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Abstract Calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) contribute to 
many forms of synaptic plasticity and pathology. They can be distinguished from GluA2-containing 
calcium-impermeable AMPARs by the inward rectification of their currents, which reflects voltage-
dependent channel block by intracellular spermine. However, the efficacy of this weakly permeant 
blocker is differentially altered by the presence of AMPAR auxiliary subunits – including transmem-
brane AMPAR regulatory proteins, cornichons, and GSG1L – which are widely expressed in neurons 
and glia. This complicates the interpretation of rectification as a measure of CP-AMPAR expression. 
Here, we show that the inclusion of the spider toxin analog 1-naphthylacetyl spermine (NASPM) in 
the intracellular solution results in a complete block of GluA1-mediated outward currents irrespec-
tive of the type of associated auxiliary subunit. In neurons from GluA2-knockout mice expressing 
only CP-AMPARs, intracellular NASPM, unlike spermine, completely blocks outward synaptic 
currents. Thus, our results identify a functional measure of CP-AMPARs, that is unaffected by their 
auxiliary subunit content.

Editor's evaluation
AMPA-type glutamate receptors that lack the GluA2 subunit are calcium-permeable and contribute 
to calcium influx in plasticity and disease. The authors of this Tools and Resources manuscript 
describe a method for evaluating the presence of GluA2-lacking receptors using intracellular 
NASPM that avoids complications related to auxiliary subunits that affect biophysical properties. The 
compelling results provide a valuable new approach for unambiguously differentiating the presence 
of Ca-permeable and -impermeable AMPA receptors.

Introduction
AMPA-type glutamate receptors (AMPARs) mediate the fast component of excitatory postsynaptic 
currents (EPSCs) throughout the mammalian brain (Baranovic and Plested, 2016; Greger et  al., 
2017; Hansen et al., 2021) and their regulation allows lasting changes in synaptic strength that are 
essential for normal brain function (Huganir and Nicoll, 2013). AMPARs are cation-permeable chan-
nels that exist as homo- or heterotetrameric assemblies of the homologous pore-forming subunits 
GluA1-4, encoded by the genes Gria1-4. While a majority of central AMPARs are GluA2-containing 
di- or tri-heteromeric assemblies (Lu et al., 2009; Wenthold et al., 1996; Zhao et al., 2019), those 
lacking GluA2 constitute an important functionally distinct and widely occurring subtype. Editing of 
Gria2 pre-mRNA at codon 607 results in the substitution of a genetically encoded glutamine (Q) with 
an arginine (R). This switch from a neutral to a positively charged residue in the pore-forming loop 
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causes receptors containing Q/R edited GluA2 to have a greatly reduced Ca2+ permeability compared 
to those lacking GluA2 (Burnashev et al., 1992; Kuner et al., 2001; Sommer et al., 1991). As this 
mRNA editing is essentially complete, AMPARs are commonly divided into GluA2-containing Ca2+-
impermeable (CI-) and GluA2-lacking Ca2+-permeable (CP-) forms (Bowie, 2012; Burnashev et al., 
1992; Cull-Candy et al., 2006).

Aside from allowing Ca2+ flux, CP-AMPARs differ from CI-AMPARs in having greater single-channel 
conductance (Benke and Traynelis, 2018, Swanson et  al., 1997) and susceptibility to voltage-
dependent block by the endogenous intracellular polyamines spermine and spermidine (Bowie and 
Mayer, 1995; Donevan and Rogawski, 1995; Kamboj et al., 1995; Koh et al., 1995a). They can also 
be blocked in a use-dependent manner by extracellular application of the same polyamines (Wash-
burn and Dingledine, 1996) or various exogenous organic cations, such as the spermine analog 
N-(4-hydroxyphenylpropanoyl)-spermine (HPP-SP; Washburn and Dingledine, 1996), the polyamine-
amide wasp toxin philanthotoxin-4,3,3 (PhTx-433; Washburn and Dingledine, 1996), the spider toxin 
analog 1-naphthylacetyl spermine (NASPM; Tsubokawa et al., 1995), and the dicationic adamantane 
derivative IEM-1460 (Magazanik et al., 1997).

Block of CP-AMPARs by intracellular polyamines results in inwardly- or bi-rectifying current-
voltage relationships. This characteristic rectification – seen during whole-cell patch-clamp record-
ings in the presence of residual endogenous polyamines or added exogenous spermine – has been 
utilized extensively to identify the presence of CP-AMPARs in neurons. Importantly, this approach 
has enabled the identification of cell- and synapse-specific CP-AMPAR expression (Koh et  al., 
1995b, Tóth and McBain, 1998), changes in CP-AMPAR prevalence during development (Brill 
and Huguenard, 2008; Kumar et al., 2002; Soto et al., 2007; Yang et al., 2010), and roles for 
CP-AMPARs in multiple synaptic plasticities, including long-term potentiation (LTP) and depression 
(LTD) (Fortin et al., 2010; Lamsa et al., 2000; Liu and Cull-Candy, 2000; Mahanty and Sah, 1998; 
Manz et al., 2020; Plant et al., 2006; Sanderson et al., 2016). In addition, its use has suggested 
CP-AMPAR changes associated with various conditions, including ischemia (Dixon et al., 2009; Liu 
et al., 2004; Peng et al., 2006), brain trauma (Korgaonkar et al., 2020), schizophrenia (Druart 
et al., 2021), stress (Kuniishi et al., 2020), and glaucoma (Sladek and Nawy, 2020), and in circuit 
remodeling associated with fear-related behaviors (Clem and Huganir, 2010; Liu et al., 2010), 
drug addiction (Bellone and Lüscher, 2006; Conrad et al., 2008; Lee et al., 2013; Parrilla-Carrero 
et al., 2021; Scheyer et al., 2014; Van den Oever et al., 2008), and neuropathic or inflammatory 
pain (Goffer et al., 2013; Katano et al., 2008; Park et al., 2009; Sullivan et al., 2017; Vikman 
et al., 2008).

Native AMPARs co-assemble with various transmembrane auxiliary subunits that influence receptor 
biogenesis, synaptic targeting, and function (Greger et  al., 2017; Jackson and Nicoll, 2011b, 
Schwenk et al., 2019). Importantly, several of these, including transmembrane AMPAR regulatory 
proteins (TARPs), cornichons, and germ cell-specific gene 1-like protein (GSG1L), have been shown 
to modify the block of CP-AMPARs by intracellular spermine. In the case of TARPs and CNIHs inward 
rectification is reduced (Brown et al., 2018; Cho et al., 2007; Coombs et al., 2012; Soto et al., 
2007; Soto et al., 2009), whereas with GSG1L the rectification is increased (McGee et al., 2015). This 
can complicate the interpretation of measures of spermine-dependent rectification. Moreover, any 
change in a rectification that might be attributed to changes in the prevalence of CP-AMPARs could 
instead reflect a change in auxiliary subunit content.

Here, we show that intracellular NASPM, PhTx-433, and PhTx-74 can be used to specifically and 
voltage-dependently block recombinant CP-AMPARs. Unlike spermine, which is permeant, these 
blockers allow negligible outward current at positive potentials. At  +60  mV, 10  µM intracellular 
NASPM produces a use-dependent block, while at 100 µM it fully blocks outward currents in a use-
independent manner. Critically, this block is unaffected by the presence of auxiliary subunits. Further-
more, in three neuronal populations from GluA2-knockout (GluA2 KO) mice (Jia et al., 1996), known 
to express different auxiliary proteins (Fukaya et al., 2006; Khodosevich et al., 2014; Tomita et al., 
2003; Yamazaki et al., 2010), we show that 100 µM intracellular NASPM causes full rectification of 
glutamate-evoked currents from extrasynaptic and synaptic CP-AMPARs, something that cannot be 
achieved with spermine. Together, our results reveal that the use of intracellular NASPM provides a 
simple and effective method for determining the relative contribution of CP-AMPARs to AMPAR-
mediated currents, regardless of their associated auxiliary subunits.

https://doi.org/10.7554/eLife.66765
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Results
Intracellular polyamine toxins block CP-AMPARs
To determine whether intracellularly applied NASPM or polyamine toxins might offer advantages over 
spermine for the identification of native CP-AMPARs we examined three compounds: NASPM, which 
contains the same polyamine tail as spermine, PhTx-433, which has a different distribution of amines, 
and PhTx-74, which lacks one amine group (Figure 1a). Initially, we recorded currents in outside-out 
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Figure 1. Intracellular 1-naphthylacetyl spermine (NASPM) and polyamine toxins specifically block GluA2-lacking calcium-permeable AMPA-type 
glutamate receptors (CP-AMPARs) in a voltage-dependent manner. (a) The blockers used in this study. (b) Representative responses activated by 
300 µM glutamate and 50 µM cyclothiazide from outside-out patches excised from HEK293 cells expressing either GluA1 or GluA1/2. The voltage was 
ramped linearly from −80 to +60 mV (100 mV/s). GluA1 displayed outward rectification with a polyamine-free pipette solution. In the presence of 100 μM 
spermine GluA1 displayed a doubly rectifying relationship, and with 100 μM NASPM GluA1 displayed full inward rectification. GluA1/2 did not rectify 
in the presence of NASPM. (c) Normalized and pooled current-voltage (I-V) relationships for GluA1 and GluA1/2 in the presence of 100 μM intracellular 
polyamines (n=3–8). Colored traces denote the mean and gray shading ± standard error of the mean. For all blockers the RI+60/−60 value with GluA1 was 
less than that with GluA1/2; the unpaired mean differences and 95% confidence intervals were −0.85 [−1.09,–0.63] with spermine (n=4 GluA1/2 patches 
and 5 GluA1 patches), −1.07 [−1.7,–0.79] with NASPM (n=8 and 4),–0.82 [−0.96,–0.60] with PhTx-433 (n=3 and 4), and −0.78 [−0.91,–0.70] with PhTx-74 
(n=3 and 4).

The online version of this article includes the following source data for figure 1:

Source data 1. RI+60/−60 values from GluA1 and GluA1/γ2 ramp current-voltage (I-V) relationships (300 µM glutamate) were recorded with intracellular 
spermine, NASPM, PhTx-433, or PhTx-74 (each 100 µM).

https://doi.org/10.7554/eLife.66765
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patches from HEK cells transiently transfected with GluA1 alone or with GluA1 and GluA2, to produce 
homomeric CP- and heteromeric CI-AMPARs, respectively. The receptors were activated by glutamate 
(300 μM) in the presence of cyclothiazide (50 μM) to minimize AMPAR desensitization and we applied 
voltage ramps (100 mV/s) to generate current-voltage (I-V) relationships.

As expected (McGee et  al., 2015; Soto et  al., 2007), in the absence of intracellular polyam-
ines homomeric GluA1 receptors generated outward currents at positive potentials, showing clear 
outward rectification, while in the presence of 100 μM spermine, they displayed doubly rectifying 
responses (Figure 1b). By contrast, when the intracellular solution contained 100 μM NASPM, GluA1 
receptors displayed inwardly rectifying responses with negligible current passed at positive potentials 
(Figure 1b). Unlike responses from GluA1 alone, currents from GluA1/2 receptors in the presence 
of NASPM were non-rectifying (Figure 1b). I-V plots showed that, when added to the intracellular 
solution at 100 μM, each blocker conferred marked inward rectification on the currents mediated by 
GluA1 (rectification index, RI+60/−60 0.02–0.26), but not on those mediated by GluA1/2 (RI+60/−60 0.84–
1.30) (Figure 1c). Thus, although differing in structure, they all produced selective voltage-dependent 
block of the GluA2-lacking CP-AMPARs. Of note, the block by intracellular PhTx-74 was restricted to 
CP-AMPARs, despite the fact that it produces low-affinity block of CI-AMPARs when applied extracel-
lularly (Jackson et al., 2011b; Nilsen and England, 2007).

We next investigated the concentration- and auxiliary subunit-dependence of the block. Specif-
ically, we generated conductance-voltage (G-V) relationships and fit those from inwardly rectifying 
responses with a single Boltzmann function and those from doubly rectifying responses with a 
double Boltzmann function (Panchenko et al., 1999). This revealed that as the concentration of 
added blocker was increased (from 0.1 or 1 μM to 500 μM) there was a progressive negative shift 
in Vb (the potential at which 50% block occurs) (Figure 2a and b). Plotting Vb against polyamine 
concentration (Figure 2b) allowed us to determine the IC50, 0 mV (the concentration expected to result 
in a half maximal block at 0 mV) and thus estimate the potency of each polyamine. This showed 
that, for steady-state conditions, the order of potency for the GluA1 block was spermine >NASPM 
>PhTx-433 >PhTx-74 (Figure 2b and c). The same analysis demonstrated that the potency of each 
blocker was reduced when GluA1 was co-expressed with TARP γ2 (between 7- and 18-fold reduc-
tion; Figure 2b and c).

Onset and recovery of the block by NASPM
Next, we examined GluA1/γ2 currents elicited by rapid application of 10  mM glutamate (in the 
absence of cyclothiazide) and compared the effect of NASPM – the second most potent of the 
blockers – with that of spermine. We first tested the blockers at a concentration of 10 μM, as this 
allowed us to examine the onset of the block. At both positive and negative voltages, glutamate appli-
cation produced currents that showed a clear peak and rapid desensitization to a steady-state level. 
However, with intracellular NASPM the steady state-currents at positive voltages were much reduced 
compared to the corresponding currents at negative voltages (Figure 3a). For both peak and steady-
state currents the RI+60/−60 values obtained with NASPM were less than those obtained with spermine. 
For peak current, RI+60/−60 was 0.37 ± 0.04 for NASPM and 0.56 ± 0.07 for spermine (n=11 and 10, 
respectively; unpaired mean difference −0.19 [−0.34,–0.045], p=0.031, two-sided Welch two-sample 
t-test). For steady-state current, RI+60/−60 was 0.04 ± 0.02 for NASPM and 0.90 ± 0.14 for spermine 
(n=8 and 7), respectively (unpaired mean difference −0.86 [−1.12,–0.62], p=0.00075). This difference 
was also evident in the G-V relationships; those determined from peak responses in the presence of 
spermine or NASPM were largely overlapping, while those from steady-state responses were mark-
edly different at potentials positive to +40 mV, with a large outward conductance seen in the presence 
of spermine but not NASPM (Figure 3b).

Intracellular spermine is a weakly permeable open-channel blocker of both CP-AMPARs and kainate 
receptors (KARs) (Bowie et al., 1998; Brown et al., 2016). However, for GluK2(Q) KARs, permeation 
of intracellular polyamines has been shown to vary with molecular size, with two molecules of greater 
width than spermine – N-(4-hydroxyphenylpropanoyl)-spermine (HPP-SP) and PhTx-433 – showing 
little or no detectable relief from the block with depolarization (Bähring et al., 1997). We reasoned 
that NASPM, with its naphthyl headgroup, might also be expected to display limited permeability of 
CP-AMPAR channels. This could account for the shape of the ramp I-V (Figure 1c) and G-V plots with 
NASPM (Figure 2a). Indeed, the pronounced effect of 10 μM intracellular NASPM on steady-state 

https://doi.org/10.7554/eLife.66765
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Figure 2. Spermine, 1-naphthylacetyl spermine (NASPM), and polyamine toxins display different potencies 
of GluA1 block that are all decreased by transmembrane AMPAR regulatory proteins (TARP) γ2. (a) Pooled, 
normalized conductance-voltage (G-V) relationships (from voltage ramps as in Figure 1) for GluA1 and GluA1/γ2 in 
the presence of spermine (left) or NASPM (right) (n=4–8). Conductance was corrected for the outwardly rectifying 

Figure 2 continued on next page
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GluA1/γ2 currents at positive potentials (Figure 3a) is also consistent with limited permeation, leading 
to the accumulation of channel block.

In line with this, we found that the decay of GluA1/γ2 currents recorded in the presence of NASPM 
was strongly voltage-dependent (Figure 3a and c). At negative potentials, τdecay values were similar 
in the presence and absence of NASPM. However, at positive potentials (from +10 to +80 mV) the 
kinetics in the two conditions differed markedly. In the absence of NASPM current decay was slowed 
at positive potentials, while in the presence of NASPM, the decay was progressively accelerated 
(Figure 3d). In the absence of NASPM, τdecay was slower at +60 mV than at −60 mV (7.3 ± 0.6 ms 
versus 5.7 ± 0.3 ms, n=8; paired mean difference 1.55 ms [0.86, 2.62], p=0.019 two-sided paired Welch 
t-test). By contrast, in the presence of NASPM τdecay was markedly faster at +60 mV than at −60 mV 
(1.7 ± 0.2 ms versus 5.6 ± 0.6 ms, n=10; paired mean difference −4.14 ms [−5.44,–3.07], p=0.00012, 
two-sided paired Welch t-test). Of note, at +60 mV, along with the accelerated decay in the presence 
of NASPM, we also observed a dramatic slowing of the recovery of peak responses following the 
removal of glutamate (Figure 3e). Currents were elicited by pairs of 100 ms glutamate applications 
at frequencies from 0.125 to 4 Hz. The peak amplitude of successive responses is normally shaped 
solely by the kinetics of recovery from desensitization. In the absence of polyamines, a small degree 
of residual desensitization was apparent at 4 Hz (150 ms interval), but full recovery was seen at all 
other intervals, at both +60 and −60 mV (Figure 3f). However, in the presence of NASPM, although 
responses at −60 mV were indistinguishable from those in the absence of polyamines, at +60 mV an 
additional slow component of recovery (τrec slow 4.9 s; Figure 3f) was present. The biphasic recovery 
is suggestive of two populations of receptors, those that desensitized before being blocked (fast 
component of recovery), and those that were blocked by NASPM before they desensitized (slow 
component of recovery). Taken together, our data suggest that 10 μM intracellular NASPM produces 
a pronounced, rapid and long-lasting inhibition of CP-AMPARs at positive potentials.

NASPM can induce complete rectification that is unaffected by 
auxiliary subunits
We found that with 10  µM NASPM, the block of CP-AMPARs was incomplete (Figure  3a and b) 
and depended on the recent history of the channel (Figure 3f). However, as intracellular polyamines 
produce both closed- and open-channel blocks of CP-AMPARs (Bowie et al., 1998; Rozov et al., 
1998), we reasoned that a higher concentration of NASPM would block more effectively and cause 
pronounced rectification, regardless of recent activity. With a higher concentration of NASPM not 
only would closed-channel block be more favored, rendering a higher proportion of receptors silent 
prior to activation, but unblocked closed receptors would more rapidly enter a state of open-channel 
block once activated at positive potentials. For example, an open channel block with 100 µM would 
be approximately 10 times faster than with 10 µM NASPM and would be expected to rapidly curtail 
charge transfer.

Importantly, the block of CP-AMPARs by intracellular spermine is known to be affected by AMPAR 
auxiliary proteins. Different TARP and CNIH family members reduce inward rectification to varying 
extents (Brown et al., 2018; Cho et al., 2007; Coombs et al., 2012; Soto et al., 2007; Soto et al., 
2009), while GSG1L increases rectification (McGee et al., 2015). Thus, an experimentally observed 
change in spermine-induced rectification may not arise solely from a change in CP-AMPAR preva-
lence. Accordingly, we next sought to determine whether intracellular NASPM was able to produce 

response seen in polyamine-free conditions and fitted with single or double Boltzmann relationships (solid lines). 
(b) Vb values from fitted G-V relationships of GluA1 and GluA1/γ2 in the presence of varying concentrations of 
blockers. When Vb was plotted against log [blocker] a linear relationship could be fitted in all cases, the x-intercept 
of which gave IC50, 0 mV. (c) The IC50, 0 mV values for each polyamine demonstrate relative potency in the order 
spermine >NASPM >PhTx-433 >PhTx-74, with γ2 co-expression reducing the potency of the blockers by 7–18-fold.

The online version of this article includes the following source data for figure 2:

Source data 1. Vb values for GluA1 and GluA1/γ2 obtained with intracellular spermine, NASPM, PhTx-433, or 
PhTx-74.

Source data 2. IC50 0 mV values for GluA1 and GluA1/γ2 obtained with intracellular spermine, NASPM, PhTx-433, or 
PhTx-74.

Figure 2 continued
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Figure 3. Block of GluA1/γ2 by 10 µM intracellular 1-naphthylacetyl spermine (NASPM) shows use-dependence and slow recovery. (a) Representative 
GluA1/γ2 currents in the presence of 10 μM intracellular spermine or NASPM activated by fast applications of glutamate (10 mM, 100 ms) at positive 
and negative potentials. In the presence of NASPM, relative peak outward currents are smaller than those seen with spermine, while steady-state 
currents are negligible. (b) Pooled, averaged conductance-voltage (G-V) relationships for peak and steady-state currents obtained with spermine 
(n=9 and 6, respectively) and NASPM (n=11 and 8, respectively). Symbols and error bars indicate the mean ± standard error of the mean. Note the 
stronger inhibition by NASPM of the steady-state compared with peak currents. (c) Representative GluA1/γ2 currents with 10 μM intracellular NASPM 
at the indicated voltages (left) and normalized currents from the same patch at +60 and −60 mV (right). Applications of glutamate at each voltage were 
preceded by an application at −60 mV to relieve the NASPM block. The dashed lines are single exponential fits. (d) Pooled data showing weighted time 
constants of decay with polyamine-free (open symbols, n=8) and 10 μM NASPM (n=8) intracellular solutions measured between −110 mV and +80 mV. 
Symbols and error bars indicate the mean ± standard error of the mean. The kinetics of the negative limb (−110 mV to −10 mV) were voltage and 
NASPM independent (fitted lines indicate τdecay values of 5.7 ms for polyamine free and 5.4 ms for NASPM). The kinetics of the positive limb (+10 to 
+80 mV) was markedly accelerated in the presence of intracellular NASPM. (e) Superimposed GluA1/γ2 currents in the presence or absence of 10 μM 

Figure 3 continued on next page
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complete rectification, and whether its action was affected by the presence of different auxiliary 
subunits.

We first examined the effect of NASPM and spermine on CI-AMPARs. When 100 μM spermine or 
NASPM was added to the internal solution (Figure 4a) the RI+60/−60 values were 0.90 ± 0.03 and 0.93 
± 0.06 (both n=6), while with 400 μM the corresponding RI+60/−60 values were 0.85 ± 0.11 and 0.77 ± 
0.09 (n=5 and 6). This suggests either, that both spermine and NASPM have a small effect on CI-AM-
PARs, or that there may have been a minor complement of CP-AMPARs (GluA1 homomers) in some 
patches. Given that the RI+60/−60 values were ≥0.9 with 100 μM spermine or NASPM this concentration 
was chosen for all subsequent experiments.

We next compared the effects of spermine and NASPM on I-V relationships for GluA1 expressed 
alone or with different auxiliary subunits representing a broad cross-section of those known to differ-
entially modulate the function of native AMPARs (Figure 4b–d). Thus, we expressed GuA1 with TARPs 
(γ2, γ7 or γ8), cornichons (CNIH2 or CNIH3), GSG1L, or CKAMP59. We also examined I-V relationships 
in the presence of γ8 together with CNIH2 or CKAMP44. With GSG1L, full rectification was seen with 
both 100 μM spermine and 100 μM NASPM (RI+60/−60=0). For all other combinations, in the presence 
of spermine RI+60/−60 varied (from 0.037 to 0.29) depending on the auxiliary subunit present, but with 
NASPM rectification was essentially complete in all cases (RI+60/−60 varied from 0 to 0.022) (Figure 4c). 
Thus, unlike 100 μM spermine, 100 μM NASPM produces a near-total block of outward CP-AMPAR-
mediated currents that appears to be independent of the type of auxiliary subunit.

The effects of intracellular NASPM on native AMPARs
To determine whether the difference between spermine and NASPM seen with recombinant receptors 
was preserved in different native receptor populations, we next compared the actions of the polyamines 
on extrasynaptic and synaptic receptors in neurons from wild-type and GluA2 KO (Gria2tm1Rod/J) mice (Jia 
et al., 1996).

First, we compared the rectification conferred by 100 μM spermine or NASPM in patches pulled 
from visually identified dentate gyrus granule cells (DGGC) in acute hippocampal slices (Figure 5a and 
b). These cells strongly express auxiliary subunits CKAMP44 and γ8 (Fukaya et al., 2006; Khodos-
evich et al., 2014; Tomita et al., 2003) and AMPAR-mediated currents from excised patches have 
previously been shown to display partial rectification, potentially indicative of a mixed complement 
of CP- and CI-AMPARs (Khodosevich et al., 2014). In wild-type patches, our data were consistent 
with this. With spermine, the RI+60/−60 was 0.62 ± 0.04 (n=6) (range 0.50–0.72) and with NASPM it was 
0.58 ± 0.05 (n=8) (range 0.45–0.95). The unpaired mean difference was −0.037 [−0.14, 0.10] (p=0.59, 
two-sided Welch two-sample t-test) (Figure 5c). For GluA2 KO DGGC, although both polyamines 
conferred enhanced rectification, there was a clear difference in its extent. In the presence of spermine, 
outward currents were present at +60 mV and the RI+60/−60 was 0.26 ± 0.08 (n=5) (range 0.15–0.56). By 
contrast, outward currents were negligible in the presence of NASPM and the RI+60/−60 was 0.02 ± 0.01 
(n=6) (range 0.003–0.05). The unpaired mean difference was −0.24 [−0.47,–0.15] (p=0.036, two-sided 
Welch two-sample t-test). These data from DGGC patches are consistent with our recombinant data 
and demonstrate that on native CP-AMPARs NASPM also produces more pronounced rectification 
than spermine.

NASPM elicited by pairs of glutamate applications at 4, 2, 1, 0.5, 0.25, and 0.125 Hz (10 mM, 100 ms,+/−60 mV). The first responses with NASPM were 
scaled to those in the polyamine-free condition. With NASPM at −60 mV and in the absence of polyamine at both voltages, the second currents 
broadly recovered to the initial levels. With NASPM at +60 mV, however, peak currents recovered much more slowly. (f) Pooled recovery data recorded 
in the polyamine-free condition (open symbols, n=9) and with added 10 μM NASPM (filled symbols, n=9). Symbols and error bars indicate the mean ± 
standard error of the mean.

The online version of this article includes the following source data for figure 3:

Source data 1. Normalized G-V data for peak and steady-state currents evoked by 10 mM glutamate from GluA1/γ2 receptors with intracellular 
spermine (10 μM) or NASPM (10 μM).

Source data 2. τdecay values for currents evoked by 10 mM glutamate from GluA1/γ2 receptors with intracellular NASPM (10 μM) or with the polyamine-
free intracellular solution at different membrane voltages.

Source data 3. Recovery data (Peak 2/Peak 1) for currents evoked by 10 mM glutamate from GluA1/γ2 receptors with intracellular NASPM (10 μM) or 
with the polyamine-free intracellular solution at +60 and −60 mV.

Figure 3 continued
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Figure 4. Calcium-permeable AMPA-type glutamate receptor (CP-AMPAR) rectification in the presence of 100 µM intracellular 1-naphthylacetyl 
spermine (NASPM) is unaffected by auxiliary proteins. (a) Representative currents activated by fast applications of glutamate to outside-out patches 
excised from HEK293 cells transfected with GluA1/GluA2/γ2 (left) or GluA1/γ2 (right) (10 mM, 100 ms, −110 to +80 mV). The intracellular solution 
was supplemented with 100 µM spermine (blue) or NASPM (purple). (b) Mean normalized peak current-voltage (I-V) relationships for GluA1/GluA2/
γ2 and GluA1/γ2 with 100 μM spermine (blue) or NASPM (purple). Symbols and error bars indicate the mean ± standard error of the mean. (c) Pooled 
rectification data (RI+60/−60) for GluA1 and GluA1/auxiliary subunit combinations with 100 μM spermine (Spm) or NASPM. Box-and-whisker plots indicate 
the median (black line), the first and third quartiles (Q1 and Q3; 25–75th percentiles) (box), and the range min(x[x>Q1+1.5 * inter-quartile range]) to 
max(x[x<Q3+1.5 * inter-quartile range]) (whiskers). Indicated p-values are from two-sided Welch two-sample t-tests (note that for GSG1L all RI values 
were 0). (d) Difference plots showing the shift in rectification index (Δ RI+60/−60) in the presence of NASPM compared with spermine. Symbols show mean 
unpaired differences, and the error bars indicate the bootstrapped 95% confidence intervals.

Figure 4 continued on next page
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Next, we recorded mEPSCs from stellate cells in cerebellar cultures prepared from GluA2 KO mice 
(Figure 6a). Functional studies have shown these molecular layer interneurons normally possess both 
CI- and CP-AMPARs (Liu and Cull-Candy, 2000; Liu and Cull-Candy, 2002), formed from GluA2, –3 
and –4 subunits (Yamasaki et al., 2011) that are expressed along with the TARPs γ2 and γ7 (Bats 
et  al., 2012; Fukaya et  al., 2005; Yamazaki et  al., 2010). Thus, in stellate cells from GluA2 KO 
mice, it is expected that AMPAR-mediated EPSCs will be mediated by TARP-associated GluA2-lacking 
CP-AMPARs.

With 100 µM spermine added to the intracellular solution we detected mEPSCs in stellate cells 
from GluA2 KO mice at both negative and positive voltages (Figure 6b and d). At −60 mV the mean 
absolute amplitude of the averaged mEPSCs was 39 ± 5 pA, the 20–80% rise time was 0.21 ± 0.02 
ms, and the τw,decay was 1.14 ± 0.09 ms (n=6). At +60 mV the corresponding measures were 22 ± 
2 pA, 0.23 ± 0.03 ms, and 1.58 ± 0.19 ms. In each cell, fewer events were detected at +60 mV than at 
−60 mV (the mean frequency was 2.3 ± 1.6 Hz at +60 mV and 7.7 ± 5.0 Hz at −60 mV). This is consis-
tent with the anticipated blocking action of spermine rendering a proportion of mEPSCs undetectable 
at positive potentials (McGee et al., 2015).

The online version of this article includes the following source data for figure 4:

Source data 1. Normalized current-voltage (I-V) data for peak currents evoked by 10 mM glutamate from GluA1/2/γ2, and GluA1/γ2 receptors with 
intracellular spermine (100 μM) or NASPM (100 μM).

Source data 2. RI+60/−60 values for peak currents evoked by 10 mM glutamate from GluA1, GluA1/γ2, GluA1/γ7, GluA1/γ8, GluA1/CNIH2, GluA1/CNIH3, 
GluA1/CKAMP59, GluA1/GSG1L, GluA1/γ8/CNIH2, and GluA1/γ8/CKAMP44 receptors with intracellular spermine (100 μM) or NASPM (100 μM).

Figure 4 continued
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Figure 5. Intracellular 1-naphthylacetyl spermine (NASPM) (100 μM) produces full rectification of currents carried by extrasynaptic calcium-permeable 
AMPA-type glutamate receptors (CP-AMPARs) from dentate gyrus granule cells. (a) Diagrammatic representation of the preparation. (b) Representative 
average glutamate-evoked currents from four outside-out patches excised from somata of wild-type (WT) and GluA2 KO dentate gyrus granule cells 
held at −60 and +60 mV with 100 μM intracellular spermine (blue) or 100 μM intracellular NASPM (purple). (c) Pooled rectification data (RI+60/−60) for WT 
and GluA2 KO patches with 100 μM spermine (Spm) or NASPM. Box-and-whisker plots (top) and difference plots showing the shift in rectification index 
(Δ RI+60/−60) in the presence of NASPM compared with spermine (bottom) as in Figure 4c and d. Indicated p-values are from two-sided Welch two-
sample t-tests.

The online version of this article includes the following source data for figure 5:

Source data 1. RI+60/−60 values for peak currents evoked by 10 mM glutamate from wild-type (WT) and GluA2 KO DGGCs with intracellular spermine 
(100 μM) or NASPM (100 μM).
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Figure 6. Intracellular 1-naphthylacetyl spermine (NASPM) (100 μM) produces full rectification of calcium-permeable AMPA-type glutamate receptor 
(CP-AMPAR)-mediated mEPSCs. (a) Diagrammatic representation of the preparation. (b) Representative whole-cell recording from a cultured GluA2-
knockout (GluA2 KO) cerebellar stellate cell held at voltages between −80 and +60 mV with 100 μM intracellular spermine. The inset shows expanded 
sweeps at −60 and +60 mV, with mEPSCs indicated in red. Note the presence of mEPSCs at both voltages. (c) Same as a, but for a cell with 100 μM 
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To take into account the apparent change in frequency when assessing the degree of rectifica-
tion, we calculated RI+60/−60 from the mean absolute amplitude of detected events multiplied by the 
frequency at each voltage (see Materials and methods). With spermine, the calculated RI+60/−60 was 
0.19 ± 0.04 (Figure 6e). When we made recordings with 100 µM intracellular NASPM, mEPSCs were 
detectable at negative but not positive voltages (Figure 6c and d). At −60 mV the mean absolute 
amplitude of the averaged mEPSCs was 36 ± 6 pA, the 20–80% rise time was 0.26 ± 0.02 ms, and the 
τw,decay was 1.45 ± 0.17 ms (n=6). At −60 mV the average mEPSC frequency was 14.2 ± 8.2 Hz (n=6), 
but at +60 mV no events were seen (RI+60/−60=0; Figure 6e). Thus, even when synapses contained exclu-
sively GluA2-lacking AMPARs, spermine did not fully block outward currents. By contrast, NASPM 
produced full inward rectification, providing an unambiguous read-out of the presence of a receptor 
population composed solely of CP-AMPARs.

NASPM-induced rectification of CP-AMPAR-mediated eEPSCs
To compare the actions of NASPM and spermine on AMPARs at synapses formed in vivo we next 
examined the effects of the polyamines on the rectification of mossy fiber-evoked excitatory post-
synaptic currents (MF-eEPSCs) in granule cells in acute cerebellar slices (Figure 7a). Cerebellar granule 
cells (CGCs) express predominantly GluA2 and GluA4 (Delvendahl et al., 2019; Gallo et al., 1992; 
Mosbacher et al., 1994), together with TARPs γ2 and γ7 (Fukaya et al., 2005; Tomita et al., 2003; 
Yamazaki et al., 2010).

We stimulated mossy fibers at 1 Hz and recorded eEPSCs in CGCs from wild-type and GluA2 KO 
mice at both positive and negative voltages (Figure 7b and c). In wild-type CGCs, I-V curves were 
linear (Figure 7d), with spermine and NASPM yielding similar RI+60/−60 values of 1.07 ± 0.05 (n=5) and 
0.94 ± 0.05 (n=7), respectively. The unpaired mean difference was −0.13 [−0.26,–0.009] (p=0.096, 
two-sided Welch two-sample t-test). Thus, for CI-AMPAR-mediated eEPSCs NASPM gave results 
similar to those obtained with spermine.

In CGCs from GluA2 KO mice, both spermine and NASPM conferred inward rectification (Figure 7b 
and c). However, at +60 mV, while prominent outward currents were seen with spermine in the pipette, 
with NASPM virtually all current was abolished. Consequently, the RI+60/−60 values with spermine (0.29 
± 0.02, n=6) and NASPM (0.04 ± 0.02, n=4) were different (unpaired mean difference −0.25 [−0.31, 
–0.21]; p<0.0001, two-sided Welch two-sample t-test). Thus, CP-AMPARs at synapses formed in 
vivo behave like all other GluA2-lacking CP-AMPARs examined, allowing outward current at positive 
potentials with 100 μM intracellular spermine but exhibiting near-complete inward rectification with 
100 μM intracellular NASPM.

Discussion
Our results demonstrate that when included in the intracellular recording solution the exogenous 
polyamine toxins PhTx-433 and PhTx-74 and the toxin analog NASPM cause a selective, voltage-
dependent blocks of GluA2-lacking CP-AMPARs. As seen with spermine (Soto et  al., 2007), the 
potency of the blockers is reduced when the receptors are associated with the TARP γ2. However, 
unlike spermine, which is currently widely used as means of identifying CP-AMPARs, NASPM can 
produce a complete block of outward currents through CP-AMPARs. Furthermore, the block by 
NASPM remains essentially complete when CP-AMPARs are co-assembled with multiple classes of 
auxiliary subunits, as demonstrated in expression systems and for both extrasynaptic and synaptic 
native receptors. These characteristics make the use of intracellular NASPM a valuable new approach 
to disclose the presence, and relative proportion, of functional CP-AMPARs. Indeed, given that sper-
mine is often added to the pipette solutions when recording EPSCs and other AMPAR-mediated 

intracellular NASPM. The inset shows that mEPSCs (red) were present at −60 mV but not at +60 mV. (d) Representative averaged mEPSCs from a 
cell recorded with intracellular spermine (left) and from a cell recorded with intracellular NASPM (right). Individual mEPSCs are shown in gray, the 
averaged mEPSCs are shown in white, superimposed on filled areas indicating the standard deviation of each recording. (e) Box-and-whisker plot and 
corresponding difference plot as described in Figure 4c and d of pooled RI+60/−60 data. Indicated p-value is from a two-sided Welch two-sample t-test.

The online version of this article includes the following source data for figure 6:

Source data 1. RI+60/−60 values for cerebellar stellate cell mEPSCs were recorded with intracellular spermine (100 μM) or NASPM (100 μM).

Figure 6 continued
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Figure 7. Intracellular 1-naphthylacetyl spermine (NASPM) (100 μM) produces full rectification of calcium-permeable AMPA-type glutamate receptor 
(CP-AMPAR)-mediated MF-eEPSCs. (a) Diagrammatic representation of the preparation. (b) Representative whole-cell recordings of mossy fiber-evoked 
EPSCs from wild-type (WT) cerebellar granule cells (CGCs) held at −60 and +60 mV with 100 μM intracellular spermine (blue) or 100 μM intracellular 
NASPM (purple). Individual mEPSCs are shown in gray, the averaged mEPSCs are shown in white, superimposed on filled areas indicating the standard 
deviation of each recording. The RI values are of the illustrated records (peak averaged current at +60/peak averaged current at −60 mV). (c) Same as a, 
but for two cells in slices from GluA2-knockout (GluA2 KO) mice. (d) Normalized current-voltage (I-V) plots for eEPSCs recorded from cells in slices from 
WT and GluA2 KO mice with 100 μM intracellular spermine (blue) or 100 μM intracellular NASPM (purple). Symbols denote mean values and error bars 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.66765


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Coombs et al. eLife 2023;12:e66765. DOI: https://doi.org/10.7554/eLife.66765 � 14 of 26

currents solely to allow rectification to be used as a proxy for the presence of CP-AMPARs, a strong 
case can be made that use of intracellular NASPM should become the new standard approach in the 
field.

The mechanism of polyamine toxin block
Cryo-EM structures of activated GluA2/γ2 AMPARs blocked with NASPM show the hydrophobic naph-
thalene moiety sitting within the electroneutral central vestibule and the polyamine tail extending into 
the electronegative selectivity filter (Twomey et al., 2018). This is in accord with predictions from 
molecular modeling of the block by various philanthotoxins and adamantane derivatives (Andersen 
et al., 2006; Tikhonov, 2007) and suggests that most of the observed receptors were blocked from 
the ‘outside.’ Our data show, unsurprisingly, that the voltage-dependence of a block by intracellular 
NASPM is the inverse of that seen with extracellular NASPM (Koike et al., 1997; Twomey et al., 
2018), which suggests that intracellularly applied NASPM occupies the pore in an ‘inverted’ orien-
tation, with its polyamine tail in the selectivity filter, but with its bulky head group protruding to the 
intracellular side of the channel preventing permeation.

We have shown previously that γ2 can reduce spermine potency at CP-AMPARs by around 20-fold 
(Soto et al., 2007), possibly by increasing spermine permeation (Brown et al., 2018). In the present 
experiments, we found that co-expression of γ2 also reduced the potency of non-permeating blockers 
(7–18-fold). This is consistent with a TARP-dependent reduction in polyamine affinity, perhaps resulting 
from a reshaping of the selectivity filter (Brown et al., 2018; Soto et al., 2014), mediated by inter-
actions of TARP TM4 with the AMPAR M2 pore helix (Herguedas et al., 2022). One possible caveat 
to our experiments on recombinant AMPARs is that we established the efficacy of NASPM against 
CP-AMPARs using exclusively homomeric GluA1flip-containing combinations. However, given that 
NASPM was also uniformly effective in GluA2 KO CGCs, which are thought to express both flip and 
flop GluA4 splice forms (Mosbacher et al., 1994) and varying degrees of R/G editing (Lomeli et al., 
1994), it seems unlikely that these posttranscriptional modifications influence the action of intracel-
lular NASPM.

Advantages of intracellular NASPM for assessing CP-AMPAR 
contribution
Although intracellular spermine is widely used in voltage-clamp experiments to assess the contri-
bution of CP-AMPARs to the recorded currents, the inclusion in the intracellular solution of 100 μM 
NASPM offers two key advantages. First, it can produce a selective, use-independent, and complete 
block of CP-AMPAR-mediated outward current. Second, this block is unaffected by the presence of 
auxiliary proteins. Together, these characteristics eliminate the difficulties of interpretation that can 
arise when using spermine.

Furthermore, the full block of CP-AMPARs at positive potentials will allow any limited contribution 
of CI-AMPARs to be more effectively assessed. With intracellular spermine, an intermediate level of 
rectification is difficult to interpret, as it could reflect the presence of a mixture of CI- and CP-AMPARs 
or the presence of CP-AMPARs with various auxiliary proteins. (Brown et al., 2018; Cho et al., 2007; 
Coombs et al., 2012; Soto et al., 2007; Soto et al., 2009). With NASPM, however, incomplete recti-
fication can arise only if there is a genuine contribution of CI-AMPARs. Of note, as the spermine block 

denote the standard error of the mean (WT; n=5 spermine and 7 NASPM. GluA2 KO; n=6 spermine and 4 NASPM). Fits are straight lines (WT) or fifth-
order polynomials (GluA2 KO). (e) Box-and-whisker and difference plots as described in Figure 4c and d for rectification values (RI+60/−60) obtained with 
spermine (Spm) and NASPM from WT and GluA2 KO cells. Indicated p-values are from two-sided Welch two-sample t-tests.

The online version of this article includes the following source data for figure 7:

Source data 1. MF-eEPSC peak amplitudes, 20–80% rise times and ‍τ ‍w,decay values from wild-type (WT) and GluA2-knockout (GluA2 KO) CGCs recorded 
with intracellular spermine (100 μM) or NASPM (100 μM).

Source data 2. Normalized current-voltage (I-V) data for peak MF-eEPSCs from wild-type (WT) and GluA2-knockout (GluA2 KO) CGCs recorded with 
intracellular spermine (100 μM) or NASPM (100 μM).

Source data 3. RI+60/−60 values for peak MF-eEPSCs from wild-type (WT) and GluA2-knockout (GluA2 KO) CGCs were recorded with intracellular 
spermine (100 μM) or NASPM (100 μM).

Figure 7 continued

https://doi.org/10.7554/eLife.66765
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of CP-KARs is also affected by the auxiliary proteins Neto1 and –2 (Brown et al., 2016; Fisher and 
Mott, 2012), NASPM may also find utility in the study of these receptors.

Whilst a principal advantage of NASPM is its insensitivity to the presence of auxiliary subunits, this 
means that it cannot discriminate between different CP-AMPAR subtypes with potentially different 
auxiliary subunit content. By contrast, we have previously used the precise degree of rectification seen 
with spermine to infer the association of auxiliary subunits with native CP-AMPARs (Soto et al., 2007; 
Soto et al., 2009; Studniarczyk et al., 2013). Thus, we suggest that intracellular NASPM will prove 
most informative when used in parallel with intracellular spermine – full rectification with NASPM will 
identify a pure CP-AMPAR population, allowing the degree of rectification with spermine to provide 
information regarding the potential presence or absence of specific auxiliary subunits. Without the 
use of NASPM, information from other measures, such as the channel conductance estimated using 
nonstationary fluctuation analysis (Bats et al., 2012; Studniarczyk et al., 2013), is needed to make 
such inferences.

The extracellular application of cationic blockers, such as HPP-SP, NASPM, PhTx-433, or IEM-1460, 
has been widely used to reveal the presence and roles of CP-AMPARs in neurons, with the advantage 
that recordings can be made at a fixed negative voltage and the block can be reversible. However, 
those extracellular blockers that have been examined on CP-AMPAR-mediated synaptic responses in 
tissue from GluA2 KO mice – HPP-SP, PhTx-433, and IEM-1460 – produce an incomplete (~60–80%) 
block, even when used at relatively high concentrations (10 or 100 μM) (Adesnik and Nicoll, 2007; 
Gray et al., 2007; Jackson and Nicoll, 2011a, Mainen et al., 1998; Sara et al., 2011). In this respect, 
it is revealing that a low concentration (100 nM) of PhTx-433, which is capable of producing a near 
complete steady-state block of recombinant GluA2-lacking receptors, has only a minimal effect on 
GluA2-lacking synaptic responses (Jackson and Nicoll, 2011a). This difference in efficacy reflects 
the different nature of glutamate exposure and the use-dependent nature of the block. This also 
means that, when used to examine the properties of synaptic responses, the effects can be frequency-
dependent and exhibit a slow onset (Lujan et al., 2019; Mainen et al., 1998; Zaitsev et al., 2011). 
Finally, of course, extracellularly applied drugs can block CP-AMPARs throughout the tissue, not only 
those in the recorded cell. This can potentially affect glutamate release, either directly or indirectly.

To conclude, our recordings of macroscopic currents from excised patches containing heterol-
ogously expressed or native AMPARs, of mEPSCs from dissociated neurons, and of eEPSCs from 
neurons in brain slices have demonstrated the value of intracellular NASPM as a tool for the functional 
study of CP-AMPARs. We suggest that intracellular NASPM offers a clear methodological advantage 
over spermine for experiments on recombinant or native AMPARs where rectification is used to assess 
the contribution of CP-AMPAR to the current. It enables a straightforward and cell-specific readout of 
CP-AMPAR presence and the ability to unambiguously assess changes in their prevalence.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (Mus 
musculus) Gria2tm1Rod/J, 129 /CD1 other

Gift from Ingo Greger, MRC LMB, 
Cambridge, UK

Genetic reagent (Mus 
musculus) oIMR6780 (Gria2) JAX JAX:oIMR6780

wild-type Forward primer
GGT TGG TCA CTC ACC TGC TT

Genetic reagent (Mus 
musculus) oIMR6781 (Gria2) JAX JAX:oIMR6781

Common primer
TCG CCC ATT TTC CCA TAT AC

Genetic reagent (Mus 
musculus) oIMR8444 (Gria2) JAX JAX:oIMR8444

Mutant primer
GCC TGA AGA ACG AGA TCA GC

Cell line (Homo 
sapiens) HEK293 ATCC ATTC:CRL-1573

Transfected construct 
(Rattus norvegicus) pIRES-eGFP-GluA1

doi:10.1126/science.2166337; 
doi:10.1038/nn.2266

Gria1; Flip form. Gift from Peter 
Seeburg (subcloned into pIRES-
eGFP)

https://doi.org/10.7554/eLife.66765
https://doi.org/10.1126/science.2166337
https://doi.org/10.1038/nn.2266
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Transfected construct 
(Rattus norvegicus) pIRES-eGFP-GluA2

doi:10.1126/
science.2166337; doi:10.1523/
JNEUROSCI.17-01-00058.1997

Gria2; Q/R and R/G edited flip form. 
Gift from Peter Seeburg (subcloned 
into pIRES-eGFP)

Transfected construct 
(Rattus norvegicus) pIRES-eGFP-γ2

doi:10.1038/1228; doi:10.1038/
nn.2266

Cacng2; Gift from Roger Nicoll, 
UCSF, USA

Transfected construct 
(Homo sapiens) pIRES-eGFP-γ7 doi:10.1038/nn.2266

CACNG7; OriGene Technologies 
pCMV6-XL4-γ7
(subcloned into pIRES-eGFP)

Transfected construct 
(Rattus norvegicus) pIRES-eGFP-γ8

doi:10.1083/jcb.200212116; 
doi:10.1038/nn.2266

Cacng8; gift from Roger Nicoll, 
UCSF, USA

Transfected construct 
(Rattus norvegicus) pIRES-eGFP-CNIH2

doi:10.1126/
science.1167852; doi:10.1523/
JNEUROSCI.0345–12.2012

Cnih2; gift from Bernd Fakler, 
University of Freiburg, Germany 
(subcloned into pIRES-eGFP)

Transfected construct 
(Rattus norvegicus) pIRES-eGFP-CNIH3

doi:10.1016/j.
neuron.2012.03.034; doi:10.1523/
JNEUROSCI.0345–12.2012

Cnih3; Gift from Bernd Fakler, 
University of Freiburg, Germany 
(subcloned into pIRES-eGFP)

Transfected construct 
(Mus musculus) pRK5-CKAMP44a doi:10.1126/science.1184245

Ckamp44; Gift from Jakob von 
Engelhardt, Johannes Gutenberg 
University, Mainz, Germany

Transfected construct 
(Mus musculus) pRK5-CKAMP59-short doi:10.7554/eLife.09693.001

Ckamp59; Gift from Jakob von 
Engelhardt, Johannes Gutenberg 
University, Mainz, Germany

Transfected construct 
(Rattus norvegicus) pcDNA3.1-GSG1L

doi:10.1016/j.
neuron.2012.03.034; doi:10.1523/
JNEUROSCI.2152–15.2015

Gsg1l; Gift from Bernd Fakler, 
University of Freiburg, Germany

Transfected construct 
(Rattus norvegicus)

pcDNA3-Homer1c-
tdDsRed doi:10.1016/j.neuron.2007.01.030

Gift from Daniel Choquet, University 
of Bordeaux, France

Chemical compound, 
drug

PhTx-433;
Spermine 
tetrahydrochloride

Sigma-Aldrich, Merck Life Science 
UK Limited, Gillingham, UK

Sigma-Adrich:P207;
Sigma-Adrich:85610

Chemical compound, 
drug PhTx-74

Tocris Bioscience, Bio-Techne Ltd, 
Abingdon, UK Tocris:2770

Chemical compound, 
drug NASPM HelloBio, Bristol, UK HelloBio:HB0441

Software, algorithm IGOR Pro
Wavemetrics, Lake Oswego, Oregon, 
USA RRID:SCR_000325 version 6.35

Software, algorithm pClamp Molecular Devices RRID:SCR_011323 version 10

Software, algorithm WinWCP
Strathclyde Electrophysiology 
Software RRID:SCR_014713 version 5.2.7

Software, algorithm NeuroMatic
http://www.neuromatic.thinkrandom.​
com RRID:SCR_004186 version 2.8

Software, algorithm R
R Foundation for Statistical 
Computing RRID:SCR_001905 version 4.1.0

Software, algorithm RStudio Desktop Posit Software RRID:SCR_000432 version 2022.12.0

 Continued

Materials
Common laboratory chemicals were obtained from Sigma-Aldrich (Merck Life Science UK Limited, 
Gillingham, UK), as were penicillin, streptomycin, transferrin, insulin, spermine tetrahydrochloride, 
strychnine, and PhTx-433. Tetrodotoxin (TTX) and PhTx-74 were from Tocris Bioscience (Bio-Techne 
Ltd, Abingdon, UK). NASPM and bicuculline methiodide were from HelloBio (Bristol, UK). Cyclo-
thiazide, d-AP5, SR-95531 [2-(3-carboxypropyl)–3-amino-6-(4-methoxyphenyl)pyridazinium bromide] 
and QX-314 [N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide] were from Tocris 
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Bioscience or HelloBio. Lipofectamine 2000 and gentamicin were from Invitrogen (Thermo Fisher 
Scientific, Waltham, MA USA). Basal Medium Eagle (BME), Eagles Minimum Essential Medium (MEM), 
Dulbecco’s Modified Eagle Medium (DMEM), and fetal bovine serum (FBS) were from Gibco (Thermo 
Fisher Scientific, Waltham, MA USA).

Mice
Gria2-deficient (GluA2 KO) mice were bred from heterozygous parents (Gria2tm1Rod/J / Gria2+) (Jia 
et  al., 1996) on a 129  /CD1 background. Mice were group housed in standard cages and main-
tained under controlled conditions (temperature 20 ± 2°C; 12 hr light-dark cycle). Food and water 
were provided ad libitum. Both male and female mice were used for generating primary neuronal 
cultures or slices. GluA2 KO (Gria2−/−) mice were compared with wild-type (Gria2+/+) littermates. The 
genotypes of the pups were determined using PCR analysis using the following Gria2 primers: ​GGTT​​
GGTC​​ACTC​​ACCT​​GCTT​ (wild-type, oIMR6780); ​TCGC​​CCAT​​TTTC​​CCAT​​ATAC​ (common, oIMR6781) 
and ​GCCT​​GAAG​​AACG​​AGAT​​CAGC​ (mutant, oIMR8444). All procedures for the care and treatment 
of mice were in accordance with the Animals (Scientific Procedures) Act 1986.

Heterologous expression
Plasmids containing the flip splice variant of rat GluA1 (pIRES-eGFP-GluA1), the Q/R and R/G edited 
flip splice variant of rat GluA2 (pIRES-eGFP-GluA2), rat γ2 (pIRES-eGFP-γ2), rat CNIH2 (pIRES-eGFP-
CNIH2), rat CNIH3 (pIRES-eGFP-CNIH3), rat GSG1L (pcDNA3.1-GSG1L), human γ7 (pIRES-eGFP-γ7), 
mouse CKAMP44 (pRK5-CKAMP44a), and mouse CKAMP59 (pRK5-CKAMP59-short) were expressed 
in human embryonic kidney (HEK) 293 cells from ATCC (Manassas, VA, USA; CRL-1573). The authen-
tication of this cell line was provided by ATCC, and the cell line was tested negative for mycoplasma 
contamination. Cells were grown in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 0.1 mg/
ml streptomycin at 37 °C, 5% CO2, and maintained according to standard protocols. Transient trans-
fection was performed using Lipofectamine 2000 according to the manufacturer’s instructions. Hetero-
meric GluA1/2 receptors were expressed using a cDNA ratio of 1:2 GluA1:GluA2. AMPAR/auxiliary 
subunit combinations had a cDNA ratio of 1:2 GluA1:auxiliary subunit. Cells were split 12–24 hr after 
transfection and plated on poly-l-lysine coated glass coverslips. Electrophysiological recordings were 
performed 18–48 hr later.

HEK293 cell outside-out patch recordings
Patch-clamp electrodes were pulled from borosilicate glass (1.5 mm o.d., 0.86 mm i.d.; Harvard Appa-
ratus, Cambridge, UK) and fire polished to a final resistance of 6–10 MΩ. Voltage ramp experiments 
were performed using outside-out patches. The ‘external’ solution contained: 145 mM NaCl, 2.5 mM 
KCl, 1 mM CaCl2, 1 mM MgCl2, and 10 mM HEPES (pH 7.3). For steady-state ramp responses, this 
solution was supplemented with 300 µM glutamate and 50 µM cyclothiazide. The ‘internal’ solution 
contained 125 mM CsCl, 2.5 mM NaCl, 1 mM CsEGTA, 10 mM HEPES, and 20 mM Na2ATP (pH 7.3 
with CsOH) and was supplemented with the indicated concentrations of spermine tetrahydrochloride, 
NASPM, PhTx-433, or PhTx-74. For fast-application experiments, the ‘external’ solution contained 
145 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, and 10 mM HEPES (pH 7.3) while the ‘internal’ 
solution contained (in mM): 140 mM CsCl, 10 mM HEPES, 5 mM EGTA, 2 mM MgATP, 0.5 mM CaCl2, 
and 4 mM NaCl, supplemented with 10 or 100 μM spermine or NASPM as indicated. Recordings were 
made at 22–25°C using an Axopatch 200 A amplifier (Molecular Devices, USA). Voltage ramp currents 
were low-pass filtered at 500 Hz and digitized at 2 kHz using an NI USB-6341 (National Instruments) 
interface with WinWCP (v5.2.7; Strathclyde Electrophysiology Software; http://spider.science.strath.​
ac.uk/sipbs/software_ses.htm). Recordings of responses to fast glutamate applications were low pass 
filtered at 10 kHz and digitized at 20 kHz.

Voltage ramps (either −80 mV to +60 mV, −100 mV to +100 mV, or −100 mV to +130 mV) were 
delivered at 100 mV/s. For each experiment, ramps in control or glutamate plus cyclothiazide solu-
tions were interleaved to allow for leak subtraction. Rapid agonist application was achieved by 
switching between continuously flowing solutions, as described previously (Soto et al., 2014). Solu-
tion exchange was achieved by moving an application tool – made from custom triple-barrelled glass 
(VitroCom, Mountain Lakes, NJ, USA) – mounted on a piezoelectric translator (PI (Physik Instrumente) 
Ltd, Bedford, UK). At the end of each experiment, the adequacy of the solution exchange was tested 

https://doi.org/10.7554/eLife.66765
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by destroying the patch and measuring the liquid-junction current at the open pipette (10–90% rise 
time typically 150–300 μs).

Neuronal primary culture
Primary cultures were prepared from the cerebella of P7 mice as previously described (McGee et al., 
2015). After dissociation, the cell suspension was transfected with a pcDNA3-Homer1c-tdDsRed 
plasmid (Bats et al., 2007) by electroporation using the Amaxa Nucleofector 2b device and Amaxa 
mouse neuron nucleofector kit (Lonza). Neurons were then plated on poly-l-lysine-coated glass cover-
slips and grown at 37 °C in a humidified 5% CO2-containing atmosphere in BME supplemented with 
KCl (25 mM final concentration), 20 μg/ml gentamicin, 2 mM l-glutamine, and 10% v/v FBS. After 
3 days in vitro, the growing medium was replaced with MEM supplemented with 5 mg/ml glucose, 
2 mM glutamine, 20 μg/ml gentamicin, 0.1 mg/ml transferrin, and 0.025 mg/ml insulin. Recordings 
were performed after 8–11 DIV.

mEPSC recordings
Cerebellar cells grown on coverslips were visualized using an inverted microscope (IX71; Olympus) 
equipped with a 40x/0.9 NA objective (Olympus) and excitation and emission filters (Chroma Tech-
nology HQ540/40 x and HQ600/50 m) to enable DsRed visualization. We distinguished stellate cells 
from granule cells by their larger soma and the presence of punctate somatic and dendritic DsRed 
labeling that differed from the sparse, more distal dendritic, labeling of granule cells.

The extracellular solution, adjusted to pH 7.3 with NaOH, contained: 145 mM NaCl, 2.5 mM KCl, 
2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, and 10 mM HEPES. To this, we added 0.5 μM TTX, 20 μM 
d-AP5, and 20 μM SR-95531 to block voltage-gated sodium channels, NMDA, and GABAA receptors, 
respectively. The internal solution, adjusted to pH 7.4 with CsOH, contained: 140 mM CsCl, 10 mM 
HEPES, 5  mM EGTA, 2  mM MgATP, 0.5  mM CaCl2, 4  mM NaCl, and either 100  μM spermine or 
100 μM NASPM. Recordings were performed using an Axopatch 700B amplifier, low pass filtered at 
6 kHz, and digitized at 25 kHz using a USB-6341 interface and Igor Pro 6 (v6.35, Wavemetrics, Lake 
Oswego, Oregon, USA) with NeuroMatic v2.8 and NClamp (http://www.neuromatic.thinkrandom.​
com) (Rothman and Silver, 2018). Patch-clamp electrodes were pulled from borosilicate glass (as for 
outside-out patch recordings) and had a resistance of 5–7 MΩ. Rseries was not compensated but was 
monitored throughout each recording; if a cell showed a>30% change in Rseries it was excluded from 
the analysis. For each included cell Rseries was <18 MΩ and Rinput was >45 × Rseries. Cells were exposed 
for 2 min to 200 μM LaCl3 prior to data acquisition to increase mEPSC frequency (Chung et al., 2008). 
Membrane potential was stepped in 10 mV increments from −80 to +60 mV and then from +60 to 
−80  mV. For the calculation of mEPSC RI+60/−60, where both ascending and descending runs were 
completed, the data were pooled.

Hippocampal and cerebellar slice preparation
Hippocampal slices
Mice (P14-P21) were anesthetized with isoflurane and decapitated. The brain was immersed in an ice-
cold slicing solution containing 85 mM NaCl, 2.5 mM KCl, 1 mM 1 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, 
75 sucrose, 4 MgCl2, 25 glucose, supplemented with 20 μM d-AP5 to prevent NMDAR-mediated cell 
damage (pH 7.4 when bubbled with 95% O2/5% CO2). Horizontal slices (250 µm) were cut using a 
vibratome (Leica VT1200S) and transferred to a submerged holding chamber at 37 °C. The solution 
was slowly exchanged over 1 hr to an external ‘recording’ solution containing 125 mM NaCl, 2.5 mM 
KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 2 mM CaCl2, 1 mM MgCl2, 25 mM glucose, and 20 μM 
d-AP5 (pH 7.4 when bubbled with 95% O2/5% CO2). Thereafter, the slices were maintained at room 
temperature prior to recording.

Cerebellar slices
Parasagittal slices (280  μm) were prepared as for hippocampal slices, except the slicing solution 
containing 0.5 mM CaCl2, 64 mM sucrose, and 40 µM d-AP5, and a different vibratome was used 
(Campden 7000smz). Slices were stored in the same solution in a submerged chamber at 32 °C for 
30 min and then transferred into recording ‘external’ solution (as for hippocampal slices, but without 
d-AP5) for maintenance at room temperature prior to recording.

https://doi.org/10.7554/eLife.66765
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DGGC outside-out patch recordings
Hippocampal slices were viewed with an upright microscope (BX51WI; Olympus) using a 60x/0.9 NA 
objective (Olympus) and oblique illumination. Outside-out patches were pulled from visually iden-
tified dentate gyrus granule cells using thick-walled borosilicate glass electrodes. The electrodes 
had a resistance of 8–10 MΩ when filled with an internal solution containing: 128 mM CsCl, 10 mM 
HEPES, 10 mM EGTA, 2 mM Mg2ATP, 0.5 mM CaCl2, 2 mM NaCl, 5 mM TEA, 1 mM QX-314, and 
either 0.1 mM spermine tetrahydrochloride or 0.1 mM NASPM (pH 7.3 with CsOH; osmolarity 300 ± 
20 mOsm/L). Slices were perfused with the external solution containing 20 μM d-AP5 (as described 
above, under Hippocampal slices) to which was added 20 μM bicuculline methobromide and 1 μM 
strychnine. Currents were recorded at room temperature using an Axopatch 200B amplifier, filtered at 
10 kHz, and digitized at 20 kHz using WinWCP software.

Rapid glutamate application was achieved by jumping between a control solution stream and one 
containing 10 mM glutamate for 100 ms using an application tool made of theta glass (Hilgenberg) 
mounted on a piezoelectric translator (PI (Physik Instrumente) Ltd, Bedford, UK). Open-tip responses 
between the control and a diluted solution had 10–90% rise times that were typically 250–350 μs. 
For calculation or the rectification index (RI+60/−60), multiple jumps into glutamate were performed at 
−60 mV then at +60 mV, before being repeated and currents averaged. For the generation of I-V plots, 
multiple jumps into glutamate were performed at intervals of 10 mV between −60 mV and +60 mV in 
a randomized sequence. To reduce the impact of noise on the measurement of peak currents, record-
ings were low-pass filtered offline at 2 kHz.

Mossy fiber-evoked CGC EPSC recordings
Cerebellar slices were viewed with an upright microscope (BX50WI; Olympus) using a 40x/0.9 NA 
objective (Olympus) and oblique illumination. Whole-cell recordings were made from visually identi-
fied cells in the internal granule cell layer. To record eEPSCs, mossy fibers were stimulated (1 Hz) using 
constant voltage pulses (10–100 μs; 30–95 V) delivered through a glass electrode filled with external 
solution and placed in the granule cell layer, typically ~50–100 μm from the soma of recorded granule 
cell.

The extracellular solution contained: 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 25 mM 
NaHCO3, 1.25 mM NaH2PO4, 25 mM glucose; pH 7.3 when bubbled with 95% O2/5% CO2. To block 
NMDA-, GABAA-, and glycine receptors, 20 μM d-AP5, 20 μM SR-95531, and 1 μM strychnine were 
added to the external solution. The internal solution, adjusted to pH 7.3 with CsOH, contained: 
128 mM CsCl, 10 mM HEPES, 10 mM EGTA, 2 mM Mg2ATP, 0.5 mM CaCl2, 2 mM NaCl, 5 mM TEA, 
1 mM QX-314, and either 0.1 mM spermine tetrahydrochloride or 0.1 mM NASPM (osmolarity 300 
± 20  mOsm/L). Recordings were acquired with an Axopatch 200B amplifier, low pass filtered at 
5 kHz, and digitized at 20 kHz using a Digidata 1440 A interface with pClamp 10 software (Molecular 
Devices). Electrodes were pulled from borosilicate glass (as for outside-out patch recordings) and had 
a resistance of 5–7 MΩ. Rseries was not compensated but was monitored throughout each recording; 
if a cell showed a>30% change in Rseries it was excluded from the analysis. For each included cell Rseries 
was <35 MΩ and Rinput was >142 × Rseries. Cells were exposed for 2 min to 200 μM LaCl3 prior to data 
acquisition to increase mEPSC frequency (Chung et al., 2008). Membrane potential was stepped in 
10 mV increments from −80 to +60 mV and then from +60 to −80 mV. For the calculation of mEPSC 
RI+60/−60, where both ascending and descending runs were completed, the data were pooled.

Data analysis
Analysis of HEK cell recordings
Records were analyzed using IGOR Pro with NeuroMatic. To quantify the rectification seen with ramp 
I-V relationships, the rectification index (RI+60/−60) was calculated as the ratio of the current at +60 mV 
and −60 mV (average of 15 data points spanning each voltage). To generate conductance-voltage 
(G-V) curves the reversal potential for each leak-subtracted I-V curve was calculated to ascertain the 
driving force. The resultant data were normalized, averaged, then converted to conductances. To 
account for the polyamine-independent outward rectification of AMPARs, the conductance values 
were divided by those obtained in the polyamine-free condition. For currents that displayed inward 
rectification only, G-V curves were fitted with the Boltzmann equation:

https://doi.org/10.7554/eLife.66765
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	﻿‍
G = Gmax

(
1

1+exp
(

Vm−Vb
kb

)
)

,
‍�

where Gmax is the conductance at a sufficiently hyperpolarised potential to produce full relief of 
polyamine block, Vm is the membrane potential, Vb is the potential at which 50% of block occurs, 
and kb is a slope factor describing the voltage dependence of block (the membrane potential shift 
necessary to cause an e-fold change in conductance). For currents that displayed double rectification, 
G-V curves were fitted with a double Boltzmann equation which contains equivalent terms for voltage-
dependent permeation (p) (Panchenko et al., 1999):

	﻿‍
G = Gmax

(
1

1+exp
(

Vm−Vb
kb

)
)

+ Gmax,p

(
1

1+exp
(

Vm−Vp
kp

)
)

‍�

The slopes of the fits were not constrained. Data from GluA1 with 1 μM NASPM were excluded 
due to excessive scatter and poor fit. Steeper relationships at more positive potentials in the presence 
of NASPM (Figure 2a GluA1/γ2) likely reflect the modest accumulation of block during the voltage 
ramp. GluA1 Plots of Vb against the log of the polyamine concentration were fitted with a linear func-
tion, the x-axis intercepts giving the voltage-independent affinity (IC50, 0 mV).

Current decays following fast applications of glutamate (10 mM, 100 ms) at positive and negative 
potentials were described by single or double exponential fits. In the latter case, the weighted time 
constant of decay (τw,decay) was calculated according to:

	﻿‍
τw,decay = τf

(
Af

Af+As

)
+ τs

(
As

Af+As

)
,
‍�

where Af  and τf are the amplitude and time constant of the fast component and ‍As‍ and ‍τs‍ are the 
amplitude and time constant of the slow component. For each condition, the values of τdecay (from 
single exponential fits) and τw,decay (from double exponential fits) were pooled.

Double pulse experiments (100 ms glutamate applications at intervals of 150 ms to 7.9 s 4–0.125 Hz) 
were used to assess the recovery of peak responses following the removal of glutamate. As expected, 
some residual desensitization was apparent at the shortest of the intervals in all conditions (Coombs 
et al., 2017). Thus, the magnitude of the second pulse reflected recovery from desensitization and, 
at +60 mV with 10 μM NASPM, the relief of the NASPM block. In the latter case, the recovery of the 
second peak was fitted with a biexponential function, as above.

mEPSC analysis
mEPSCs were detected using an amplitude threshold crossing method based on the algorithm of 
Kudoh and Taguchi, 2002 (NeuroMatic). The standard deviation of the background noise at +60 mV 
(range 2.4–6.4 pA; 3.5 ± 0.4 pA, n=12) was determined by fitting a single-sided gaussian to an all-
point histogram from a 500ms stretch of record. For each cell, the same detection threshold (2–3 x 
the standard deviation at +60 mV) was used at both −60 and +60 mV. At each voltage, the mEPSC 
frequency was determined as the total number of mEPSCs detected/record length, and a mean 
mEPSC waveform was constructed from those events that displayed a monotonic rise and an uncon-
taminated decay. One cell recorded with intracellular spermine was excluded from the analysis as <10 
events were detected during 40 s recording at −60 mV. For each of the 12 other cells, detected events 
were aligned on their rising phase before averaging. The rectification index was then calculated as:

	﻿‍ RI+60/−60 =
(��̄I+60

��× f+60
)

/
(��̄I−60

��× f−60
)
‍�

where ‍̄I ‍ is the amplitude of the mean mEPSC and ‍f ‍ is the frequency of mEPSCs at the indicated 
voltage. For each averaged mEPSC we determined the 20–80% rise time and fitted the decay with a 
double exponential to obtain τw,decay (as described for HEK cell agonist-evoked currents).

MF-eEPSC analysis
eEPSCs were evoked at multiple voltages between −80 and +60 mV. Average waveforms were gener-
ated from responses to ~100 stimuli and the peak amplitude was determined. The rectification index 
(RI+60/−60) was calculated for each cell as the absolute peak of the averaged current at +60 mV divided 

https://doi.org/10.7554/eLife.66765
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by the absolute peak of the averaged current at −60 mV. The 20–80%  risetime and τw,decay (from 
double exponential fits) of averaged currents at −60 and +60 mV were also determined.

Data presentation and statistics
Summary data are presented in the text as mean ± standard error of the mean from n measures, where 
n represents the number of biological replicates (number of cells or patches). Estimates of paired or 
unpaired mean differences and their bias-corrected and accelerated 95% confidence intervals from 
bootstrap resampling are presented as effect size [lower bound, upper bound]. Error bars on graphs 
indicate the standard error of the mean or, where indicated, the 95% confidence interval. Box-and-
whisker plots indicate the median (black line), the 25–75th percentiles (box), and the 10–90th percen-
tiles (whiskers); filled circles are data from individual patches/cells and open circles indicate means. 
Specific analyses and statistical tests are described in the text. The source data are given in the Source 
Data files for each relevant figure. Comparisons were performed using paired or unpaired two-sided 
Welch two-sample t-tests that do not assume equal variance (normality was not tested statistically but 
gauged from density histograms and/or quantile-quantile plots). Exact p-values are presented to two 
significant figures, except when p<0.0001. Statistical tests were performed using R (version 4.1.0, the 
R Foundation for Statistical Computing, http://www.r-project.org/) and RStudio (version 2022.12.0, 
Posit Software). No statistical test was used to predetermine sample sizes. No randomization was 
used.
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