on the same ward

in 7/39.

Figure 2. Plot of the posterior probabilities of healthcare-associated infection (HCAI) estimated using the sequence reporting tool algorithm from a

source on the current ward versus a source elsewhere in the hospital for (a) Glasgow and (b) Sheffield hospital onset COVID-19 infection cases grouped

by standard Public Health England classification. In cases where there are no close sequence matches in the dataset (including among community

cases), the results returned are based solely on the priors and the metadata; this explains the fact that there are some cases with estimated posterior

probability of infection on the ward greater than 0.5 for whom there were no sequence matches on the ward.
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Case study 1
Figure 3 shows a phylogenetic tree of eight HOCIs within a single ward at a Glasgow hospital (Hos-

pital 5, Unit 93), alongside associated metadata and SRT probability outputs. The first HOCI

detected (UID0032) was transferred from another hospital within the previous 2 weeks and so SRT

output was not generated. All subsequent HOCIs return close sequence matches to at least one

prior case on the ward, leading to SRT probability estimates of ward-acquired infection >0.9, even

for UID0017 (an indeterminate HCAI). The phylogenetic tree indicates UID0032 has an SNP lacked

by most of the cases identified on the ward, and therefore did not seed all of the cases in the out-

break cluster. Also shown is a single HOCI from a different ward in the same hospital (UID0025); this

individual was an indeterminate HCAI, but a higher proportion of similar viral sequences within the

hospital in comparison to their local community led to a SRT result of probable hospital-acquired

infection.

Case study 2
Figure 4 shows phylogenetic trees relating to three distinct viral lineages identified on a single ward

in the Sheffield dataset (classified by contemporaneous IPC investigation as a single outbreak). Two

of these lineages also include sequences from inpatients sampled from other wards within the same

hospital. Detailed ward movement data highlighted additional possible links between patients in the

B.2.1 cluster. Both UID0149 and UID0157 were present at LOC0111 prior to their sample dates.

Table 2. Summary of distinct outbreak events for the Glasgow and Sheffield datasets, according to

standard PHE definition and with the addition of sequence data.

Glasgow data Sheffield data

n HOCI cases 125 201

n ward locations 44 38

Sequence matches per HOCI case

n sequence matches from same ward, median (IQR, range) 1 (0–5, 0–12) 1 (0–4, 0–18)

n sequence matches from rest of hospital, median (IQR, range) 3 (1–8, 0–52) 27 (5–52, 0–150)

Standard PHE definition of outbreak event

HOCI cases part of ward outbreak event, n (%) 95 (76.0) 184 (91.5)

n ward outbreak events 17 24

n HOCI cases per ward outbreak event, median (IQR, range) 4 (2–8, 2–17) 5 (3.5–10.5, 2–28)

Days from first to last case in outbreak, median (IQR, range) 8 (6–15, 0–31) 18 (13–34, 3–68)

n wards with more than one distinct outbreak event 0 0

Outbreak events with sequence linkage

HOCI cases part of ward outbreak event, n (%) 85 (68.0) 140* (69.7)

n ward outbreak events 16 33

n HOCI cases per ward outbreak event, median (IQR, range) 3.5 (2–8, 2–16) 3 (2–4, 1–19)

Days from first to last case in outbreak, median (IQR, range) 6 (4–9, 0–15) 4 (2–8, 0–17)

n wards with more than one distinct outbreak event 0 9†

* Includes two HOCIs which each showed a close sequence match to another case on the same ward with interval

from admission to sample date �2 days.

†In three wards, there were three genetically distinct outbreak events.

HOCI: hospital onset COVID-19 infection; IQR: interquartile range; PHE: Public Health England.
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Figure 3. Maximum-likelihood phylogeny of the sequences found in Hospital 5 Unit 93 and Unit 92 up until the 16th of May of the Glasgow dataset.

The black lines represent the time from admission to sampling. The values below the line are the posterior probability for unit infection + the posterior

probability of hospital infection from the sequence reporting tool. The tip nodes are coloured according to the local authority area of the community

surveillance sequences (circles) or of the patients (crosses).
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Figure 4. Maximum-likelihood phylogeny of the sequences found in location ‘0111’ in the Sheffield dataset, also including patients at several other

ward locations. The tree tip nodes are coloured according to ward locations. The black lines represent the time from admission to sampling. The values

below the line are the posterior probability for unit infection + the posterior probability of hospital infection from the sequence reporting tool. The

circle containing a number represents community sequences that are identical and at the base of this lineage (n = 36).
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Discussion
We have developed a novel approach for identification and investigation of hospital-acquired SARS-

CoV-2 infections combining epidemiological and sequencing data, designed to provide rapid and

concise feedback to IPC teams working to prevent nosocomial transmission. Through retrospective

application to clinical datasets, we have demonstrated that the methodology is able to provide con-

firmatory evidence for most PHE-defined definite and probable HCAIs and provide further informa-

tion regarding indeterminate HCAIs. Thus the SRT may allow IPC teams to optimise their use of

resources on areas with likely nosocomial acquisition events.

While the SRT is not likely to change IPC conclusions in cases meeting the definition of ‘definite’

or ‘probable’ HCAI based on interval from admission to symptom onset, in 91% of cases it did iden-

tify patients in the same ward or elsewhere in the hospital who could plausibly be linked to the

HOCI within a single outbreak event. Those definite and probable HOCIs without close sequence

matches are likely to reflect transmission from sources within the hospital that have either not been

diagnosed or who were diagnosed without viral sequencing. In such cases, it is impossible to calcu-

late a probability of transmission and the SRT will simply state that no sequence matches were found

within the hospital.

For cases meeting the definition of ‘indeterminate healthcare associated’, the probability scores

returned would be useful for IPC teams. These probabilities are dependent on comparison to

sequences from cases of community-acquired infection obtained either from direct community sam-

pling or from patients sampled at admission. The Sheffield dataset was lacking the former data

source, but the SRT nonetheless classified a similar proportion of ‘indeterminate healthcare associ-

ated’ HOCIs as community-acquired infections to that found in the Glasgow dataset (approximately

60%).

Current PHE guidelines define healthcare-associated COVID-19 outbreaks as two or more cases

associated with a specific setting (e.g. ward), with at least one case having illness onset after 8 days

of admission (Public Health England, 2020). However, the guidelines note that ‘investigations of

healthcare-associated SARS-CoV-2 infection should also take into account COVID-19 cases categor-

ised as "indeterminate healthcare associated"’ (i.e. onset 3–7 days after admission), for which our

SRT output would be useful. In most HOCIs meeting this definition of inclusion within an outbreak

event, we found evidence of clusters of similar viral sequences located on the ward concerned, and

the SRT results were in line with available local IPC classifications in the majority of cases. However,

a substantial minority (54/279) of HOCIs, although assumed to be part of a ward outbreak, were, in

fact, isolated cases for which the sequencing data refuted genetic linkage to other sequences from

the ward. The SRT also provided evidence of wards where IPC-defined outbreak events comprised

two or three clearly distinct viral lineages.

The retrospective datasets analysed in this study represent the first few months of the COVID-19

epidemic in the UK, and nosocomial transmission of the virus in the UK during this period has previ-

ously been reported at multiple sites (Meredith et al., 2020; Rickman et al., 2021; Carter et al.,

2020). HCWs were at increased risk of infection and adverse health outcomes (Kursumovic et al.,

2020; Wang et al., 2020; The DELVE Initiative, 2020; Shah et al., 2020; Houlihan et al., 2020)

and could have been important drivers of nosocomial transmission (Rivett et al., 2020). Data were

limited for Glasgow, but the Sheffield dataset contained a large number of sequences obtained

from HCWs, with population sequencing coverage for this group >80%, and there was a close

sequence match to at least one HCW observed for 87% of HOCIs. Our analysis has not evaluated

direction of transmission to or from HCWs, but they were clearly linked into transmission networks

within the hospital. A limitation of the current SRT approach and of the retrospective data available

is that they do not include detailed information regarding work locations for HCWs. However, pro-

spective use of the SRT would allow IPC teams to investigate linkage from a HOCI to any HCWs

flagged as having a close sequence match.

While a phylogenetic approach is useful in excluding direct transmission between cases, it can be

more problematic to confirm transmission source (Volz and Frost, 2013). Phylogenetic models can

evaluate the full genetic information provided by viral sequence data, but there are challenges in

incorporating and summarising associated patient metadata in a timely fashion (Villabona-

Arenas et al., 2020). The challenge of timely collection and standardisation of patient metadata is

also relevant for use of the SRT that we have developed, but it is possible to automate such
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processes through electronic patient record systems. There have been advances in recent years in

the computational efficiency and workflow standardisation possible for phylogenetic analyses that

have made it easier to use these methods for real-time investigation of outbreaks, for example,

through the development of the Nextstrain project (Hadfield et al., 2018; Huddleston et al.,

2021). However, there does not currently exist phylogenetic software for SARS-CoV-2 that produces

reports or other outputs designed for direct and immediate use by IPC professionals. There will be

cases in which phylogenetic analysis would provide information beyond that returned by the SRT,

and the two approaches may be complementary to one another for outbreak investigation.

Comparison of SRT output to phylogenetic trees in a number of test cases suggested that some

clusters of genetically similar cases identified within a specific ward likely represented more than one

transmission event onto the ward from similar viral lineages circulating within the healthcare system.

Whilst monophyletic clusters associated with a single location are easier to interpret, we consider

the presence of viruses within a ward or hospital that are genetically similar to a HOCI as evidence

for nosocomial infection even when they are not plausible transmission sources themselves, given

the potential for asymptomatic transmission (He et al., 2020; Rivett et al., 2020; Oran and Topol,

2020; Lucey et al., 2021) and complex transmission networks (Meredith et al., 2020).

The SRT uses a number of heuristic approximations in order to provide an integrated summary of

epidemiological and sequence data. However, this choice is associated with the limitation that it

does not provide a full probabilistic model of potential transmission networks. Further development

of the SRT would also aim to more fully incorporate patient movement data and shift locations for

HCWs.

We believe that collaboration between methodologists, virologists, IPC clinicians and software

engineers is essential in order to create workflows and reporting systems that will enable the routine

use of pathogen sequence data for IPC. The SRT represents such a collaboration, and it has been

designed to enable automation of the linkage and processing of viral sequence and patient meta-

data and subsequent feedback of relevant information to IPC staff. The automated feedback pro-

vided by the SRT is nonetheless dependent on timely sequencing of a high proportion of viral

samples from cases within the hospital concerned, ideally in combination with sequences also avail-

able from community-sampled cases. In the UK this has been possible through the national COG-UK

project (COVID-19 Genomics UK (COG-UK), 2020). Denmark has also implemented high popula-

tion-coverage sequencing of SARS-CoV-2 (Bager et al., 2021), but this is not the case for most

countries. The emergence and rapid dominance of lineage B.1.1.7 in the UK (Volz et al., 2021) has

provided a case study for the impact of national-level genomic surveillance, but further evidence is

required to determine whether rapid sequencing is worth the necessary investment for routine use

within IPC practice. This judgement would also be dependent on the available health infrastructure

and resources at both the local and national levels.

Prospective evaluation of the SRT is currently underway within a multicentre study in the UK

(Blackstone et al., 2021). This study and its accompanying research programme will evaluate the

impact of routine viral sequencing and use of the SRT on IPC knowledge, actions and outcomes, and

will include quantitative, qualitative (Flowers et al., 2021) and health economic analyses to help

guide the future development of pathogen genomics for IPC.

Our novel approach to the investigation of HOCIs has shown promising characteristics on retro-

spective application to two clinical datasets. The SRT described allows rapid feedback on HOCIs

that integrates epidemiological and sequencing data to generate a simplified report at the time that

sequence data become available. Prospective evaluation is required in order to recommend use of

the SRT in clinical practice, and this work is ongoing. The methodology has been developed for hos-

pital inpatients, but the principles may also be applicable to other settings.
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Áine, Amato R, Ragonnet-Cronin M, Harrison I, Jackson B, Ariani CV, Boyd O, Loman NJ, McCrone JT,
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Appendix 1

Methods
Details of sequencing protocols
Glasgow
Sequencing with ONT followed the protocols developed by the ARTIC network (v1 and v2) https://

artic.network/ncov-2019. The reads were aligned to the reference strain (MN908947) using mini-

map2 (https://doi.org/10.1093/bioinformatics/bty191) and denoised using nanopolish (https://www.

nature.com/articles/nmeth.3444) prior to primer trimming and consensus calling with iVar using a

minimum depth of 20 reads (https://doi.org/10.1186/s13059-018-1618-7). Sequencing with Illumina

also used the ARTIC network protocol for amplicon generation but was followed by a DNA KAPA

library preparation kit (Roche) and indexing with NEBNext multiplex oligos (NEB) using seven PCR

cycles. Libraries were pooled and loaded on a MiSeqV2 cartridge. Illumina reads were processed

with the PrimalAlign pipeline (Orton, 2021). Briefly, reads were trimmed using trim_galore (https://

www.bioinformatics.babraham.ac.uk/projects/trim_galore/) aligned to the reference using BWA

(10.1093/bioinformatics/btp698). Then, amplicon primers were removed and the consensus called

with a read depth of 10 using iVar (https://doi.org/10.1186/s13059-018-1618-7). Metadata associ-

ated with each sample was collated in a redcap database (https://www.project-redcap.org/).

Sheffield
Sequencing with ONT followed the protocols developed by the ARTIC network (v1 and v2) (https://

artic.network/ncov-2019). Following base calling, data were demultiplexed using ONT Guppy using

a high-accuracy model. Reads were filtered based on quality and length (400–700 bp), then mapped

to the Wuhan reference genome and primer sites trimmed. Reads were then downsampled to 200�

coverage in each direction. Variants were called using nanopolish (Simpson, 2021) and used to

determine changes from the reference. Consensus sequences were constructed using reference and

variants called.

Further details of reference set definitions
Data sources for algorithm

There are two potential sources of data for the HOCI classification algorithm. Firstly, there are insti-

tution-sampled sequences: these include all viral sequences from samples obtained within the institu-

tion/hospital. These sequences are linked to metadata providing basic information regarding the

patient concerned and details of the sample from which the sequence was obtained. Secondly, there

are community-sampled sequences: these include all relevant sequences obtained from samples

from testing within the local community. These sequences are associated with a more limited set of

linked metadata describing date of sample, residential outer postcode of subject and place of work

if they are recorded as being a HCW.

Unit reference set

This dataset comprises all institution sequences sampled on or �3 weeks prior to (or �2 days after

for the prospective version of the SRT) the sample date of the focus sequence and for which both

the institution and the unit are the same as that for the focus sequence.

Institution reference set

This dataset comprises firstly all institution-sampled sequences from HCWs, outpatients and inpa-

tients diagnosed >48 hr after admission for which the institution matches that of the focus sequence

sampled on or �3 weeks prior to (or �2 days after for the prospective version of the SRT) the sam-

ple date of the focus sequence and for which the unit is either not the same as that for the focus

sequence or is missing. Secondly, the dataset includes all institution-sampled sequences from A and

E patients or inpatients diagnosed �2 days after admission for which the institutionID matches that

of the focus sequence sampled between (inclusively) 3 weeks and 3 days prior to the sample date of
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the focus sequence and for which the unit is either not the same as that for the focus sequence or is

missing. Thirdly, this dataset also includes the subset of community-sampled sequences of HCWs at

the same institution as the focus sequence.

Community reference set

This dataset comprises firstly all community-sampled sequences sampled on or �6 weeks prior to (or

�2 days after for the prospective version of the SRT) the sample date of the focus sequence. This

dataset also includes institution-sampled sequences sampled on or �6 weeks prior to (or �2 days

after for the prospective version of the SRT) the sample date of the focus sequence from all non-

inpatient samples, and those inpatients for whom sample date and symptom onset date (if recorded)

are both �2 days after the admission date.

Note that some institution-sampled sequences will contribute to both the community reference

set and either the unit reference set or the institution reference set (e.g. outpatients sampled within

3 weeks prior to the focus sequence would be included in both the community reference set and the

institution reference set). HCWs recorded among the community-sampled sequences within �3

weeks prior to the sample date of the focus sequence will also be included in both the community

reference set and the institution reference set if their workplace matches the institution of the focus

sequence.

Formulae for probability calculations
Posterior of unit-acquired infection (UI) =

Pprior�Pu�P seq�2SNPsjUIð Þ

Pprior�Pu�P seq�2SNPsjUIð ÞþPprior�Pv�P seq�2SNPsjVIð ÞþPprior� 1�Pu�Pvð Þ�P seq�2SNPsjIIð Þþ 1�Ppriorð Þ�P seq�2SNPsjCIð Þ

Posterior of institution-acquired infection (II) =

Pprior� 1�Pu�Pvð Þ�P seq�2SNPsjIIð Þ

Pprior�Pu�P seq�2SNPsjUIð ÞþPprior�Pv�P seq�2SNPsjVIð ÞþPprior� 1�Pu�Pvð Þ�P seq�2SNPsjIIð Þþ 1�Ppriorð Þ�P seq�2SNPsjCIð Þ

Posterior of visitor-acquired infection (VI) =

Pprior�Pv�P seq�2SNPsjVIð Þ

Pprior�Pu�P seq�2SNPsjUIð ÞþPprior�Pv�P seq�2SNPsjVIð ÞþPprior� 1�Pu�Pvð Þ�P seq�2SNPsjIIð Þþ 1�Ppriorð Þ�P seq�2SNPsjCIð Þ

Posterior of community-acquired infection (CI) =

1�Ppriorð Þ�P seq�2SNPsjCIð Þ

Pprior�Pu�P seq�2SNPsjUIð ÞþPprior�Pv�P seq�2SNPsjVIð ÞþPprior� 1�Pu�Pvð Þ�P seq�2SNPsjIIð Þþ 1�Ppriorð Þ�P seq�2SNPsjCIð Þ

With terms defined as follows:

Pprior: prior probability of post-admission infection for each focus case, based on time interval
from admission to date of symptom onset or first positive test
Pu: prior probability of UI given post-admission infection (set based on expert opinion)
Pv: prior probability of VI given post-admission infection (set based on expert opinion)
P seq� 2SNPsjinfectionsource=locationð Þ: probability of observing a similar sequence (within two
SNPs) to that actually observed for each focus case conditional on each potential infection
source/location (estimated from sequence reference sets)

When there is a close sequence match found in any of the defined reference sets, the posterior

probability estimates for UI, II, VI and CI will always sum to 1. However, when there is no close

sequence match in any of the reference sets the posterior probability calculations are not valid and

the algorithm will return the prior probabilities for each potential source/location of infection.

Further details regarding sequence matching process
The ±2 SNP threshold for a close sequence match was initially based on reports of healthcare-associ-

ated outbreak events for which this was the maximum pairwise difference within clusters (Meredith:

DOI:10.1101/2020.05.08.20095687 and Rockett: DOI: 10.1101/2020.04.19.048751). The outbreak

events described included sequences with up to around 3 weeks between first and last samples. This

SNP threshold is also supported by calculations using the overall mutation rate of SARS-CoV-2. If we
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take the average mutation rate of the virus to be 24 SNPs/year (Nextstrain value 24 June, https://

nextstrain.org/ncov/global?l=clock), then assuming independent (Poisson distributed) mutation

events, ignoring the chance of mutations occurring at the same position in the genome and using a

fixed generation time of 5 days, then there is an approximate:

72% chance of no new SNPs per generation
24% chance of one new SNP per generation
4% chance of two new SNPs per generation
0.4% chance of three new SNPs per generation

A two SNP threshold would therefore be expected to identify close sequence matches between

direct transmission pairs in a large majority of cases. Ambiguous nucleotide positions will be consid-

ered to match if there is an overlap in the possible values for the two sequences. ‘N’ values recorded

in either the focus sequence or comparison sequence will be considered to be a match at that

position.

Further details of prior probability calculations for post-admission infection

We calculate Pprior = F(t), where F() is the cumulative distribution function of a published log-normal

distribution for incubation times (Lauer et al: doi:10.7326/M20-0504; m = 1.621, s = 0.418). For

symptomatic HOCI cases, the IPC classifications recommended by PHE translate into the following

value ranges for Pprior:

. indeterminate HCAI: 0.11 (onset 3 days post-admission) to 0.78 (onset 7 days post-admission)

. probable HCAI: 0.86 (onset 8 days post-admission) to 0.99 (onset 14 days post-admission)

. definite HCAI: Pprior � 0.995

For asymptomatic focus cases, we define our prior on the basis that some proportion of the cases

detected will never become symptomatic (Pa) with the remainder going on to develop symptoms

within the next few days (1 - Pa). We then define our prior probability of post-admission infection in

these cases as

Pprior ¼ 1�Pað Þ �F tþ cð ÞþPa �F tð Þ

where t is the interval from admissionDate to sampleDate, and c is a constant reflecting the aver-

age interval within which we expect symptoms to appear (among those cases in which they do). Pa is

set at 0.4 based on the findings of a published review article (Oran and Topol: 10.7326/M20-3012),

and c is set to three based on a combination of expert opinion of the study PIs, the known distribu-

tion of time from infection to symptom onset and expert experience of asymptomatic screening.

Source given post-admission infection
The model requires prior values for the probability of UI and VI given post-admission infection: Pu

and Pv, respectively. However, in specifying the model we define Pu’ as the probability of UI given

post-admission infection when there are no visitors allowed on the ward, in which case the probabil-

ity of VI is 0 and Pv’ = 0. If visitors are allowed on the ward for the focus case, then we set Pu =

Pu’ � (1 – Pv).

Based on expert opinion of the clinical co-authors, Pu’ is set to different values according to the

unit/ward type of the focus sequence with single-bed wards having a lower prior probability of unit

post-admission infection than bay wards: 0.5 for single-bed wards and 0.7 for bay wards. We

assumed a Pv of 0.2. The Pu values (when visitors are allowed) are therefore 0.4 for single-bed wards

and 0.56 for bay wards. The largest of the three Glasgow hospitals included comprises single-room

wards, whilst the other two and the Sheffield site comprise bay wards.

Derivation of prior probability for post-admission infection
If we assume a uniform individual-level hazard (l) of infection from 1 February 2020 (t0), whether in

hospital or not, then the probability density function (PDF) of infection at time tinf from this date is

lê(-ltinf). The PDF of infection at time tinf conditional on this occurring at any point prior to the date

of symptom onset (tonset) is (lê(-ltinf))/(1-ê(-ltpos)), which is approximately 1/tonset for small l (taking

the limit as l->0). For HOCI cases, we are interested in whether tinf occurred before or after the time
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of admission to hospital (tadm). Also considering the evidence provided by the known incubation

time of the disease (PDF f and CDF F), we integrate over the range of possible infection dates:

P tadm � tinf jtinf � tonset;Tonset ¼ tonset
� �

¼
R tonset
tadm

f tonset � xð Þ=tonset:dx
h i

=
R tonset
0

f tonset � xð Þ=tonset:dx
� �

»
R tonset
tadm

f tonset � xð Þ=tonset:dx
h i

=
R tonset
�¥ f tonset � xð Þ=tonset:dx

� �

¼
R

0

tonset�tadm
�f uð Þ=tonset:du

h i

= 1=tonsetð Þ

¼
R tonset�tadm
0

f uð Þ:du
¼ F tonset � tadmð Þ

Geographic weighting for community reference set
Geographic weighting function

The weight of each sequence within the community reference set is determined by geographic dis-

tance from the residential outer postcode of the focus case using a function of the form

weight¼ ð1�bÞ � expð�t � community Distance To Index½i�Þþb;

where b takes a value between 0 and 1, and t > 0. These parameters are set based on calibration

to the available community reference set at each site. The rationale for this weighting is that there is

likely to be geographic clustering of viral lineages, and so newly observed community transmissions

of SARS-CoV-2 are more likely to show genetic similarity to past sequences from the local area of

that individual’s home than to past sequences from regions that are further away. If postcode is

missing for a case in the community reference set, then distance to the focus sequence is set to 100

km.

Statistical model for derivation of geographic weighting parameters

The statistical model for geographic weighting is fitted separately for each study site using sequen-

ces which are strongly thought to represent community-acquired infection: all community-sampled

sequences and patients presenting to A and E with COVID-19, excluding those who are recorded as

being HCWss or who do not have an available valid outer postcode. We will refer to these sequen-

ces as the ‘calibration set’.

A statistical model is constructed to find the optimal values of b and t to maximise the estimated

probability (Psim:i) of a newly observed community-acquired case having a similar sequence

(±2 SNPs) to that observed for each sequence in the calibration set. The estimated probability in

each case within the calibration set is calculated as a weighted sum of ‘close match’ indicator varia-

bles for all other sequences in the calibration set sample from 6 weeks prior up until the sample date

of that case, with the weighting function defined in terms of geographic distance between residen-

tial outer postcodes and the b and t parameters as described for the community reference set.

An overall log-likelihood function is defined using a Bernoulli distribution for each of the n

sequences within the calibration set:

l ¼
X

n

i¼1

log Psim:ið Þ

The values of b and t that maximise l were obtained for each of the study sites using the ‘bbmle’

package for R, with logit-parameterisation of b and log-parameterisation of t .

We assume that the probability of a sequence match conditional on infection from visitor on unit/

ward can be calculated using the same weighting scheme as for the probability of a sequence match

conditional on community-acquired infection (i.e. P(seq±2 SNPs|CI)==P(seq±2 SNPs|VI)).

Additional matching on ward location history

There is the potential for the algorithm described to return large numbers of close sequences

matches with the hospital as a whole, which may make it difficult for IPC teams to use the output to

direct their investigations when there are no potential sources of infection identified on the same

ward as the focus case. We propose a location matching procedure in order to highlight the most
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relevant sequence matches for further investigation. This process does not currently form part of the

statistical model, meaning that it can be treated as optional functionality for the SRT in the COG-UK

HOCI study, and we have restricted the input data to a simplified format in order to minimise data

management requirements.

For each inpatient sample in the input metadata for the algorithm, we specify a single string vari-

able comprising the concatenated names of any ward locations in the �14 days prior to the sample

date and a separate string variable with any ward locations in the �14 days after the sample date.

For each focus case submitted to the algorithm, output is flagged if there is any match identified

between the wards listed in each of these fields or the ward at time of sampling for a close sequence

match in comparison to the prior and current ward locations for the focus sequence (excluding those

cases where there is already matching ward location at time of sampling for each).

Details of phylogenetic methods

Phylogenies were produced by the grapevine pipeline (https://github.com/COG-UK/grapevine) as

part of the COG-UK Consortium (https://www.cogconsortium.uk). Briefly, sequences from GISAID

and those produced as part of the COG-UK Consortium are independently quality controlled and

aligned to the Wuhan reference using minimap2 (https://doi.org/10.1093/bioinformatics/bty191).

The two alignments are then combined, the homoplasy at site 11083 is masked and the tree is

reconstructed using FastTreeMP (http://www.microbesonline.org/fasttree/). For each of the hospitals

of interest, the tree is pruned to keep sequences from Scotland or Yorkshire (as relevant) and by

date excluding sequences subsequent to the last ‘focus’ patient sample date on the ward.

Details of SRT report format

The SRT system for prospective use needs to provide useful and appropriate feedback in both low-

incidence and high-incidence settings for new HOCI cases. This is planned through the generation of

a concise one-page PDF summary report for each focus sequence. This summary report contains key

focus sequence metadata, information regarding the estimated probabilities for infection source and

details of up to 10 close sequence matches identified within the same unit/ward and/or elsewhere in

the hospital.

Probability summary categories

The sequence matching and probability score algorithm generates probability estimates for the

source of infection for the focus patient being from the current unit/ward, from elsewhere in the hos-

pital, from the community (pre-admission) or from a visitor. These probability estimates always sum

to 1. In the summary report, probability estimates for each source of infection are categorised using

the following levels:

. 0–30%: low

. 30–50%: moderately low

. 50–70%: probable

. 70–85%: high

. 85–100%: very high

For clarity of presentation and communication, probability categories will not always be displayed

in the summary report for all four potential sources of infection (i.e. ward/unit, elsewhere in hospital,

visitor or community). Special handling rules for specific situations are described below.

Close sequence matches within the same unit and/or hospital
The maximum number of close sequence matches that can be listed on the one-page summary

report is 10 (for the combined sum of unit-level and institution-level matches). If the number of

ward-level matches is n > 5 and the total number of close sequence matches is N > 10, then the

number of ward-level matches is truncated at 5 + max((5 – (N – n)),0). If there are over 10 close

sequence matches in total, then the following message is displayed ‘Over 10 close matches; see

detailed report for further information’.
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Within each set of unit-level and institution-level close sequence matches, ordering and priority

for inclusion within the available slots is determined by the following set of criteria (in decreasing

order of importance):

1. Number of SNPs relative to Wuhan strain present in comparison sequence but absent in focus
sequence (fewer = higher priority)

2. Number of SNPs relative to Wuhan strain present in focus sequence but absent in comparison
sequence (fewer = higher priority)

3. Whether comparison sequence is from a HCW (HCWs listed first)
4. HCAI status of comparison sequence (priority order: definite, probable, indeterminate,

otherwise)
5. Samples from the past before samples in future
6. Samples from within the 2 weeks prior to focus sequence sample date before others
7. Number of units overlapping with focus sample’s units

Report messages for specific output combinations
No close sequence matches on unit/ward

If there are no close sequence matches to the focus sequence on their current unit/ward, then no

probability category is reported for this potential infection source (the algorithm returns a zero prob-

ability in such cases, which could be misleading given uncertainty over screening and sequencing

coverage). The message ‘No matches from within unit’ is displayed. The probability score category

for infection from elsewhere in the hospital is provided in such cases.

No close sequence matches elsewhere in hospital

If there are no close sequence matches to the focus sequence elsewhere in the hospital, then no

probability category is reported for this potential infection source. The message ‘No matches else-

where in hospital’ is displayed.

No evidence of transmission within unit or hospital for probable or definite
HCAI

If the estimated probability of community-acquired infection from the algorithm is >50%, but the

interval from admission to symptom onset (if recorded) or sample date is �8 days, then the following

message is displayed in place of the estimated probability of community-acquired infection: ‘This is

a probable/definite HCAI based on admission date, but we have not found genetic evidence of

transmission within the hospital’.

Probable unit- or hospital-acquired infection with source unclear

If the posterior probability of unit-acquired infection and the posterior probability of infection from a

source elsewhere in the hospital are each estimated to be <50%, but the sum of these two posterior

probabilities is �50%, then the following message is displayed: ‘Overall, this is a probable unit- or

institution-acquired infection with source unclear’.

Timeline graph
The timeline graph provides a visual representation of available sequences from the same unit/ward

and the same institution/hospital as the focus sequence in the period from 3 weeks prior to their

sample date to 1 week after. The key indicates which sequences are close matches to the focus

sequence, and the numbering corresponds to that in the tabular summary of most relevant close

sequence matches.

Sequencing prioritisation for prospective use of the SRT
The SRT algorithm was initially designed for use with comprehensive sequencing of all SARS-CoV-2

cases within a hospital, in combination with representative sequencing of community-sampled cases.
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However, it may be difficult to achieve high population sequencing coverage in some situations,

such as if there is a sudden surge in new admissions to the hospital and/or in new HOCI cases. In

such scenarios, we have recommended the following prioritisation of samples (from highest to low-

est) for sequencing within the prospective HOCI study (https://clinicaltrials.gov/ct2/show/

NCT04405934):

1. HOCI cases
2. SARS-CoV-2 +ve patients on wards where there is a HOCI case
3. HCWs with known contact with HOCI cases
4. Other HCWs
5. SARS-CoV-2 +ve patients admitted to any other wards
6. SARS-CoV-2 +ve patients attending for acute care (e.g. Accident and Emergency) but not

admitted

These prioritisation rules are guided by the following rationale:

Most probable and definite HCAIs (based on time from admission) show a close sequence match

to at least one other case on the same ward, so sequencing of HOCI cases and any cases on the

same ward would be enough to identify these links.

. Links between ward outbreaks will be of particular importance to IPC investigations and would
be identified with sequencing focused on HOCI cases.

. The probability calculations within the SRT are most important for indeterminate HCAIs, and
where there is no sequence match on the same ward the estimated probability of nosocomial
infection is <50% in the majority of such cases (36/38 for the Sheffield dataset). The probability
estimates for indeterminate HCAIs should be interpreted with caution where overall sequenc-
ing coverage is poor, but SRT results are unlikely to lead to inappropriate changes to standard
IPC actions if groups ‘1’, ‘2’ and ‘3’ have been sequenced.

. Where there is a complete lack of close sequence matches within the hospital for probable or
definite HCAIs, the SRT returns the message that there is a lack of available genetic evidence
for linkage (but not that nosocomial infection is unlikely).

Following from this reasoning, we feel that useful information would be returned by the SRT as

long as high sequencing coverage is achieved for groups ‘1’, ‘2’ and ‘3’. High sequencing coverage

of groups ‘4’, ‘5’ and ‘6’ would allow the SRT to identify potential links between cases that would

likely be missed by standard IPC investigations.

For indeterminate HCAIs with no close sequence matches on the same ward, an inaccurate ‘zero’

posterior probability of post-admission infection will be returned if one or more similar sequences

are found in the community reference set but no similar sequences are observed in the institution

reference set with imperfect sequencing coverage. This is likely to be a more important issue in the

setting of low SARS-CoV-2 incidence.

For example, if there are 40 cases that could be included in the institution reference set for a

focus sequence and 2 of these (5%) would be a close sequence match, then we would need to

sequence at least 31/40 (77.5%) in order to have �95% probability of observing at least one of the

close sequence matches. However, if there are 200 cases that could be included in the institution ref-

erence set and 10 of these (5%) would be a close sequence match, then we would need to sequence

at least 51/200 (25.5%) in order to have �95% probability of observing at least one of the close

sequence matches.

A similar relationship would also be observed if we consider a rarer sequence type. If there are 40

cases that could be included in the institution reference set for a focus sequence and 1 of these

(2.5%) would be a close sequence match, then we would need to sequence at least 38/40 (95%) in

order to have �95% probability of observing the one close sequence match. However, if there are

200 cases that could be included in the institution reference set and 5 of these (2.5%) would be a

close sequence match, then we would need to sequence at least 90/200 (45%) in order to have

�95% probability of observing at least one of the close sequence matches.

On this basis, we believe that the goal of close to 100% sequencing coverage should be pursued

in the setting of low incidence of SARS-CoV-2, but that overall sequencing coverage of 50% or more

may be sufficient in the event that a high incidence of SARS-CoV-2 leads to too great a case load for

available sequencing resources.
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Results
Sequencing coverage in Glasgow dataset

Appendix 1—figure 1. Proportion of cases sequenced in Greater Glasgow and Clyde Health Board

between 1 March and 27 May (with sequence available as of 23 June 2020) by location of test (A).

Also displayed are the proportion of sequenced cases in the three focus hospitals subdivided by

assessment and inpatient locations (B), and the proportion of hospital onset COVID-19

infection (HOCI) cases sequenced at these hospitals (C).
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Home residence locations and geographic model parameters

Appendix 1—figure 2. Home residence location of individuals in (a) the Glasgow dataset and (b)

the Sheffield dataset, displayed by sample source (not including healthcare workers [HCWs]).

Locations are analysed using only the outer postcode, and as such random jitter (within longitude

and latitude of 0.05) has been added to allow display without overlap of points. Plot created using

ggmap for R with map obtained from Stamen maps. For Glasgow, 766 cases were included in the

calibration set with estimates of t = 0.15 and b = 0.0 for the geographic clustering model, whilst for

Sheffield 446 cases were included in the calibration set with resulting estimates of t = 0.84 and

b = 0.16.

SNP distance distributions

For the Glasgow sequence dataset as a whole, the median pairwise SNP difference among all

sequences was 9, and there were 1.3, 3.4, 6.4 and 10.1% of pairwise comparisons with 0, �1, �2
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and �3 SNP differences, respectively. For the Sheffield dataset as a whole, the median pairwise SNP

difference among all sequences was 8, and there were 1.2, 3.3, 6.5 and 10.8% of pairwise compari-

sons with 0, �1, �2 and �3 SNP differences, respectively.

Appendix 1—figure 3. Frequency plot of all pairwise SNP differences among (a) all 1199 sequences

in the Glasgow dataset and (b) all 1629 analysed sequences in the Sheffield dataset.

Additional case study

Appendix 1—figure 4 shows a phylogenetic tree indicating complex transmission networks across

multiple hospitals in the Glasgow area (with SRT outputs for Hospitals 2 and 4). A monophyletic clus-

ter of HOCIs can be seen in Hospital 2 Unit 48, with the first detected case identified by the SRT as

a hospital-acquired and the rest unit-acquired infections. A paraphyletic group of HOCIs was

detected in Hospital 4 Unit 69. Patient 1 (UID0042) was screened for COVID in Unit 69 on

14 April 2020 after developing a cough and oxygen requirement. The patient was moved from the

nightingale area to a single room on the ward on 14 April 2020 and was confirmed positive on

15 April 2020.
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Appendix 1—figure 4. Maximum-likelihood tree for sequences found in Hospital 2 Unit 48 and Hos-

pital 4 Unit 69 of the Glasgow dataset up until the 21st of April (inclusive). The circles with numbers

represent the number of community sequences that are identical and at the base of each lineage

(n = 5, n = 35, n = 4). Tree tips with black circles represent further community sequences. The black

lines represent the time from admission to sampling. The values below the line are the posterior

probability for unit infection + the posterior probability of hospital infection from the sequence

reporting tool.
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On 20 April 20, a second patient on Unit 69 (not sequenced) was screened after developing a

cough and pyrexia and confirmed positive on 21 April 2020. The patient was in a single room at the

time of symptom onset; however, they had been in the main nightingale ward opposite patient 1 for

5 days. At this point 13 asymptomatic contacts in Unit 69 were screened, and 8 (UID0043, UID0073,

UID0041, UID0095, UID0116, UID0094, UID0083, UID0121) were positive. These cases are all identi-

fied as hospital-acquired or unit-acquired infections and can be grouped into a genetically similar

cluster with a maximum pairwise distance of two SNPs between each member and its nearest neigh-

bour. However, this cluster clearly represents multiple introductions of SARS-CoV-2 onto the ward.
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Examples of SRT reports

Appendix 1—figure 5. Example of sequence reporting tool output with estimated very highly prob-

able infection within unit.
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Appendix 1—figure 6. Example of sequence reporting tool output with estimated probable infec-

tion within hospital.
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