Uncovering a 'sensitive window' of multisensory and motor neuroplasticity in the cerebrum and cerebellum of male and female starling

Abstract

Traditionally, research unraveling seasonal neuroplasticity in songbirds has focused on the male song control system and testosterone. We longitudinally monitored the song behavior and neuroplasticity in male and female starlings during multiple photoperiods using Diffusion Tensor and Fixel-Based techniques. These exploratory data-driven whole-brain methods resulted in a population-based tractogram confirming microstructural sexual dimorphisms in the song control system. Furthermore, male brains showed hemispheric asymmetries in the pallium, whereas females had higher interhemispheric connectivity, which could not be attributed to brain size differences. Only females with large brains sing but differ from males in their song behavior by showing involvement of the hippocampus. Both sexes experienced multisensory neuroplasticity in the song control, auditory and visual system, and cerebellum, mainly during the photosensitive period. This period with low gonadal hormone levels might represent a 'sensitive window' during which different sensory and motor systems in the cerebrum and cerebellum can be seasonally re-shaped in both sexes.

Data availability

All MRI data have been deposited in Dryad (https://doi.org/10.5061/dryad.h44j0zpj8). Source data files have been provided for Figures 3-11.

The following data sets were generated

Article and author information

Author details

  1. Jasmien Orije

    Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
    For correspondence
    Jasmien.Orije@uantwerpen.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6699-6221
  2. Emilie Cardon

    Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Julie Hamaide

    Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Elisabeth Jonckers

    Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Veerle M Darras

    Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4429-8868
  6. Marleen Verhoye

    Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, Antwerpen, Belgium
    For correspondence
    marleen.verhoye@uantwerpen.be
    Competing interests
    The authors declare that no competing interests exist.
  7. Annemie Van der Linden

    Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2941-6520

Funding

Belgian Federal Science Policy Office (PLASTOSCINE": P7/17")

  • Annemie Van der Linden

Research Foundation - Flanders (G030213N)

  • Annemie Van der Linden

Research Foundation - Flanders (115217N)

  • Jasmien Orije

Research Foundation - Flanders (12R1917N)

  • Elisabeth Jonckers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The housing and experimental procedures were performed in agreement with the European directives, Belgian and Flemish laws and were approved by the Committee on Animal Care and Use of the University of Antwerp, Belgium (2014-52).

Copyright

© 2021, Orije et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,096
    views
  • 120
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jasmien Orije
  2. Emilie Cardon
  3. Julie Hamaide
  4. Elisabeth Jonckers
  5. Veerle M Darras
  6. Marleen Verhoye
  7. Annemie Van der Linden
(2021)
Uncovering a 'sensitive window' of multisensory and motor neuroplasticity in the cerebrum and cerebellum of male and female starling
eLife 10:e66777.
https://doi.org/10.7554/eLife.66777

Share this article

https://doi.org/10.7554/eLife.66777

Further reading

    1. Neuroscience
    Yiting Li, Wenqu Yin ... Baoming Li
    Research Article

    Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.