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Unite to predict
Integrating the analysis of molecular data from different sources may

improve our understanding of the effects of biological aging.

MEERAJ KOTHARI AND DANIEL W. BELSKY

T
he molecular features of the human body

change as we age, increasing the risk for

disease, disability and mortality

(Campisi et al., 2019). Omics technologies allow

scientists to observe such changes – in, for

example, levels of DNA methylation, gene and

protein expression, or metabolites circulating in

the blood – in large human populations. The

resulting datasets are being mined to uncover

the changes that occur as people age.

Two striking findings from these data-mining

efforts have been: i) that reliable differences

between older and younger humans exist at

most molecular levels, (e.g. Bell et al., 2019;

Johnson et al., 2020; NABEC/

UKBEC Consortium et al., 2015; Srivas-

tava, 2019); and ii) that machine learning techni-

ques can use these molecular datasets to

construct algorithms, often referred to as

‘clocks’, that predict the chronological age of

the individual from whom the sample was taken

(Horvath, 2013; Lehallier et al., 2019;

Robinson et al., 2020; Zhavoronkov and

Mamoshina, 2019).

It has been proposed that errors in the pre-

dictions made by these clocks (that is, when the

predicted age differs from the actual age) reflect

the ’biological age’ of the person. Biological

aging is the gradual and progressive decline in

system integrity that occurs with advancing age.

More advanced biological ages correspond to

increased physical deterioration leading to

increased risk of age-related disability and mor-

tality. An outstanding question is whether the

prediction errors of different clocks reflect a

common set of correlated biological processes,

or if distinct aspects of aging impact different

molecular features independently. Previously, no

study of aging has brought together data from

more than a few different molecular levels of

analysis in a single sample. Now, in eLife, Rick

Jansen (VU University Medical Center, Amster-

dam) and colleagues – Laura Han, Josine Verho-

even, Yuri Milaneschi and Brenda Penninx (all

from Amsterdam), and Karolina Aberg and

Edwin van de Oord (both from Virginia Com-

monwealth University) – report an analysis of

clocks developed from five different molecular

features that provides a provocative answer to

this question (Jansen et al., 2021).

Jansen et al. used machine learning methods

to develop molecular clock algorithms based on

whole genome DNA methylation, transcriptom-

ics, proteomics, metabolomics and telomere

length. The data they used came from blood

samples taken from a cohort of young and mid-

life Dutch adults. The different clocks could pre-

dict the chronological ages of the participants

with high accuracy, but the errors in the predic-

tions differed significantly from clock to clock.

This echoes findings from earlier studies com-

paring blood-chemistry and genomic

approaches to the measurement biological

aging (Belsky et al., 2018; Li et al., 2020).

The researchers also found that combining

the outputs of the five clocks produced a sum-

mary score that was somewhat more predictive
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of participants’ health than the individual clocks.

However, effect sizes for the individual clocks

were very small (most r < 0.1), with the excep-

tion of moderate correlations between the

metabolomic clock and obesity and metabolic

syndrome (r ~ 0.2), and the composite score

effect sizes were only slightly stronger (most

r ~ 0.1; r ~ 0.3 for obesity and metabolic syn-

drome). Nevertheless, this result suggests that

multi-omics phenotyping of human samples may

be able to measure biological aging more pre-

cisely than approaches that rely on data from a

single molecular feature.

Together, these findings are consistent with

the hypothesis that different molecular features

may record distinct aspects of biological aging.

However, the small effect sizes reported for

associations of different molecular clocks with

aging outcomes (like disease and mortality) raise

an important question: are age-correlated bio-

logical features necessarily features of biological

aging? Put another way, can we measure biolog-

ical processes of aging simply by identifying bio-

logical measurements that differ between older

and younger people?

Clocks developed by identifying differences

between older and younger individuals through

data mining tend to be quite good at predicting

chronological age in new samples. However,

what matters more for studies of aging is under-

standing whether differences in the clocks’ pre-

dicted ages for humans of the same

chronological age are due to differences in the

progressive decline of their bodies that causes

aging-related disease, disability, and mortality.

Efforts to develop measure of biological

aging through data mining face two main chal-

lenges. First, age differences between partici-

pants correspond to differences in survival, what

is known as survivorship bias. Only those who do

not experience accelerated biological aging

make it to older chronological ages. So, for

chronologically older people, the only data avail-

able is that of survivors. The differences between

this older population of survivors and the more

complete population represented by the youn-

ger participants in the sample may conceal signs

of aging (Nelson et al., 2020). Second, differen-

ces in biological markers between older and

younger people may be independent of aging.

For example, in cross-sectional studies, age is

perfectly correlated with year of birth, which can

confound differences in exposure to pathogens,

environmental toxins, or nutrition with signs of

biological aging (Moffitt et al., 2017).

One newer method to develop biological

aging indices that protects against survivorship

bias is to focus analysis on differences in mortal-

ity risk (Levine et al., 2018; Lu et al., 2019).

Another method that addresses both survivor-

ship bias and cohort effects is to model aging

from changes that occur within individuals across

repeated measurements taken over a period of

their lives (Belsky et al., 2020).

The next step for multi-omics analysis of

aging is to integrate new methods to control for

survivorship bias and exclude cohort effects

from measurements. The results of Jansen et al.

suggest that multi-omics data can improve how

biological aging is measured, and raise the pos-

sibility that theoretical models which define

aging as a set of correlated processes that drive

health decline may need to be revised. Further

studies with multi-level molecular-level data will

help to clarify both the potential for improved

measurements and the implications for models

of aging.
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