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Abstract In cancer, telomere maintenance is critical for the development of replicative

immortality. Using genome sequences from the Cancer Cell Line Encyclopedia and Genomics of

Drug Sensitivity in Cancer Project, we calculated telomere content across 1299 cancer cell lines. We

find that telomerase reverse transcriptase (TERT) expression correlates with telomere content in

lung, central nervous system, and leukemia cell lines. Using CRISPR/Cas9 screening data, we show

that lower telomeric content is associated with dependency of CST telomere maintenance genes.

Increased dependencies of shelterin members are associated with wild-type TP53 status.

Investigating the epigenetic regulation of TERT, we find widespread allele-specific expression in

promoter-wildtype contexts. TERT promoter-mutant cell lines exhibit hypomethylation at PRC2-

repressed regions, suggesting a cooperative global epigenetic state in the reactivation of

telomerase. By incorporating telomere content with genomic features across comprehensively

characterized cell lines, we provide further insights into the role of telomere regulation in cancer

immortality.

Introduction
Telomeres, repetitive nucleoprotein complexes located at chromosomal ends, are an important com-

ponent of genomic stability (de Lange, 2009). As protective chromosomal caps, telomeres prevent

potentially lethal end-fusion events (McClintock, 1941; McClintock, 1942) and mis-processing of

chromosomal ends as damaged sites by the DNA repair machinery (de Lange, 2005; Verdun and

Karlseder, 2007). Due to factors such as incomplete DNA replication and oxidative stress, telomeres

gradually shorten with successive rounds of cell division (Olovnikov, 1973). If left unchecked, telo-

mere attrition eventually triggers growth arrest and senescence, and further shortening can lead to

acute chromosomal breakage and cell death. Unrestricted telomere shortening therefore acts as a

major obstacle in the course of tumor development (Hackett and Greider, 2002; Lorbeer and

Hockemeyer, 2020), and inhibition of telomere maintenance offers still largely untapped opportuni-

ties for targeted cancer therapies (Damm et al., 2001; Dikmen et al., 2005; Flynn et al., 2015).

Telomere shortening in embryonic development and in certain adult cell populations is offset by

telomerase (Greider and Blackburn, 1985), a ribonucleoprotein enzyme with a core reverse tran-

scriptase, TERT, that lengthens telomeres by catalyzing the addition of TTAGGG nucleotide repeats

from an inbuilt RNA template component, TERC (Feng et al., 1995; Yu et al., 1990). Although telo-

merase is transcriptionally silenced in the majority of somatic cells, telomerase is reactivated in over

85% of all human cancers (Kim et al., 1994). Despite having activated telomere maintenance mecha-

nisms, most cancers tend to have shorter telomeres than normal tissues, perhaps due to telomere
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maintenance mechanisms developing only after a critical state of telomere crisis has been reached

(Okamoto and Seimiya, 2019). Reactivation of telomerase is associated with a diverse set of geno-

mic alterations, the most common of which include highly recurrent mutations in the TERT promoter

(Horn et al., 2013; Huang et al., 2013), aberrant methylation (Lee et al., 2019) or copy number

amplification (Zhang et al., 2000) of TERT, and modulation of the numerous transcription factors

that regulate TERT expression (Greider, 2012; Wu et al., 1999). Of the minority of cancers that do

not reactivate telomerase, many depend upon alternative lengthening of telomeres (ALT), a process

that exploits mechanisms of homologous recombination and is characterized by heterogeneous telo-

mere lengths, mutations in the ATRX and DAXX chromatin-regulating factors, and genome instability

(Cesare and Reddel, 2010).

The readily identifiable nature of telomeric DNA repeats has motivated the development of

computational methods for the determination of telomere content from whole-genome sequencing

(WGS) and whole-exome sequencing (WES) data (UK10K Consortium et al., 2014). Recently, such

methods were employed to characterize telomere content across tumor sequencing data from pan-

els such as The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and

the Pan-Cancer Analysis of Whole Genomes (PCAWG) study, which have identified genomic markers

of relative telomere lengthening and maintenance mechanisms (Barthel et al., 2017; Castel et al.,

2019; PCAWG-Structural Variation Working Group et al., 2020). To gain a greater functional

understanding of the landscape of telomere maintenance in cancer, we estimated telomeric DNA

content (subsequently referred to as telomere content Feuerbach et al., 2019) across a diverse array

of human cancer cell lines profiled in the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,

2012; Ghandi et al., 2019) and Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al., 2013)

projects. Although cancer cell lines are immortalized, often through TERT activation, cell lines can

serve as models for living tissues in aspects such as gene expression and have been deeply profiled

(Barretina et al., 2012; Ghandi et al., 2019). We hypothesized that assessing telomere content

could reflect underlying mechanisms of attrition, maintenance, and repair, which may be reflected in

associations with genetic markers. By combining these estimates with a rich set of existing CCLE

annotations, we aimed to determine genetic, epigenetic, and functional markers of telomere content

and telomerase activity across a diverse panel of human cancer cell lines.

Results

Telomere content across cancer cell lines
Telomeric reads can be identified in DNA-sequencing reads using the canonical tandemly repeated

TTAGGG motif, and normalized telomeric read counts may provide an accurate estimate of telo-

mere content (UK10K Consortium et al., 2014). We quantified telomere content across cell lines

using WGS and WES data from the independent CCLE (Barretina et al., 2012; Ghandi et al., 2019)

and GDSC (Yang et al., 2013) datasets. In particular, we considered 329 cell lines profiled with WGS

and 326 with WES in the CCLE, and 1056 samples profiled with WES in the GDSC, of which 55 were

non-cancerous matched-normal samples. We note that our estimates state telomeric DNA repeat

tract content, which is a normalized measure of telomeric reads in a sample, rather than solely telo-

mere length, because telomere length requires the identification of true telomeric DNA from intra-

chromosomal, non-terminal telomeric DNA repeat tracts and extrachromosomal telomeric DNA

(Feuerbach et al., 2019). To assess the fidelity of our telomere content measurements, we examined

the agreement between the telomere content estimates in overlapping cell lines from independent

sequencing datasets (Figure 1—figure supplements 1 and 2a). We observed high agreement

between the telomere content estimates derived from CCLE WGS and GDSC WES data (r = 0.84, p

= 3.7�10�79, n = 286) and moderate agreement between CCLE WGS and CCLE WES estimates (r =

0.71, p = 1.5�10�6, n = 36), suggesting that our length estimates were not strongly biased by

source. Among the three datasets used, CCLE WGS samples each captured at least ten thousand

telomeric reads (which we estimated as those with six or more TTAGGG repeats), followed by GDSC

WES samples at 100–1000 telomeric reads, and lastly by CCLE WES samples with 10–100 telomeric

reads (Figure 1—figure supplement 2b). Moreover, one cell line (HEL 92.1.7) was twice-sequenced

in the CCLE WGS dataset and these replicates had similar raw telomere length estimates (4.00 and

4.06 kilobases). Based on the agreement between CCLE WGS and GDSC WES, we generated a
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merged telomere content dataset of 1099 cell lines (Supplementary Methods) by combining the nor-

malized log-transformed telomere contents derived from the CCLE WGS and GDSC WES datasets

for downstream analyses.

Given these telomere content estimates, we first sought to examine the general distribution

across cell lines and with respect to key cell line attributes such as donor age and population dou-

bling rate. The overall distribution of telomere content displayed a slight skew (Figure 1—figure

supplement 2a) toward longer telomeres, perhaps reflective of cell lines dependent upon ALT, a

hallmark of which is telomeres of abnormal and heterogeneous lengths (Bryan et al., 1997;

Heaphy et al., 2011b). We matched a substantial number of cell lines (282 for CCLE WGS, 554 for

GDSC WES) with the age of the donor at the time of removal, from which we observed weak nega-

tive (vs. CCLE WGS: r = �0.05, p = 0.39; vs. GDSC WES: r = �0.17, p = 6.0�10�5) correlations

between telomere content and the age of the original donor (Figure 1—figure supplement 3a).

Similarly, we also found TC to be negatively correlated with the log CCLE-calculated cell line dou-

bling rate (vs. CCLE WGS: r = �0.17, p = 0.01; vs. GDSC WES: r = �0.11, p = 0.03) (Figure 1—fig-

ure supplement 3b), consistent with shorter telomeres in cell lines modestly associated with higher

doubling rates. Among 1099 merged CCLE WGS and GDSC WES samples, we found raw telomere

content to vary substantially both between (p = 2.0�10�15, Kruskal-Wallis H test) and within (Fig-

ure 1) cell lines of different primary sites (Figure 1—figure supplement 3c,d). Cell lines of hemato-

poietic origin (namely leukemias and lymphomas, which comprised 156 lines) tended to have higher

telomere contents on average (p = 2.0�10�8, two-sided Mann-Whitney U test), perhaps due to their

elevated levels of telomerase expression, which were the highest among all subtypes. The 55 non-

cancerous samples profiled as part of the GDSC displayed relatively high telomere contents (p =

5.9�10�4, two-sided Mann-Whitney U test, Figure 1), consistent with previous reports of wide-

spread telomere shortening in cancer (Barthel et al., 2017). The greatest median telomere content,

however, was found across lymphocyte and blood cell lines (Figure 1). The cell line with the highest

telomere content was the U2-OS osteosarcoma line, a well-characterized model for ALT

(Bryan et al., 1997).

Genomic alterations associated with telomere content
Having determined telomere content in the context of cell line meta-attributes, we next sought to

leverage the substantial genomic profiles of the CCLE to find correlates of telomere content. To

characterize the genomic signatures of telomere content, we correlated the CCLE WGS and GDSC

WES telomere content estimates against molecular annotations in the CCLE, with a focus on altera-

tions known to be associated with telomere maintenance. First, we observed that telomere content

and TERT overall and isoform-specific mRNA levels were positively though weakly correlated as

determined by RNA sequencing (RNA-seq) both within each subtype (Figure 1—figure supplement

4a,b) and overall (Figure 1—figure supplement 4c,d). In specific cancer types such as CNS, lung,

and leukemia, we found a higher correlation between TERT mRNA expression and telomere content

(Figure 1—figure supplement 4a,b). Furthermore, we found negative associations between TERT

mRNA levels and telomere content in bone and peripheral nervous system cell lines (Figure 1—fig-

ure supplement 4a,b). Because ALT is most commonly found in these cancer types, this may be a

consequence of the near-mutual exclusivity between TERT expression and markers of ALT

(Killela et al., 2013; Lee et al., 2018). Although mutations in ATRX and DAXX are closely associated

with the development of the ALT phenotype (Brosnan-Cashman et al., 2018; Clynes et al., 2015;

Heaphy et al., 2011a; ALT Starr Cancer Consortium et al., 2012; Ramamoorthy and Smith,

2015), comparisons between telomere content and mutations in ATRX and DAXX yielded significant

associations only between DAXX alterations and merged telomere content (Figure 1—figure sup-

plement 5a). We further repeated association tests with TP53, VHL, and IDH1 as identified previ-

ously among TCGA samples (Barthel et al., 2017) and confirm that truncating VHL mutations are

associated with reduced telomere lengths (Figure 1—figure supplement 5a), although this may be

confounded by the high occurrence of VHL mutations in kidney cell lines. Testing telomere content

association with molecular features profiled in the CCLE, we identified several genes known to be

associated with telomere biology, suggesting that our integration of telomere content with existing

annotations could identify features relevant to telomere maintenance mechanisms (Figure 1—figure

supplement 5b). While we found relatively few significant associations between telomere content

and mutations, we note that we were limited to an absolute estimate of telomere content as
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opposed to a relative measure of somatic telomere lengthening, which requires a paired normal

sample (Barthel et al., 2017).

Telomere content associates with CST complex dependencies
Given the associations between telomere content and several genomic and transcriptomic features,

we next considered whether variations in telomere content could confer or reduce selective vulner-

abilities to inactivation of certain genes. In particular, we hypothesized that telomere content may

be associated with vulnerabilities to reductions in the levels of telomere-regulating proteins. These

vulnerabilities may be measured using CRISPR- and RNAi-based depletion assays, which can be

processed to yield a numerical value for the dependency of a gene within a cell line, with more nega-

tive values indicative of increased dependence on a particular gene. To reveal such associations, we

correlated our telomere content estimates with gene inactivation sensitivities assessed via genome-

wide CRISPR-Cas9 (Avana; Meyers et al., 2017) and RNAi viability screens (Achilles RNAi
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Figure 1. Telomere content and related genomic features across human cell lines. Cell lines were grouped by cancer type and ordered by telomere

content within each type, and are displayed such that each column represents a cell line. Telomere content measurements reflect combined z-scored

estimates derived from CCLE WGS and GDSC WES with means for samples with telomere content estimates from both sources. Bars within each

cancer type represent medians. Relative copy number values are shown as log2(relative to ploidy + 1)–1. Cell lines shown are filtered such in addition to

annotations for telomere content, values for TERT and TERC RNA-seq expression, TERT and TERC copy number, and ATRX and DAXX mutation status

are all available (with an exception made for non-cancerous cell lines, which lack such profiling in DepMap). Cell lines were also filtered such that each

cancer type is represented by at least 10 cell lines (n = 738 cell lines total). RNA expression estimates are in terms of log2(TPM+1). CNS: central nervous

system; PNS, peripheral nervous system; UADT, upper aerodigestive tract.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overlap between cell lines represented in annotations.

Figure supplement 2. Telomere content agreement between sequencing sets.

Figure supplement 3. Telomere content, age, and tissue subtype.

Figure supplement 4. Transcriptomic associations between TERT, TERC, and telomere content.

Figure supplement 5. Associations between telomere content and cell line characteristics.
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[Tsherniak et al., 2017] and DRIVE [McDonald et al., 2017]). Although we found no dependencies

that displayed outlier associations with telomere content in the Achilles RNAi screen (Figure 1—fig-

ure supplement 5b), we discovered that sensitivity to Avana CRISPR-Cas9 knockouts of each of the

three CST complex proteins as well as the telomere-associating protein TERF1 were outlier associa-

tions with telomere content estimates computed from both the GDSC WES and CCLE WGS data

(Figure 2a,b). Specifically, sensitivity to knockout of the CST complex components (CTC1, STN1,

TEN1), which are key mediators of telomere capping and elongation termination (Chen et al.,

2012), was correlated with lower telomere content (Figure 2—figure supplement 1a,b). Although

the CST complex was not assessed in the DRIVE screening dataset, we again found TERF1, a key

shelterin component, to be among the positively correlated genes with telomere content in the
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Figure 2. Telomere-binding protein dependencies are associated with telomere content and TP53 mutation status. (a) Pairwise plot of Pearson

correlations between dependencies of all genes in the Avana dataset and CCLE WGS telomere content (x-axis, n = 210–211 cell lines) and GDSC WES

telomere content (y-axis, n = 420–426 cell lines) estimates. (b) Pairwise plot of significance levels of correlations shown in (a) with correction for multiple

hypothesis testing. (c) Pairwise Pearson correlation matrix between Avana dependencies among CST members and five shelterin components (n = 796–

808 cell lines; Supplementary file 3). (d) Associations of CST and shelterin member Avana dependency scores with damaging and hotspot mutations (n

= 796–808 cell lines). For each gene dependency, mutation associations were computed using rank-biserial correlations with mutants and wild-types as

the two categories. p Values determined using two-sided Mann-Whitney U test. (e) Associations of shelterin member DRIVE dependency scores with

damaging and hotspot mutations (n = 372–375 cell lines; Supplementary file 3) under the same scheme used in (d). (f) Network schematic of the co-

dependency matrix shown in (c) and annotated with association with telomere content or TP53 mutation status.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Telomere content and telomere protein dependencies.

Figure supplement 2. TP53 mutation status and shelterin member dependencies.
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DRIVE panel (Supplementary file 2). Overall, these data suggest that cancer cell lines with shorter

telomeres are more susceptible to inhibition of the CST-mediated telomere maintenance

mechanism.

Using the CST complex as a seed set, we subsequently queried all dependencies under the prem-

ise that associated gene dependencies reflect coordinated functions (Pan et al., 2018). Within the

Avana panel (n = 757–769), we found significant (FDR < 0.01) outlier associations between the CST

complex genes and genes encoding six additional telomere-associating proteins (ACD, POT1,

TERF1, TERF2, TINF2, and DCLRE1B). These first five additional telomere-associating proteins,

together with TERF2IP, comprise the shelterin complex, the protector and regulator of telomere

length and topology (de Lange, 2005). Interestingly, whereas the five other shelterin dependencies

were positively associated with telomere content, TERF2IP displayed a weak negative association

(Figure 2—figure supplement 1c), suggesting that TERF2IP may play a distinct regulatory role in

shelterin function compared to the other members. To examine the dependency landscape of the

CST complex and these six other telomere-related proteins, we computed a correlation matrix

involving these nine genes, clustering of which yielded two main subgroups: one comprised of the

CST complex members, and another of the six other genes (Figure 2c). Despite this separation,

POT1 and TINF2 also displayed notable correlations with CST dependencies, possibly serving as the

primary mediators of previously-reported functional interactions between the shelterin and CST

complexes (Chen et al., 2012; Wan et al., 2009).

Although we found strong codependency relationships within this group of telomere-associated

proteins, we also observed that certain shelterin members displayed notable codependencies with

p53 pathway members such as MDM2, ATM, and TP53 itself (Figure 2—figure supplement 2a,b).

Because sensitivity to perturbation of the p53 pathway is highly associated with TP53 mutations in

cancer (McDonald et al., 2017), we asked if these codependency relationships were also associated

with hotspot mutations in TP53. In fact, TP53 was a significant (FDR < 0.001) outlier when a compre-

hensive set of hotspot and damaging mutations was compared against sensitivity to ACD and TERF1

dependencies in the Avana panel (Figure 2d, Figure 2—figure supplement 2c) and against TERF1

and TINF2 dependencies in the DRIVE panel (Figure 2e, Figure 2—figure supplement 2d). These

links between these gene dependencies and TP53 mutation status reprise and extend previous

reports of p53-dependent DNA damage responses to TERF1 and TINF2 depletion

(Pereboeva et al., 2016; Rosenfeld et al., 2009). Taken together, we find that CST and shelterin

dependencies are correlated with each other, telomere content, and TP53 mutation status

(Figure 2f).

Patterns and mechanisms of telomerase expression
Having thoroughly characterized telomere content and its related dependencies across the CCLE,

we next focused on the regulation of TERT transcription itself. Across 1019 samples previously pro-

filed with deep RNAseq, we found that hematopoietic cell lines (leukemias, lymphomas, and myelo-

mas) were associated with the greatest mean expression of TERT (p = 5.8�10�26, two-sided Mann-

Whitney U test; Figure 1). In contrast, TERT expression was significantly reduced (p = 2.0�10�22,

two-sided Mann-Whitney U test) and generally undetectable in fibroblast-like cell lines. With regard

to the telomerase RNA component (TERC), we found strong associations between TERC RNA

expression and RNA levels of several small Cajal body-specific RNAs (scaRNAs) and histone subunit

RNAs (Figure 1—figure supplement 4e). The co-expression of TERC and these other RNAs may be

a consequence of their shared localization, processing, and regulation in Cajal bodies (Gall, 2003;

Venteicher et al., 2009; Zhu et al., 2004), as TERC itself contains an H/ACA box small nucleolar

RNA (snoRNA) domain (Mitchell et al., 1999) and is a scaRNA family member. Moreover, these

associations suggest that variations in Cajal body processing may act as factors in TERC reactivation

(Cao et al., 2008). Although we focused on the transcriptional features of telomerase, it is important

to note that other factors in addition to TERT and TERC expression determine telomerase activity

and the eventual maintenance of telomere length (Listerman et al., 2013). Despite these orthogonal

factors, TERT enzymatic activity remains strongly correlated with raw levels of TERT expression

(Takakura et al., 1998).

Beyond raw gene and transcript expression levels, we next examined the underlying mechanisms

for reactivating TERT in cancer using the comprehensive cell line data. Widespread transcriptional

reactivation of TERT in cancer is driven by a variety of factors. Aside from copy number
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amplifications (Zhang et al., 2000), highly recurrent mutations in the TERT promoter drive strong

monoallelic TERT re-expression (Bell et al., 2015; Huang et al., 2015). To explore the intersections

between methylation, promoter mutations, and allele-specific expression, we combined available

profiling data from the CCLE (Figure 3a). First, using WGS and targeted sequencing of the TERT

promoter provided in the CCLE, we assessed TERT promoter status for 503 cell lines across 21 can-

cer types (Figure 3—figure supplement 1a). We found that only the C228T (chr5:1,295,228 C>T)

mutation was significantly (p = 2.8�10�5, two-sided Mann-Whitney U test) associated with an

increase in TERT expression (Figure 3—figure supplement 1b). Surprisingly, the mean level of TERT

expression in monoallelic contexts was only slightly lower than that of biallelic contexts, with less
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Figure 3. Allele-specific methylation of the TERT locus is indicative of both promoter mutation status and allele-specific expression. (a) Heatmap of

CpG methylation levels along the TERT locus, sorted in order of mean methylation levels along the upstream 5 kb region within TERTp-mutants and -

wildtypes. TERT gene expression levels are also indicated for each cell line. Each column represents a cell line (n = 450), and each row represents a

CpG pair (n = 209) sorted from the 5’ to 3’ direction along the TERT sense strand. White blocks indicate missing ASM/methylation values. Cell lines with

unavailable ASM values for at least half of TERT locus CpGs were excluded. (b) ASM levels of TERT locus subregions in cell lines are indicative of TERTp

status and allele-specific expression. BAE, biallelic expression; MAE, monoallelic expression. Boxes, interquartile range (IQR); center lines, median;

whiskers, maximum and minimum or 1.5 � IQR; notches, 95% confidence interval of bootstrapped median using 1000 samples and a Gaussian-based

asymptotic approximation. *p < 0.05, **p < 0.01, n.s, not significant; two-sided Mann-Whitney U test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. TERT promoter mutations, gene expression, and ASE.

Figure supplement 2. Interactions bewteen TERT ASE, promoter mutations, and methylation.
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than a 1.5-fold difference between the groups (p = 0.03, two-sided Mann-Whitney U test). Given

that cells with biallelic TERT expression presumably express TERT with twice the transcriptional

source sites as those with monoallelic TERT expression, this reduced difference may be a conse-

quence of the effects of the TERT promoter mutation in producing particularly robust monoallelic

expression (Huang et al., 2013) or expression of TERT from multiple sites all of the same allele

(Rowland et al., 2019).

To further explore allele-specific expression (ASE) patterns of TERT, we employed an ASE-calling

pipeline (Supplementary Methods) and determined TERT allele-specific expression status for 157 cell

lines (Figure 3—figure supplement 1c), an increase of 69 cell lines compared to a previous report

using CCLE WGS data (Huang et al., 2015). Out of these 157 cell lines, 87 (58.6%) express TERT

from a single allele. Moreover, of these 157 cell lines, 129 have a sequenced promoter, with which

we confirm that promoter mutations unanimously drive monoallelic expression (Figure 3—figure

supplement 2a). Our expanded set of cell lines also reveals several new tissues of origin in which

TERT is monoallelically expressed without a mutant promoter, such as hematopoietic cell lines (Fig-

ure 3—figure supplement 2b). This high proportion of TERT monoallelic expression led us to ask

whether there are genomic alterations aside from promoter mutations that could lead to ASE. Under

the assumption that such alterations may also induce ASE in a larger region than a promoter muta-

tion, we determined ASE status in SLC6A19 and CLPTM1L, which are the most immediate neighbor

genes of TERT. Because the number of samples with annotated ASE in both TERT and these neigh-

bors was not large enough for comparisons of overlapping ASE, we instead examined the individual

frequencies of ASE among these three genes. Compared to promoter-wildtype monoallelic TERT

expression occurring in 36% (47 of 129) of samples, only 9.4% (11 out of 117) of samples expressed

CLPTM1L from a single allele and 22% (5 of 22) expressed SLC6A19 from a single allele, and we

were unable to assess co-occurrence due to lack of overlap in samples with heterozygous SNPs in

both TERT and CLPTM1L or SLC6A19. Furthermore, a search for structural variants in the surround-

ing 100 kilobase regions yielded no significant associations. However, given that only 106 cell lines

had both a known TERT ASE status and the required WGS data for structural variant determination,

more genomic annotations may be needed for the discovery of additional mechanisms driving the

monoallelic expression of TERT.

Distinct TERTp methylation patterns at the TERT locus
Aside from monoallelic expression, TERT promoter mutations are characterized by unique patterns

of epigenetic marks, namely allele-specific CpG methylation (ASM) and H3K27me3 repressive his-

tone modifications (Stern et al., 2015; Stern et al., 2017) and long-range chromatin interactions

(Akıncılar et al., 2016). Using genome-wide RRBS data across 928 cell lines, we elucidated associa-

tions between CpG-site methylation of the TERT locus (namely, TERT and the surrounding 5 kb) and

TERT promoter mutations. Examination of methylation patterns at the TERT locus revealed five

prominent ASM clusters in the TERT locus, corresponding roughly to the upstream 5 kb region (con-

taining the promoter), part of a CpG island overlapping the first exon, two other parts of this CpG

island, and the remaining gene body (Figure 3a). Comparison of each region’s mean ASM against

TERTp mutant status revealed that TERTp mutants exhibited strong and significant (p < 0.01)

increases in ASM in the promoter (n = 485), remaining gene body (n = 493), and exon 1 (n = 478)

regions (Figure 3b, Figure 3—figure supplement 2c). In contrast, TERTp wild-type cell lines tended

to lack ASM throughout the TERT locus, instead being hypermethylated in all regions except for

exon 1 (Figure 3b, Figure 3—figure supplement 2d), and partial hypomethylation in promoter

mutants may reflect the hemizygous methylation previously observed at the TERT locus

(Rowland et al., 2020; Stern et al., 2015; Stern et al., 2017). Absolute methylation of the remain-

ing gene body was positively correlated with TERT expression in both promoter status contexts (Fig-

ure 3—figure supplement 1e), which parallels previous reports of a positive correlation between

TERT expression and methylation (Barthel et al., 2017; Salgado et al., 2019). Exon 1 methylation

was elevated in nearly all cell lines with monoallelic TERT expression in both the mutant promoter

context (p = 6.3�10�3, two-sided Mann-Whitney U test, n = 81) and the wildtype promoter context

(p = 1.6�10�4, two-sided Mann-Whitney U test, n = 98) compared to biallelic TERT expressors

(Stern et al., 2017). Interestingly, although most cell lines with monoallelic TERT expression dis-

played partially elevated methylation levels in exon 1 (Figure 3b), only promoter-mutant cell lines
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were hypomethylated in the surrounding regions, suggesting that the epigenetic state of promoter

mutants is in fact distinct from that of promoter-wildtype monoallelic TERT expressors.

A genome-wide epigenetic pattern in TERTp mutants
The observation that TERT promoter mutants display a hypomethylated TERT locus even compared

to other monoallelic TERT expressors led us to ask if additional epigenetic signals are indicative of

TERT promoter status. In particular, we considered the possibility that epigenetic changes to the

TERT locus could in fact act as a cooperative factor (Kim et al., 2016; Kim and Shay, 2018) in

tumorigenesis or tumor cell maintenance rather than as a consequence of TERT promoter mutations.

To address this hypothesis, we performed a genome-wide search for CpG islands (CGIs) with signifi-

cant differences in methylation levels in TERTp mutant cell lines compared to TERTp wild-type ones.

If TERT hypomethylation were a downstream consequence of TERT promoter mutations then we

would expect TERT hypomethylation to be an isolated event, and thus there would be few CGIs out-

side the vicinity of TERT with methylation levels correlated with TERTp mutant status. Surprisingly,

we instead found a broad genome-wide distribution of CGIs that were hypomethylated in TERTpmut
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Figure 4. TERT promoter mutations associate with genome-wide decreased methylation of PRC2-repressed regions. (a) Pairwise plot of median CGI

methylation levels in TERTpmut cell lines (n = 21–83; Supplementary file 6) versus TERTpWT cell lines (n = 95–410, Supplementary file 6). Each dot

represents a CGI. (b) Rank-biserial correlations between TERTp status (mutant or wild-type) and global histone modification levels (n = 302–475).

Significance determined by two-sided Mann-Whitney U test. (c) Pearson correlation levels between global H3K9ac1K14ac0 levels and ASM imbalance of

CGIs (n = 261–884). (d) H3K9ac1K14ac0 levels are significantly increased in TERTp mutants. Boxes, interquartile range (IQR); center lines, median;

whiskers, maximum and minimum or 1.5 � IQR; notches, 95% confidence interval of bootstrapped median using 1000 samples and a Gaussian-based

asymptotic approximation. *p < 0.01, n.s, not significant; two-sided Mann-Whitney U test. (e) LOLA core set enrichment analysis of CGIs

hypomethylated in TERTpmut cell lines reveals enrichment of PRC2-repressed regions. (f) Kernel density distributions of rank-biserial correlations

between CGI methylation levels for PRC2-overlapping regions and non-PRC2-overlapping regions. A negative correlation indicates that a CGI is

hypomethylated in TERTpmut cell lines relative to TERTpWT ones, and a positive correlation indicates the opposite. PRC2 regions were sourced from the

HepG2 segmentation. (g) LOLA ENCODE Roadmap region enrichment analysis of CGIs hypomethylated in TERTpmut cell lines reveals enrichment of

H3K9me3 and H3K27me3 regions.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Global methylation changes associated with TERT promoter mutations.
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samples relative to TERTpWT samples (Figure 4a). Moreover, when correlated with a panel of global

histone modification levels, we found that TERTp mutants exhibited increased levels of

H3K9ac1K14ac0 and H3K9ac1K14ac1 marks (Figure 4b), which have been suggested as marks of

transcriptionally active chromatin (Ruthenburg et al., 2007). Likewise, when H3K9ac1K14ac0 levels

were compared against a genome-wide panel of CGI ASM levels, the TERT CGI (chr5:1,289,275–

1,295,970) was the top correlate (Figure 4c). H3K9ac1K14ac0 levels were significantly increased in

TERTp mutants compared to monoallelic TERTp wild-type cell lines, linking this histone modification

to TERTp mutation (Figure 4d).

To better understand the distribution of these TERTpmut-hypomethylated CGIs, we utilized Locus

Overlap Analysis (LOLA) (Nagraj et al., 2018; Sheffield and Bock, 2016) to query the significance

of overlaps between these CGIs and predetermined region sets. Among the top 1000 TERTpmut-

hypomethylated CGIs (Figure 4a), we found significant (FDR < 0.0001) and robust 10-fold enrich-

ment for polycomb repressive complex 2 (PRC2)-repressed regions (Figure 4e) previously character-

ized in several cell lines (HepG2, GM12878, HeLa-S3, K562, and HUVEC). Beyond these top 1000

hypomethylated CGIs, CGIs overlapping with PRC2-repressed segments were broadly hypomethy-

lated in TERTpmut cell lines and accounted for nearly all the previously observed skew toward hypo-

methylation (Figure 4f). Interestingly, the enrichment of PRC2 segments was much smaller (around

3.5-fold) in the remaining profiled cell line, H1-hESC. Against ENCODE ChIP-seq peak region sets,

we also found significant overlap with the H3K9me3 and H3K27me3 heterochromatin marks

(Figure 4g). Furthermore, we also observed a moderate twofold (P = 5.1�10�24, Fisher’s exact test;

Figure 4—figure supplement 1a) enrichment for regions within 10 megabases of most telomeres,

consistent with previous reports that PRC2-repressed and H3K27me3-marked regions are enriched

in telomeric and subtelomeric regions (Rosenfeld et al., 2009). The enrichment of these hypomethy-

lated regions among telomere-proximal regions may also be indicative of a recently-reported telo-

mere position effect, which has been shown to affect the chromatin accessibility of the TERT locus

(Kim et al., 2016) located close to the chromosome 5 p telomere. Given that PRC2 has previously

been shown to exhibit allele-specific binding to the methylated silent allele in TERTpmut cell lines

(Stern et al., 2017), this genome-wide pattern of hypomethylation at PRC2 sites suggests that back-

ground epigenetic events may interact with promoter mutations in facilitating TERT expression.

Given this peculiar pattern of hypomethylation at telomere-proximal sites of PRC2 repression

across CCLE samples, we next asked if a similar pattern exists across TCGA primary tumor samples.

To test this hypothesis, we estimated CGI methylation levels across 878 TERT-expressing TCGA sam-

ples characterized with both the Illumina 450 k array and with a previously determined TERT pro-

moter status (Barthel et al., 2017). Consistent with previous analyses of TERT methylation levels at

the cg11625005 methylation probe, we find that TERTpmut samples tended to exhibit hypomethyla-

tion (Figure 4—figure supplement 1b,c). Among 13,547 CGIs, we again found an enrichment of

hypomethylation of PRC2-overlapping CGIs (Figure 4—figure supplement 1d), although this was

less prominent than previously noted in the CCLE. LOLA enrichment analysis for TERTpmut-hypome-

thylated CGIs in the TCGA likewise confirmed significant enrichments (FDR < 0.0001) of PRC2-

repressed regions and associated histone modifications as the top enriched region sets (Figure 4—

figure supplement 1e,f). However, the fold-enrichment was less (about five-fold) than that observed

in the CCLE and did not display any significant enrichment in telomere-proximal regions (p = 0.70,

Fisher’s exact test). Although the skew toward hypomethylation in TERT promoter mutants among

these TCGA samples was weaker than in the CCLE samples, this may be the result of the more het-

erogeneous nature of primary TCGA samples as well as the differences in coverage between the Illu-

mina 450 k array and RRBS.

Discussion
To investigate the nature of telomeres and their maintenance mechanisms in cancer, we applied a

functional genomics approach toward understanding molecular relationships across cancer cell lines.

We estimated relative telomere content across over a thousand cancer cell lines and thus provide a

useful reference for further studies on cancer cell line characteristics that have not to date consid-

ered this feature. We show that cell line telomere content indeed varies with factors such as tissue

type, TERT mRNA expression, and mutations in genes such as DAXX and VHL. Moreover, we discov-

ered novel relationships between telomere content and dependencies of CST and shelterin complex

Hu et al. eLife 2021;10:e66198. DOI: https://doi.org/10.7554/eLife.66198 10 of 21

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.66198


members, which was enabled by the high overlap between the cell lines profiled by our estimates

and by several loss-of-function screens (McDonald et al., 2017; Meyers et al., 2017;

Tsherniak et al., 2017).

Using these genome-wide gene dependency estimates, we found that increased sensitivity

(Meyers et al., 2017) to depletion of CST complex members correlates with shorter telomeres, likely

a consequence of the critical roles of the CST complex in both telomere protection and in terminat-

ing telomere elongation (Chen et al., 2012). Our findings raise the possibility that targeting the CST

complex may preferentially affect cancer cells that harbor shorter telomeres, and telomere content

may be used as a biomarker of drug response in tumors. Likewise, CST complex dependencies were

positively associated with the dependencies of several shelterin complex components, reflecting

their functional interactions. Among these shelterin complex members, we find that the responses to

their depletion are highly dependent upon the presence of a wild-type TP53 gene, with TP53

mutants displaying reduced sensitivity to depletion of ACD, TERF1, and TINF2. Additional studies

are required to validate these associations and to assess why only certain members of the shelterin

complex show this TP53-dependent sensitivity effect.

In addition to telomere content, we also investigated the genomic landscape of telomere mainte-

nance mechanisms, namely mechanisms of TERT reactivation, across cancer cell lines. The enrich-

ment of TERT promoter mutations in certain tissues has inspired several explanations, and our

findings in both the CCLE and TCGA suggest a specific epigenetic signature that may underlie this

unique pathway of telomere maintenance. We found that in TERT promoter mutants, CpG islands

were preferentially hypomethylated in PRC2-repressed regions located near telomeres, which may

relate to previous reports of a long-range telomere position effect (Kim et al., 2016; Yuan et al.,

2019) and of TERT expression necessitating specific chromatin states in promoter-wildtype and

mutant samples (Salgado et al., 2019). Considering that normal tissues typically exhibit particularly

low methylation of the TERT promoter (Salgado et al., 2019; Stern et al., 2017) and that PRC2

occupies the inactive allele in TERT promoter mutants (Stern et al., 2017), our genome-wide signa-

ture may relate to the latter part of the two-step mechanism proposed for TERTp mutation-driven

telomerase upregulation (Chiba et al., 2017). Moreover, epigenetic mechanisms have been shown

to produce synergistic effects with driver mutations in tumor evolution (Tao et al., 2019). Besides

reflecting a direct cooperation with TERT expression, this signature raises the possibility that the

‘memory’ of short telomeres may be preserved through these telomere-proximal hypomethylated

regions. It may also be indicative of the stemness of cell lines, which has been proposed as a major

factor in the proliferative advantage of TERT promoter mutations (Chiba et al., 2015). Future studies

will be necessary to elucidate the nature of this epigenomic signature, how it impacts the regulation

of telomerase expression, and the complexities of TERT expression beyond binary measures of

allele-specificity (Rowland et al., 2019). Furthermore, incorporation of telomere content into studies

using cancer cell lines may help improve our understanding of sensitivities to drugs or genetic per-

turbations across cell lines.

Through our analysis, we show relevant markers of telomere-associated protein function, patterns

of TERT reactivation across cancers, and epigenetic determinants of TERT promoter status. We

detail various features of telomere regulation and dysfunction in cancer, and we provide a substan-

tial addition of new features to a well-characterized set of cell lines. By doing so, we complement

molecular studies of telomeres in parallel studies across the GTEx (GTEx Consortium et al., 2020),

TCGA (Barthel et al., 2017), and PCAWG (PCAWG-Structural Variation Working Group et al.,

2020) panels, providing a resource that will guide additional studies on the roles and functions of

telomeres in cancer.

Materials and methods

Telomere content estimation
Telomere content estimates were computed using Telseq (UK10K Consortium et al., 2014) with

the default settings. Telseq records the frequencies of reads containing various frequencies of the

canonical TTAGGG telomeric repeat, and then normalizes this number of telomeric repeats using a

GC-adjusted coverage estimate and the average chromosome length.

Hu et al. eLife 2021;10:e66198. DOI: https://doi.org/10.7554/eLife.66198 11 of 21

Research article Cancer Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.66198


Telomere content was estimated for WGS and WES samples in the CCLE (Ghandi et al., 2019) as

well as WES samples in the GSDC (Yang et al., 2013) using the default settings. When multiple read

groups were present in a sample, telomere content was computed as a mean of the individual read

group estimates weighted by the total read count per group. Whereas we found decent agreement

between overlapping samples in CCLE WGS and GDSC WES, we found a comparatively weak corre-

lation between both sets and the CCLE WES estimates (Figure 1—figure supplement 2). Therefore,

we excluded the CCLE WES telomere content estimates from subsequent analyses.

In comparing the CCLE WGS and GDSC WES estimates, we also noticed a batch effect resulting

in two clusters of GDSC WES estimates. To identify and correct this batch effect across all GDSC

WES estimates, we observed that these batches were distinguished by frequencies of reads contain-

ing exactly 4, 5, and 6 telomeric motifs. We then ran a k-means clustering on these read frequencies

to estimate the clusters across all GDSC WES samples, which were subsequently adjusted by re-cen-

tering the mean of one cluster (after applying a z-scored log-transformation) to match the mean of

the other.

We also attempted to use Telseq to estimate telomeric repeat-containing RNA (TERRA) expres-

sion across 1019 RNA-seq samples from the CCLE. However, because the majority of these samples

were found to contain little or no reads containing telomeric reads, TERRA capture was determined

to be too low for any meaningful analysis.

Cell lines were annotated with sample descriptors from the CCLE data portal (Cell_lines_annota-

tions_20181226.txt, https://portals.broadinstitute.org/ccle/data). Harmonized sample information,

telomere content estimates, and other matched annotations are available in Supplementary file 1.

Genomic and transcriptomic markers
We sourced mutations and copy number estimates from the DepMap download portal (https://dep-

map.org/portal/download/) under the public 19Q4 release (CCLE_mutations.csv and CCLE_ge-

ne_cn.csv, respectively). We used the mutation classifications detailed in the Variant_annotation

column.

We also downloaded processed RNAseq estimates in the form of gene expression, transcript

expression, and exon inclusion estimates from the CCLE data portal under the latest release

(CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz, CCLE_RNAseq_rsem_tran-

scripts_tpm_20180929.txt.gz, and CCLE_RNAseq_ExonUsageRatio_20180929.gct.gz, respectively).

We also downloaded RPPA estimates (CCLE_RPPA_20181003.csv) and global chromatin profiling

results (CCLE_GlobalChromatinProfiling_20181130.csv). Before performing subsequent analyses, we

transformed transcript and gene expression TPMs by taking a log2-transform with a pseudocount of

+1. We also excluded transcripts with a standard deviation in this log2(TPM + 1) measure of less

than 0.25 across all cell lines. We excluded exons with missing inclusion values in over 800 cell lines

or with a standard deviation of less than 0.1. Pearson correlations were then used to calculate associ-

ations between gene and transcript RNA expression levels of TERT and TERC against telomere con-

tent estimates as well as other markers. We also constructed linear models regressing merged

telomere content as a function of various biomarkers with cell line primary site as a covariate. More-

over, we also calculated linear models of each of CCLE and GDSC telomere content as a function of

TERT mRNA levels, TERC mRNA levels, primary site, TERTp mutant status, donor age, and calcu-

lated doubling time to examine the contributions of these specific factors. Out of these factors, we

found TERT and TERC mRNA levels to be significantly correlated with both CCLE and GDSC telo-

mere contents.

We also considered processed methylation estimates available on the CCLE data portal, namely

the TSS 1 kb upstream estimates as well as the promoter CpG cluster estimates, which we correlated

against telomere content estimates. For these annotations, we filtered out regions with a standard

deviation of less than 0.05.

Results of TERT and TERC expression associations, as well as telomere content associations, are

available in Supplementary file 2.

Gene dependency associations
To identify gene dependencies associated with telomere content, we considered knockout/knock-

down effects estimated in the Avana CRISPR-Cas9 (Meyers et al., 2017), Achilles RNAi
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(Tsherniak et al., 2017), and DRIVE RNAi (McDonald et al., 2017) datasets. For Achilles and DRIVE,

the datasets used were the April 2020 versions listed on the DepMap portal computed with DEME-

TER2. For Avana, we used gene effect scores from the February 2021 release. For each gene depen-

dency in each dataset, we computed the Pearson correlation coefficient against telomere content

estimates generated separately with CCLE WGS and GDSC WES data. Correlation p values were

determined using the two-tailed Student’s t test. All correlation coefficients and p values were deter-

mined using the pearsonr function as part of the scipy.stats Python module.

To identify codependencies with the CST complex members, we employed an iterative approach

to identify highly ranked correlations. In particular, starting with a seed set of genes (the base case

of which was the CST complex), we searched for codependencies between two genes x and y under

the criteria that the r2 association between the two is among the top five for x vs. all other genes,

and among the top five for y vs. all other genes as well. We recursively applied this method four

times, which added the five shelterin components ACD, POT1, TERF1, TERF2, and TINF2 to our

gene set. To construct the clustered correlation matrix in Figure 2c, we used the clustermap function

as provided by the Seaborn Python library, with Ward’s method for the determination of the hierar-

chical clustering.

To identify significant associations between dependencies and mutations, we compared depen-

dencies against binary categories of damaging/truncating (comprised of deleterious alterations, such

as nonsense and splice-site alterations) and hotspot (highly recurrent) mutations. Using the

previously downloaded DepMap 19Q4 mutation annotations, we considered mutations as ‘damag-

ing’/‘truncating’ if they were associated with a ‘damaging’ label under the Variant_annotation col-

umn, and we considered mutations as ‘hotspot’ if they were labeled as such in the corresponding

COSMIC (Tate et al., 2019) (isCOSMIChotspot) or TCGA (isTCGAhotspot) columns. We excluded

mutations with a total damaging or hotspot frequency of less than five across all profiled CCLE sam-

ples. Mutations were then compared with dependencies using a two-sided Mann-Whitney U test,

with the two classes being non-damaging and non-hotspot mutant samples, and damaging and hot-

spot mutant samples, respectively.

To rank and visualize the codependencies shown in Figure 2—figure supplement 2a,b and the

dependency-mutation associations shown in Figure 2d,e, we used a signed q-value approach. We

first transformed the raw false discovery rates by taking the negative of the base-10 logarithm, and

we then applied a sign to this transformed value as determined by the direction of the codepen-

dency (the sign of the correlation coefficient) or dependency-mutation association (negative for

greater sensitivity in mutants, and positive otherwise).

Dependency analyses results are available in Supplementary file 3.

Characterization of allele-specific TERT expression
Allele-specific expression may be detected by looking for discordant counts of reads mapping to sin-

gle-nucleotide polymorphisms (SNPs) in DNA-sequencing vs. RNA-sequencing reads (Huang et al.,

2015). In particular, allele-specific expression is evidenced by the biased frequency of a single allele

of a heterozygous SNP in RNAseq reads compared to that of DNA-sequencing reads. To assess

TERT expression in the context of allele-specificity, we examined cell lines for which DNA (WES or

WGS) and RNA (RNAseq) sequencing data were available. To identify heterozygous anchor SNPs,

we considered mutations in the TERT gene body called using Mutect 1.1.6 (Cibulskis et al., 2013)

with default settings. We then applied a filter for mutations with at least eight reads supporting both

the reference and alternate alleles that passed the Mutect quality control filter (i.e. classified as

PASS). To force call the matching allele frequencies in RNA, we processed the matching aligned

RNAseq reads using the ASEReadCounter tool provided in GATK 3.6 (Van der Auwera et al., 2013)

with arguments -minDepth 8, –minBaseQuality 16, –minMappingQuality 255, and -U

ALLOW_N_CIGAR_READS.

We then used these RNA and DNA allele frequencies to classify cell lines as monoallelic and bial-

lelic expressors of TERT as well as two neighboring genes, SLC6A19 and CLPTM1L. In particular, we

examined the odds ratio derived from a binary contingency table with the two sets of categories

being the context (DNA vs. RNA) and the allele (reference vs. alternate) of the read counts. To

account for edge cases where the denominator of the odds ratio was zero, we added a pseudocount

of 0.5 to each category before computing the odds ratio. We then denoted MAE lines as those hav-

ing an odds ratio computed using the major allele as the denominator of greater than five. In
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instances where there were multiple informative SNPs, we considered only the SNP with the greatest

supporting total RNA-seq read count. In cases where the same SNP was detected across multiple

sources (for instance, in both CCLE WES and WGS), we considered the source with the greatest cov-

erage of the SNP.

Allele-specific calls for TERT, SLC6A19, and CLPTM1L are described in Supplementary file 4.

Genome-wide allele-specific methylation analysis
To characterize and compare CpG-level ASM around the TERT genomic region, we utilized RRBS

data generated by the CCLE (Ghandi et al., 2019). Mapped BAM files were downloaded from the

CCLE FireCloud workspace, and ASM levels for each CpG pair were estimated using the allelicmeth

command from the MethPipe package (Song et al., 2013). Within each sample, we first included

only CpG pairs with a minimum coverage of eight reads. Next, among all 928 cell lines, CpG pairs

included in less than 5% of these samples were excluded.

To estimate ASM, we employed a strategy similar to the original MethPipe ASM pipeline. For

each pair of CpGs, we considered the four combinations of methylation states between the two

CpGs: methylated-methylated (mm), methylated-unmethylated (mu), unmethylated-unmethylated

(uu), and unmethylated-unmethylated (mm). For semi-methylated CpG pairs not subject to ASM, we

would expect high and relatively equal frequencies of the mu and um pairs, whereas for ASM CpG

pairs, we would expect the allele bias to result in high mm and uu counts and low um and mu

counts. To quantify this imbalance, we used the mean square contingency coefficient (F) with a

pseudocount of 0.5. Namely, for each CpG pair, we computed

F¼
mm

_

� uu
_

�mu

_

� um
_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mm

_

þmu

_
� �

um

_

þ uu

_
� �

mm

_

þ um

_
� �

mu

_

þ uu

_
� �

r

where mm

_

¼mmþ 0:5, mu
_

¼muþ 0:5, um
_

¼ umþ 0:5, and uu

_

¼ uuþ 0:5. ASM CpG pairs therefore had

a positive F, whereas non-ASM pairs had a F of around 0. We rounded negative F values to 0.

Before computing these imbalance values, we excluded CpG pairs with a methylation level of less

than 0.1 or greater than 0.9 on either CpG, so as to filter out CpG pairs that were likely to be fully

methylated or completely demethylated.

We first examined the ASM levels of the TERT locus, which considered as the TERT gene body as

well as the flanking five kilobase regions. For these methylation estimates, we excluded CpGs with

less than 25% valid ASM estimates. We segmented these CpGs into five regions: the promoter

(chr5:1295246–1298643), CGI_1 (chr5:1294872–1295134), CGI_2 (chr5:1291374–1294439), CGI_3

(chr5: 1289695–1291090), and the remaining gene body (chr5: 1249661–1289359). We computed

ASM imbalance values for these regions by taking the mean CpG-pair ASM values.

To identify genome-wide methylation events indicative of TERT promoter mutations, we searched

for correlates with TERT promoter mutation status among average methylation levels of CpG islands

(CGIs). CpG island annotations were downloaded from the UCSC genome browser at http://

hgdownload.cse.ucsc.edu/goldenpath/hg19/database/cpgIslandExt.txt.gz. To filter out low-cover-

age CpG islands, we considered only CpG islands with at least eight CpG sites. Methylation levels

per island were then estimated by taking the mean across all CpGs profiled within the island. Using

the same filtering parameters, we also computed mean ASM estimates across these CGIs.

TERT locus methylation estimates are described in Supplementary file 5.

Chromatin profiling data
To identify histone modifications associated with TERTp status, we downloaded global chromatin

profiling data from the CCLE Data Portal (CCLE_GlobalChromatinProfiling_20181130.csv). Correla-

tions between TERTp status and histone modification levels, as well as correlations between

H3K9ac1K14ac0 levels and CGI ASM levels, are described in Supplementary file 5.

Region enrichment analysis
To characterize the regions that were hypomethylated in association with TERT promoter mutations,

we utilized Locus Overlap Analysis (LOLA) (Nagraj et al., 2018; Sheffield and Bock, 2016), which
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discovers enriched regions among a background set. LOLA takes as input two region sets: the

regions of interest and a background universe set. Both sets are then overlapped against a database

of annotated regions, and overlapping and non-overlapping region frequencies are computed per

annotated region set. Region overlap significance is then assessed against each annotated region

set using Fisher’s exact test with the two categories being the regions of interest vs. the background

universe set and the overlap of each of these regions with the annotated region set.

We ranked hypomethylated CpG island regions by the significance of the change in TERTp wild

type vs. TERTp mutant cell lines as assessed by a two-sided Mann-Whitney U test (i.e. regions with

the most significant changes were ranked first). The top 1000 CpG islands were then used as the

regions of interest, and the set of all CpG islands examined served as the background universe set.

We utilized the LOLAweb application (at http://lolaweb.databio.org/), with the LOLACore and

LOLARoadMap sets as the region databases.

Outputs of LOLA on CCLE TERT promoter-mutant hypomethylated CGIs are summarized in

Supplementary file 6.

TCGA data
TCGA methylation and normalized gene expression estimates were downloaded from the UCSC

Xena browser (Goldman et al., 2019) (http://xena.ucsc.edu/, jhu-usc.edu_PANCAN_HumanMethyla-

tion450.betaValue_whitelisted.tsv.synapse_download_5096262.xena and EB++AdjustPANCAN_Illu-

uminaHiSeq_RNASeqV2.geneExp.xena). Methylation levels of CGIs was estimated by averaging

CpG methylation levels within each CGI, and CGIs with less than four profiled CpGs were excluded.

TERT promoter mutation status was obtained from previous estimates (Barthel et al., 2017). The

same hypomethylation-enrichment analysis previously described for the CCLE was then run on the

top 1000 CGIs hypomethylated in TERT promoter-mutants using an identical ranking scheme.

A summary of LOLA results on TCGA methylation, TERT promoter status, and ALT-likelihood is

provided in Supplementary file 7.

Statistical analysis
Multiple hypothesis testing was accounted for using the Benjamini-Hochberg FDR with an alpha of

0.01 as provided by the statsmodels Python module.
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