In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish

  1. Veronika Miskolci
  2. Kelsey E Tweed
  3. Michael R Lasarev
  4. Emily C Britt
  5. Alex J Walsh
  6. Landon J Zimmerman
  7. Courtney E McDougal
  8. Mark R Cronan
  9. Jing Fan
  10. John-Demian Sauer
  11. Melissa C Skala  Is a corresponding author
  12. Anna Huttenlocher  Is a corresponding author
  1. Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, United States
  2. Morgridge Institute for Research, United States
  3. Department of Biomedical Engineering, University of Wisconsin-Madison, United States
  4. Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, United States
  5. Department of Nutritional Sciences, University of Wisconsin-Madison, United States
  6. Department of Molecular Genetics and Microbiology, Duke University School of Medicine, United States
  7. Department of Pediatrics, University of Wisconsin-Madison, United States
8 figures, 3 tables and 1 additional file

Figures

Figure 1 with 1 supplement
Inhibition of glycolysis reduces the optical redox ratio of macrophages following simple transection.

Tail fin transection distal to the notochord was performed using transgenic zebrafish larvae (Tg(mpeg1:mCherry-CAAX) that labels macrophages in the plasma membrane with mCherry) at 3 days post …

Figure 1—figure supplement 1
Individual nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) fluorescence lifetime endpoints associated with Figure 1.

Quantitative analysis of (A) tau1 (τ1), free/short lifetime of NAD(P)H, (B) tau2 (τ2), bound/long lifetime of NAD(P)H, (C) alpha1 (α1), fractional component of free NAD(P)H, (D) tau1 (τ1), …

Figure 2 with 1 supplement
Mean lifetime of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is reduced in TNFα+ macrophages at the infected tail wound.

Tail fin transection distal to the notochord was performed using N-phenylthiourea-treated double transgenic zebrafish larvae (Tg(tnf:GFP) x Tg(mpeg1:mCherry-CAAX), a TNFα reporter line in …

Figure 2—figure supplement 1
Individual nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) fluorescence lifetime endpoints associated with Figure 2.

Quantitative analysis of (A) tau1 (τ1), free/short lifetime of NAD(P)H, (B) tau2 (τ2), bound/long lifetime of NAD(P)H, and (C) alpha1 (α1), fractional component of free NAD(P)H. The lifetime …

Figure 3 with 1 supplement
Optical redox ratio and mean lifetime of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) are reduced in macrophages at the infected tail wound.

Tail fin transection distal to the notochord was performed using transgenic zebrafish larvae (Tg(mpeg1:mCherry-CAAX) that labels macrophages in the plasma membrane with mCherry) at 3 days post …

Figure 3—figure supplement 1
Individual nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) fluorescence lifetime endpoints associated with Figure 3.

Quantitative analysis of (A) tau1 (τ1), free/short lifetime of NAD(P)H, (B) tau2 (τ2), bound/long lifetime of NAD(P)H, (C) alpha1 (α1), fractional component of free NAD(P)H, (D) mean lifetime (τm) …

Figure 4 with 1 supplement
Autofluorescence imaging resolves temporal changes in the metabolic activity of macrophages at sterile tail wounds.

Tail fin transection (Tt) or thermal injury (burn) distal to the notochord was performed using transgenic zebrafish larvae (Tg(mpeg1:mCherry-CAAX) that labels macrophages in the plasma membrane with …

Figure 4—figure supplement 1
Individual nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavin adenine dinucleotide (FAD) fluorescence lifetime endpoints associated with Figure 4.

Quantitative analysis of (A) tau1 (τ1), free/short lifetime of NAD(P)H, (B) tau2 (τ2), bound/long lifetime of NAD(P)H, (C) alpha1 (α1), fractional component of free NAD(P)H, (D) mean lifetime (τm) …

Figure 5 with 1 supplement
Metformin treatment increases optical redox ratio of macrophages.

(A, B) Thermal injury (burn) distal to the notochord was performed using double transgenic zebrafish larvae (Tg(tnf:GFP x mpeg1:mCherry-CAAX) that labels macrophages in the plasma membrane with …

Figure 5—figure supplement 1
Individual nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) fluorescence lifetime endpoints associated with Figure 5.

(A) Quantitative analysis of total macrophages at the burn wound by area of mCherry intensity, with bars showing arithmetic mean and 95% CI. Quantitative analysis of (B) tau1 (τ1), free/short …

Figure 6 with 1 supplement
Macrophage metabolic switches are associated with changes in tissue repair.

(A–B) Thermal injury distal to the notochord was performed using N-phenylthiourea-treated double transgenic wild-type (wt) or stat6-deficient zebrafish larvae (Tg(tnf:GFP x mpeg1:mCherry-CAAX)) at 3 …

Figure 6—figure supplement 1
Individual nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavin adenine dinucleotide (FAD) fluorescence lifetime endpoints associated with Figure 6.

(A) Total number of macrophages in whole larvae displayed with bars showing arithmetic mean and 95% CI; larvae were generated by a het incross and genotyped post imaging; results are from three …

Author response image 1
Author response image 2

Tables

Table 1
Definition of autofluorescence imaging endpoints.
EndpointsDefinitionInterpretation
Optical redox ratio
Chance et al., 1979
INAD(P)HINAD(P)H+IFAD
Increase in optical redox ratio (ORR) = more reduced intracellular environment; likely increase in glycolysis; decrease in ORR = more oxidized intracellular environment; likely decrease in glycolysis. (I, intensity)
Nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) Short lifetime of NAD(P)HFree/unbound NAD(P)H
NAD(P)H τ2Long lifetime of NAD(P)HNAD(P)H bound to a protein
NAD(P)H α1Fractional component of free NAD(P)Hα2 is fractional component of bound NAD(P)H, α1+α2=1; quantifies the pools of NAD(P)H in free and bound states
NAD(P)H mean lifetime ()τm=τ1α1+τ2α2Weighted average of individual lifetime endpoints (); one can look at changes in individual endpoints to see what drives changes in τm; for instance, a decrease in τm can be due to increase in α1, decrease in τ1, and/or decrease in τ2
Flavin adenine dinucleotide (FAD) τ1Short lifetime of FADFAD bound to a protein
FAD τ2Long lifetime of FADFree/unbound FAD
FAD α1Fractional component of bound FADα2 is fractional component of free FAD, α1+α2=1; quantifies the pools of FAD in free and bound states
FAD τmτm=τ1α1+τ2α2
Weighted average of individual lifetime endpoints (τ1,τ2,α1,α2); one can look at changes in individual endpoints to see what drives changes in τm; for instance, a decrease in τm can be due to increase in α1, decrease in τ1, and/or decrease in τ2
Optical Metabolic Imaging (OMI) index
Walsh and Skala, 2015
ORRi<ORR>+NAD(P)Hτmi<NAD(P)Hτm>FADτmi<FADτm>Composite measure of mean-centered optical redox ratio and mean lifetimes of NAD(P)H and FAD; increase in the OMI index corresponds to increased redox ratio, and increased NAD(P)H and FAD protein-binding activities
Table 2
Summary of changes in optical redox ratio, Optical Metabolic Imaging (OMI) index, and nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) lifetime endpoints.

Changes in treated samples are shown relative to the control. Control, simple tail transection (uninfected); nd, not different.

Control versus2-Deoxy-d-glucoseLm-infected wound TNFα−Lm-infected wound TNFα+Lm-infected wound
Burn wound24 hrBurn wound72 hr
Optical redox ratio--nd
OMI index---nd
NAD(P)H τm
NAD(P)H τ1ndnd
NAD(P)H τ2ndnd
NAD(P)H α1ndnd
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (10,403 S)Listeria monocytogenes (strain 10,403 S)PMID:26468080Was be obtained from JD Sauer Lab, University of Wisconsin - Madison
Strain, strain background (Danio rerio)WT (AB)ZIRCZL1https://zebrafish.org/home/guide.php
Strain, strain background (D. rerio)Tg(tnf:GFP) (AB)PMID:25730872Was obtained from Michel Bagnat Lab, Duke University
Strain, strain background (D. rerio)Tg(mpeg1:histone2b-GFP) (AB)PMID:31259685Can be obtained from Anna Huttenlocher Lab, University of Wisconsin - Madison
Strain, strain background (D. rerio)Tg(mpeg1:mCherry-CAAX) (albino)PMID:26887656Was obtained from Leonard Zon Lab, Boston Children’s Hospital, Dana Farber Cancer Institute
Strain, strain background (D. rerio)stat6 mutant (AB)PMID:33761328Was obtained from David Tobin Lab, Duke University
Chemical compound, drugMetforminEnzo Life Sciences, cat no ALX-270–432 G005https://www.enzolifesciences.com/ALX-270-432/metformin/1 mM in E3, bathing, start treatment at 1 day post fertilization, refresh daily
Chemical compound, drug2-Deoxy-d-glucoseSigma, cat no D8375https://www.sigmaaldrich.com/US/en/product/sigma/d83755 mM in E3, bathing, 1 hr pretreatment right before imaging
Software, algorithmGraphPad PrismRRID:SCR_002798https://www.graphpad.com/scientific-software/prism/
Software, algorithmSASRRID:SCR_008567https://www.sas.com/en_us/home.html
Software, algorithmFiji, ImageJSchindelin et al., 2012RRID:SCR_002285https://fiji.sc/
Software, algorithmCell profilerRRID:SCR_007358https://cellprofiler.org/
Software, algorithmMatplotlibRRID:SCR_008624https://matplotlib.org/
Software, algorithmR project for statistical computingR Core Team, 2019RRID:SCR_001905https://www.r-project.org/
Software, algorithmMATLAB R2019bhttps://www.mathworks.com/
Software, algorithmSPCImage 7.4https://www.becker-hickl.com/products/spcimage/
OtherLine-powered thermal cautery instrumentStoelting59,005https://stoeltingco.com/Neuroscience/Thermal-Cautery-Instruments~9879
OtherType E tip for cautery instrumentStoelting59,010https://stoeltingco.com/Neuroscience/Thermal-Cautery-Instruments~9879

Additional files

Download links