Local genetic context shapes the function of a gene regulatory network

  1. Anna Nagy-Staron  Is a corresponding author
  2. Kathrin Tomasek
  3. Caroline Caruso Carter
  4. Elisabeth Sonnleitner
  5. Bor Kavčič
  6. Tiago Paixão
  7. Calin C Guet  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. University of Vienna, Austria
  3. Instituto Gulbenkian de Ciência, Portugal

Abstract

Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks.

Data availability

Plasmid sequences are provided in IST Research Depository, DOI 10.15479/AT:ISTA:8951

The following data sets were generated

Article and author information

Author details

  1. Anna Nagy-Staron

    Department of Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    anna.staron@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1391-8377
  2. Kathrin Tomasek

    Department of Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3768-877X
  3. Caroline Caruso Carter

    Department of Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0475-856X
  4. Elisabeth Sonnleitner

    Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Bor Kavčič

    Department of Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6041-254X
  6. Tiago Paixão

    Quantitative Biology Unit, Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. Calin C Guet

    Biology, Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    calin@ist.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6220-2052

Funding

FP7 People: Marie-Curie Actions (628377)

  • Anna Nagy-Staron

ANR-FWF

  • Calin C Guet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul B Rainey, Max Planck Institute for Evolutionary Biology, Germany

Version history

  1. Received: December 21, 2020
  2. Accepted: February 19, 2021
  3. Accepted Manuscript published: March 8, 2021 (version 1)
  4. Version of Record published: March 17, 2021 (version 2)
  5. Version of Record updated: April 26, 2021 (version 3)

Copyright

© 2021, Nagy-Staron et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,577
    views
  • 289
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Nagy-Staron
  2. Kathrin Tomasek
  3. Caroline Caruso Carter
  4. Elisabeth Sonnleitner
  5. Bor Kavčič
  6. Tiago Paixão
  7. Calin C Guet
(2021)
Local genetic context shapes the function of a gene regulatory network
eLife 10:e65993.
https://doi.org/10.7554/eLife.65993

Share this article

https://doi.org/10.7554/eLife.65993

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.