Homo-oligomerization of the human adenosine A2a receptor is driven by the intrinsically disordered C-terminus

  1. Khanh Dinh Quoc Nguyen
  2. Michael Vigers
  3. Eric Sefah
  4. Susanna Seppälä
  5. Jennifer Paige Hoover
  6. Nicole Star Schonenbach
  7. Blake Mertz
  8. Michelle Ann O'Malley  Is a corresponding author
  9. Songi Han  Is a corresponding author
  1. University of California - Santa Barbaba, United States
  2. West Virginia University, United States
  3. University of California Santa Barbara, United States

Abstract

G protein-coupled receptors (GPCRs) have long been shown to exist as oligomers with functional properties distinct from those of the monomeric counterparts, but the driving factors of oligomerization remain relatively unexplored. Herein, we focus on the human adenosine A2A receptor (A2AR), a model GPCR that forms oligomers both in vitro and in vivo. Combining experimental and computational approaches, we discover that the intrinsically disordered C-terminus of A2AR drives receptor homo-oligomerization. The formation of A2AR oligomers declines progressively with the shortening of the C-terminus. Multiple interaction types are responsible for A2AR oligomerization, including disulfide linkages, hydrogen bonds, electrostatic interactions, and hydrophobic interactions. These interactions are enhanced by depletion interactions, giving rise to a tunable network of bonds that allow A2AR oligomers to adopt multiple interfaces. This study uncovers the disordered C-terminus as a prominent driving factor for the oligomerization of a GPCR, offering important insight into the effect of C-terminus modification on receptor oligomerization of A2AR and other GPCRs reconstituted in vitro for biophysical studies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Khanh Dinh Quoc Nguyen

    Chemistry and Biochemistry, University of California - Santa Barbaba, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9367-499X
  2. Michael Vigers

    Chemistry and Biochemistry, University of California - Santa Barbaba, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric Sefah

    C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Susanna Seppälä

    Chemical Engineering, University of California - Santa Barbaba, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer Paige Hoover

    Chemistry and Biochemistry, University of California - Santa Barbaba, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicole Star Schonenbach

    Chemistry and Biochemistry, University of California - Santa Barbaba, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Blake Mertz

    C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michelle Ann O'Malley

    Chemical Engineering, University of California - Santa Barbaba, Santa Barbara, United States
    For correspondence
    momalley@engineering.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Songi Han

    Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, United States
    For correspondence
    songi@chem.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6489-6246

Funding

National Institute of General Medical Sciences (R35GM136411)

  • Khanh Dinh Quoc Nguyen
  • Michael Vigers
  • Susanna Seppälä
  • Nicole Star Schonenbach
  • Michelle Ann O'Malley
  • Songi Han

National Institute of Mental Health (Small Business Innovation Research Award,1R43MH119906-01)

  • Khanh Dinh Quoc Nguyen
  • Jennifer Paige Hoover
  • Michelle Ann O'Malley
  • Songi Han

National Science Foundation (MCB-1714888)

  • Eric Sefah
  • Blake Mertz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heedeok Hong, Michigan State University, United States

Version history

  1. Preprint posted: December 22, 2020 (view preprint)
  2. Received: January 18, 2021
  3. Accepted: July 15, 2021
  4. Accepted Manuscript published: July 16, 2021 (version 1)
  5. Version of Record published: August 2, 2021 (version 2)

Copyright

© 2021, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,865
    views
  • 316
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Khanh Dinh Quoc Nguyen
  2. Michael Vigers
  3. Eric Sefah
  4. Susanna Seppälä
  5. Jennifer Paige Hoover
  6. Nicole Star Schonenbach
  7. Blake Mertz
  8. Michelle Ann O'Malley
  9. Songi Han
(2021)
Homo-oligomerization of the human adenosine A2a receptor is driven by the intrinsically disordered C-terminus
eLife 10:e66662.
https://doi.org/10.7554/eLife.66662

Share this article

https://doi.org/10.7554/eLife.66662

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.