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Abstract Vision neuroscience has made great strides in understanding the hierarchical orga-
nization of object representations along the ventral visual stream (VVS). How VVS representations 
capture fine-grained visual similarities between objects that observers subjectively perceive has 
received limited examination so far. In the current study, we addressed this question by focussing 
on perceived visual similarities among subordinate exemplars of real-world categories. We hypoth-
esized that these perceived similarities are reflected with highest fidelity in neural activity patterns 
downstream from inferotemporal regions, namely in perirhinal (PrC) and anterolateral entorhinal 
cortex (alErC) in the medial temporal lobe. To address this issue with functional magnetic resonance 
imaging (fMRI), we administered a modified 1-back task that required discrimination between cate-
gory exemplars as well as categorization. Further, we obtained observer-specific ratings of perceived 
visual similarities, which predicted behavioural discrimination performance during scanning. As 
anticipated, we found that activity patterns in PrC and alErC predicted the structure of perceived 
visual similarity relationships among category exemplars, including its observer-specific component, 
with higher precision than any other VVS region. Our findings provide new evidence that subjective 
aspects of object perception that rely on fine-grained visual differentiation are reflected with highest 
fidelity in the medial temporal lobe.
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Introduction
The ability to perceive similarities and differences between objects plays an integral role in cognition 
and behaviour. Perceived similarities are important, for example, for categorizing a fruit at the grocery 
store as an apple rather than a pear. The appreciation of more fine-grained similarities between exem-
plars of a category also shapes behaviour, such as when comparing different apples in order to select 
one for purchase. Indeed, experimental work in psychology has confirmed that the similarity of objects 
influences performance in numerous behavioural contexts, including but not limited to categorization, 
object discrimination, recognition memory, and prediction (see Medin et al., 1993; Goldstone and 
Son, 2012; Hebart et  al., 2020, for review). Yet, despite the well-established links to behaviour, 
how the brain represents these similarities between objects is only beginning to be understood. A 
central question that has received limited investigation so far is how fine-grained visual similarities 
that observers subjectively perceive among subordinate category exemplars map onto neural object 
representations. Answering this question can provide insight as to what brain regions provide the 
‘read-out’ for such subjective reports. Moreover, this endeavor holds promise for understanding how 
differences in the way in which observers perceive their visual environment are reflected in variations 
in functional brain organization (Charest and Kriegeskorte, 2015).

Functional neuroimaging, combined with pattern analysis techniques, provides a powerful tool 
for examining the mapping between similarity relationships in visual perception of objects and simi-
larities in corresponding neural representations (Kriegeskorte and Kievit, 2013). A significant body 
of research addressing this issue has focused on the characterization of category structure and other 
coarse object distinctions, such as animacy. Findings from this research indicate that activity patterns 
in a large expanse of the ventral visual stream (VVS), often referred to as inferotemporal (IT) cortex or 
ventral temporal cortex, capture much of this structure in the environment (Kriegeskorte et al., 2008; 
Connolly et al., 2012; Mur et al., 2013; Proklova et al., 2016; Cichy et al., 2019). For example, 
numerous studies have revealed a similarity-based clustering of response patterns for objects in IT 
that is tied to category membership (e.g., Kriegeskorte et al., 2008; Proklova et al., 2016; see Grill-
Spector and Weiner, 2014 for review). In these studies, and in most related work, the primary focus 
has been on similarity in relation to object distinctions that are defined in objective terms, and on the 
characterization of neural representations that is shared by observers. As such, they do not address 
whether activity patterns in IT also capture similarity relationships among objects that characterize 
subjective aspects of visual perception that may vary across individuals’ reports. When neural activity 
that corresponds to subjectively perceived visual similarities has been examined, extant research has 
mostly focussed on specific object features, such as shape or size (Op de Beeck et al., 2008; Haush-
ofer et  al., 2008; Schwarzkopf et  al., 2011; Moutsiana et  al., 2016) rather than on similarities 
between complex real-world objects that differ from each other on multiple dimensions. A notable 
exception to this research trend is an fMRI study that focussed on perceived similarities among select 
real-world objects that are personally meaningful (e.g., images of observers’ own car, their own bicycle; 
Charest et al., 2014), which demonstrated links between observer-specific perceived similarity and 
the similarity structure embedded in activity patterns in IT.

In order to reveal the mapping between fine-grained perceived visual similarities among category 
exemplars and similarities in neural activity, it may not be sufficient to focus on activity in IT but critical 
to consider VVS regions situated downstream on the medial surface of the temporal lobe. Perirhinal 
cortex (PrC), and the primary region to which it projects, that is, lateral entorhinal cortex, are of partic-
ular interest when such perceived similarity relationships concern entire objects. The representational–
hierarchical model of object processing in the VVS asserts that structures in the medial temporal lobe 
constitute the apex of its processing hierarchy (Murray and Bussey, 1999; Bussey and Saksida, 2007; 
Cowell et al., 2010; Kent et al., 2016). It proposes that there is a progressive integration of object 
features along the VVS that allows for increasing differentiation in the representation of objects from 
posterior to more anterior regions in the service of perception as well as other cognitive domains (e.g., 
recognition memory). Visual objects are thought to be represented in PrC in their most highly inte-
grated form based on complex feature conjunctions (Murray and Bussey, 1999; Buckley and Gaffan, 
2006; Bussey and Saksida, 2007; Graham et al., 2010; Kent et al., 2016), which support perceptual 
discrimination of even highly similar exemplars from the same object category (e.g., O’Neil et al., 
2013; O’Neil et al., 2009). Lateral entorhinal cortex (or its human homologue anterolateral entorhinal 
cortex [alErC; Maass et al., 2015; Yeung et al., 2017]) has been suggested to extend this role in visual 
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object discrimination through integration with additional spatial features (Connor and Knierim, 2017; 
Yeung et al., 2017). Taken together, these properties make PrC and alErC ideally suited for providing 
the read-out for subjective reports of perceived visual similarity among the subordinate exemplars 
of object categories. Although more posterior VVS regions may also predict perceived similarity, the 
representational–hierarchical model asserts that they do not provide the same level of differentiation 
as regions at the apex in the medial temporal lobe. Moreover, they may also not capture those aspects 
of perceived similarity structure that are observer specific.

There is some evidence from human lesion studies suggesting that the integrity of regions in the 
medial temporal lobe is critical for perceiving the similarity among complex objects when it is high 
and objects cannot be easily discriminated from each other. This evidence comes from experiments 
that used variants of the oddity-discrimination task. In this task, participants view multiple objects (a 
minimum of three) on a computer screen and are asked to report the item that is least similar to the 
others. A finding documented in multiple reports (Buckley et al., 2001; Barense et al., 2007; Bartko 
et al., 2007; Inhoff et al., 2019; cf., Stark and Squire, 2000; Levy et al., 2005; Hales and Clark, 
2015) is that patients with medial temporal lobe lesions that include PrC and alErC show deficits in 
oddity-discrimination tasks when complex objects with substantial feature overlap are compared, but 
not when oddity judgements require comparison of simple visual stimuli that can be distinguished 
based on a single feature such as colour or luminance. While the results of this lesion research have 
critically informed theoretical arguments that PrC plays a role in perceptual discrimination of objects 
(see Bonnen et al., 2021, for a recent computationally focused review), it is important to note that 
they do not provide a characterization of similarity structure of neural representations in PrC and 
alErC, nor a characterization of the transformation of representations from more posterior VVS regions 
to these regions in the medial temporal lobe. Moreover, lesion findings do not speak to whether 
neural representations in the medial temporal lobe capture the perceived similarity structure that is 
unique to individual observers.

In the current fMRI study, we tested the idea that the visual similarity structure among exem-
plars of real-world categories that observers subjectively perceive is predicted with higher preci-
sion by the similarity structure of neural activity in PrC and alErC than in the more posterior VVS 
regions traditionally considered in neuroscience investigations of visual object perception, including 
IT. During scanning, we administered a novel experimental task that required visual discrimination 
between consecutively presented exemplars from real-world categories as well as categorization (see 
Figure 1). In addition, we obtained ratings of perceived visual similarities among these exemplars 
from each observer offline (see Figure 2), as well as estimates of similarity derived from an influential 
computational model that describes objects at their intermediate visual feature level (HMAX, Riesen-
huber and Poggio, 1999; Cadieu et al., 2007; Serre et al., 2007; Khaligh-Razavi and Kriegeskorte, 
2014). At the behavioural level, we found that discrimination performance was highly sensitive to fine-
grained perceived similarity among exemplars, including those aspects that were observer specific. 
Representational similarity analyses (RSAs) of ultra-high-resolution fMRI data revealed, in line with our 
hypotheses, that activation patterns in PrC and alErC predict this fine-grained structure within cate-
gories with higher precision than any other VVS region, and that they predict even those aspects of 
similarity structure that are unique to individual observers.

Results
Perceived visual similarity structure among exemplars varies across 
observers
We used inverse multidimensional scaling (iMDS, Kriegeskorte and Mur, 2012) to create participant-
specific models of perceived visual similarity for 4 exemplars from 10 different categories (see 
Figure 1). Specifically, participants were instructed to arrange images of objects in a circular arena 
by placing those they perceived to be more visually similar closer together, and those they perceived 
to be less visually similar farther apart. Participants completed these arrangements offline, that is, 
outside of the scanner, in two phases, with the first phase involving sorting of the full set of 40 objects 
in a single arrangement (Figure 1—figure supplement 1– Figure 1A). The second phase required 
sorting of exemplars within categories in 10 separate arrangements (one per category; Figure 1A). 
Given our interest in representations that capture fine-grained object similarities within categories, our 
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Figure 1. Perceived visual similarity ratings obtained offline with inverse multidimensional scaling (iMDS). (A) Task required placement of all exemplars 
from each category in circular arena, with distances reflecting perceived visual similarity. Arrows indicate the six pairwise distances used to compute 
representational dissimilarity matrix (RDM). (B) Behaviour-based RDM computed using dissimilarity (1 − Pearson’s r) and conversion to percentiles for 
individual observers. Only values below diagonal were included. Six distances (between four exemplars) per category were rank ordered and grouped 
into three levels of similarity (low, middle, and high; for more detail, Figure 1—figure supplement 1). (C) Intersubject correlations for perceived 
similarity ratings across all exemplars and categories. Correlations were computed between each participant’s RDM with the mean RDM (excluding the 
participant). Red horizontal line marks mean intersubject correlation, with variability in perceived visual similarity structure across observers reflected in 
the range displayed.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Stimuli employed and behavioural data obtained for specific object categories.

Figure supplement 2. In a follow-up study, a separate group of 30 participants completed 2 sessions of the inverse multidimensional scaling (iMDS) 
task for the 10 object categories separated by 7 ± 1 days.

https://doi.org/10.7554/eLife.66884
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fMRI analyses relied on the similarity structures computed based on sorting in this second phase. The 
pairwise distances between all exemplars within each category were used to create a behaviour-based 
(i.e., subjective-report) representational dissimilarity matrix (RDM; Figure 1B), which included a split 
of the range of similarities into three levels for sensitivity analyses in behaviour and neural activation 
patterns (see Methods for further detail). Examination of intersubject correlations of each participant’s 
RDM and the mean of all other participants’ RDMs (excluding their own) revealed a mean value of r = 
0.69 (t-test r > 0: p < 0.001). When we calculated an RDM for ratings averaged across participants, and 
compared it with an RDM derived from a computational model developed to capture objects at their 
intermediate visual feature level (HMAX, Riesenhuber and Poggio, 1999; Cadieu et al., 2007; Serre 
et al., 2007; Khaligh-Razavi and Kriegeskorte, 2014), we also found a significant correlation (r = 
0.25, p < 0.001), suggesting that average ratings capture a shared component in the subjective ratings 
that relate to objective image characteristics. Follow-up analyses that focussed on this relationship in 
different subranges of similarity among exemplars (low, medium, and high; see Figure 1B) revealed, 
however, that the estimates derived from the HMAX model were only significantly correlated with 
average ratings at low and medium levels (low r = 0.45; p < 0.001; medium r = 0.24; p < 0.001; high r = 
0.05; p > 0.05). This pattern suggests that at their finest grain, judgements of similarity within catego-
ries rely on integrated object representations that (1) are not captured by intermediate feature-level 
descriptions, and (2) are observer specific. Indeed, the range of intersubject correlations in reported 
similarity (calculated across exemplars and categories) that was present in our sample of participants 

Figure 2. fMRI task: Category-Exemplar 1-Back Task. (A) Images of objects depicting one of the 4 exemplars from 10 different categories were 
presented. Participants indicated repetitions on catch trials with two different button presses depending on whether the image was an exact repeat 
of the one previously presented (same exemplar, same category) or a repeat at the category level (different exemplar, same category). The majority of 
trials (75%) reflected no repetitions on either level and required no response. Only trials that required no response (noncatch trials) were included in 
the fMRI analyses. (B) Percentage of errors that reflect incorrect same-exemplar responses on same-category trials as a function of perceived similarity 
(mean slope indicated with thick red line; for accuracy on all other trial types see Supplementary file 1). Own values reflect behavioural performance as 
a function of participants’ own visual similarity ratings; Other values reflect performance based on other participants’ ratings (for a total of 22 iterations, 
which were then averaged). Error rate increased with increasing similarity as reflected in slopes (in black/grey ***p < 0.0001). Error rate was more 
sensitive to participants’ own ratings as reflected in significantly higher slopes for the Own versus Other ratings (in green ***p < 0.0001). (C) Response 
times on correct same-category trials as a function of perceived similarity (mean slope indicated with thick red line). Own and Other values calculated as 
in (B). Response times increased with increasing similarity and were more sensitive to participants’ own than other participants’ ratings. Results in (B, C) 
show that behavioural performance on 1-back task is most sensitive to perceived similarity as reflected in participants’ own ratings.

https://doi.org/10.7554/eLife.66884
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provides direct evidence for variability across observers (r = 0.54–0.81; see Figure 1C and Figure 1—
figure supplement 1 for data on individual categories). There are also hints that this variability is most 
pronounced at the finest grain of judgements, as reflected in reduced intersubject correlations for 
high similarity exemplars (high r = 0.64; medium r = 0.65, low r = 0.72; high < low; t(22) = 3.41; p < 
0.001). Critically, in a separate behavioural experiment conducted in another sample of participants 
with multiple assessments, we found that individual differences in perceived visual similarity structure 
among exemplars are temporally stable observer characteristics (see Figure 1—figure supplement 
2). We leveraged this variability across observers in subsequent analyses for assessing the precision 
of mapping in our fMRI results, examining whether the structure of neural representations in PrC and 
alErC also predict the perceived similarity structure that is unique to individual observers.

Behavioural discrimination performance during scanning is sensitive to 
observers’ perceived visual similarity structure
Participants underwent ultra-high-resolution fMRI scanning while completing a novel Category-
Exemplar 1-Back Task designed to tax fine-grained visual object discrimination (see Figure 2A). This 
task required responding to two different types of repetition, namely repetition of same exemplars or 
of different exemplars from the same category, across consecutive trials. Participants were asked to 
provide a button-press response when they noticed repetitions, with different buttons for each type 
of repetition. On all other trials, participants were not required to provide a response. Importantly, 
this task was designed to ensure that participants engaged in categorization, while also discriminating 
between exemplars within categories. Performance on the Category-Exemplar 1-Back Task was sensi-
tive to perceived visual similarity between exemplars as reflected in observers’ offline ratings and 
formalized in the behavioural RDMs with 3 different levels of similarity (Figure 2B,C; see also Supple-
mentary file 1). Specifically, response errors on same category trials increased with increasing visual 
similarity (significant linear slope; t(22) = 18.35, p < 0.0001). Moreover, response times for correct 
responses on same category trials were positively correlated with perceived visual similarity level (t(22) 
= 13.47, p < 0.0001). Critically, task performance was also sensitive to the unique perceived similarity 
structure within categories expressed by observers. When we compared the influence of participant’s 
own similarity ratings with that of others on behaviour (Figure 2B,C), we found a significantly larger 
positive slope in error rate (t(22) = 8.30; p < 0.0001) and in response times (t(22) = 9.68; p < 0.0001) for 
participants’ own ratings. This pattern of behaviour suggests that perceived visual similarity between 
exemplars influenced participants’ discrimination performance during scanning, and, that it did so in 
an observer-specific manner.

Patterns in multiple VVS regions predict perceived visual similarity 
structure among exemplars
To investigate whether the similarities between activation patterns in PrC and downstream alErC 
predict perceived similarities between exemplars in observers’ reports, we employed anatomically 
defined regions of interest (ROIs) and created participant-specific models of neural similarity among 
category exemplars on the no-response trials. In order to examine the anatomical specificity of our 
findings, we also created such models for ROIs in other VVS and medial temporal lobe regions. Specif-
ically, these ROIs included early visual cortex (EVC), lateral occipital cortex (LOC), posteromedial ento-
rhinal cortex (pmErC), parahippocampal cortex (PhC), and temporal pole (TP) for comparison (see 
Figure 5 for visualization; note that LOC and PhC have typically been included in ROI definitions of IT 
in prior work; e.g., Charest et al., 2014; for direct comparison of results in IT and LOC, see Figure 7—
figure supplement 1). Pairwise dissimilarities of neural patterns were employed to compute the 
brain-based RDMs (Figure 3A,B); Pearson’s correlations were calculated so as to examine whether 
these RDM’s predicted participants’ own behaviour-based RDMs that were derived from their offline 
reports of perceived similarity (Figure 3C). Our analyses revealed that neural activation patterns in 
PrC and alErC did indeed correlate with participants’ perceived visual similarity RDMs (Bonferroni-
corrected p < 0.01). Patterns in other regions of the VVS (EVC, p < 0.003; LOC, p < 0.002) were also 
significantly correlated with these behaviour-based RDMs. Critically, patterns in regions previously 
implicated in scene processing, specifically PhC and pmErC (Schultz et al., 2015; Maass et al., 2015; 
Schröder et  al., 2015), did not predict the perceived similarity structure for objects (all p > 0.5). 
Having established that activity patterns in multiple VVS regions predict perceived visual similarities 
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Figure 3. Brain-based representational dissimilarity matrices (RDMs) and their relationship to perceived visual 
similarity. (A) In each region of interest (ROI), mean multivoxel activation patterns were calculated for every 
exemplar using the no-response trials in the Category-Exemplar 1-Back Task. Pairwise pattern dissimilarities were 
computed as 1 − Pearson’s r. (B) Pairwise pattern dissimilarity percentiles were used to create participant-specific 
brain-based RDMs. (C) Brain-based RDMs were correlated with participants’ own behaviour-based similarity 
RDMs derived from their offline reports (black double arrows = within subject r). (D) Activation patterns in EVC, 
LOC, PrC, and alErC show significant correlations with participants’ own perceived similarity ratings of objects 
(brain-based RDM × behaviour-based perceived similarity RDM within subjects; *p < 0.05, **p < 0.01 Bonferroni-
corrected based on regions; error bars represent SEM). EVC = early visual cortex; LOC = lateral occipital complex; 
PrC = perirhinal cortex; alErC = anterolateral entorhinal cortex; pmErC = posteromedial entorhinal cortex; PhC = 
parahippocampal cortex; TP = temporal pole; see Figure 5A for visualization.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Temporal signal-to-noise ratio in perirhinal cortex (PrC; M = 12.25, SD = 2.68) and 
anterolateral entorhinal cortex (alErC; M = 10.80, SD = 3.05) in each of the 25 participants (average denoted by 
bolded red dot).

https://doi.org/10.7554/eLife.66884
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between exemplars, we followed up on this finding by asking whether PrC and alErC capture these 
similarities with higher fidelity than earlier regions (EVC and LOC). Towards this end, we next exam-
ined whether these regions predict similarity structure even when exemplars only differ from each 
other in subtle ways.

PrC and alErC are the only regions whose patterns predict perceived 
visual similarity structure among exemplars when similarity is high
In this set of analyses, we examined the mapping between perceived similarity structure and neural 
activity patterns at a more fine-grained level within categories. Given prior evidence that PrC allows 
for the disambiguation of highly similar objects (Murray and Bussey, 1999; Buckley and Gaffan, 
2006; Bussey and Saksida, 2007; Graham et  al., 2010; Kent et  al., 2016), we anticipated that 
patterns in PrC, and possibly downstream alErC, would represent even the most subtle visual differ-
ences that observers perceive among exemplars, whereas earlier VVS regions would not. To address 
this issue with RSA in our stimulus set, participants’ behaviour RDMs, which were based on six pairwise 
distances between exemplars in each category, were divided into the three levels of similarity (low, 
medium, and high; see Figure 1B and Figure 1—figure supplement 1 for range comparison). Recall 
that our behavioural analyses revealed, as previously described, that discrimination performance on 
the Category-Exemplar 1-Back Task was highly sensitive to these different levels of similarity. Figure 4 
displays the results of our level-specific fMRI analyses, which were conducted for those regions whose 
activity patterns showed significant correlations with participants’ full perceived visual similarity space 
between exemplars (as shown in Figure 3D). Correlations between perceived similarity structure and 
activity patterns in PrC and alErC were significant at all three levels of similarity (Bonferroni-corrected 
p < 0.01; Figure 4A). In contrast, correlations for activity patterns in posterior VVS regions were signif-
icant only at the lowest level of perceived similarity (Bonferroni-corrected p < 0.01). This pattern of 
results cannot be attributed to differences in stability of activity patterns across levels of similarity for 
different regions; supplementary analyses revealed that stability was significant for all regions and did 
not interact with level of similarity (see Figure 4—figure supplement 1). Direct comparison between 
regions also revealed that correlations in PrC and alErC were higher than in LOC and EVC at medium 
and high levels of perceived similarity (Bonferroni-corrected p < 0.05; Figure 4A).

The described results suggest that object representations in posterior VVS regions may not have 
sufficient fidelity to allow for differentiation of exemplars that were perceived to be highly similar by 
observers, and that were most difficult to discriminate on our Category-Exemplar 1-Back Task. We 
followed up on this idea with complementary classification analyses of our fMRI data using a linear 
support vector machine (Mur et al., 2009). These analyses were conducted so as to examine in which 
VVS regions activity patterns associated with exemplars of high perceived similarity would be suffi-
ciently separable so as to allow for classification as distinct items. They confirmed that activity patterns 
associated with specific exemplars can indeed be successfully classified in PrC and alErC at higher 
levels of perceived similarity than in posterior VVS regions (Figure 4B for further detail).

The analyses presented so far only focused on specific regions of interest. To answer the question 
of whether PrC and alErC are the only regions whose activity patterns predict perceived visual simi-
larity among exemplars at its highest level, we also conducted whole-volume searchlight-based RSA. 
As expected based on our ROI analyses, patterns in PrC and alErC, as well as in earlier VVS regions, 
showed a predictive relationship in these searchlight analyses when the full range of perceived visual 
similarity values among exemplars was considered; no regions in the scanned brain volume outside of 
the VVS exhibited this predictive relationship (threshold-free cluster enhancement [TFCE] corrected 
p < 0.05; Figure 5C,D). Critically, our searchlight analyses revealed that PrC and alErC were indeed 
the only regions in the entire scanned brain volume whose patterns correlated with observer’s reports 
when similarity between exemplars was perceived to be high, and objects were most difficult to 
discriminate on the Category-Exemplar 1-Back Task (TFCE-corrected p < 0.05; Figure 5E,F).

Patterns in posterior VVS regions predict similarity structure that 
is shared by observers and tied to object characteristics at the 
intermediate feature level
Because our behavioural results point to shared as well as observer-specific components in the 
perceived similarity structure that participants reported, we conducted several additional sets of 

https://doi.org/10.7554/eLife.66884
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analyses, aiming to address which VVS regions would show activity patterns that might predict these 
different components. In this context, we considered that the perceived similarity structure among 
exemplars that is shared across observers for low and medium levels is tied to objective image charac-
teristics at the intermediate feature level, as reflected in the significant correlation between averaged 
similarity ratings and estimates derived from the HMAX model in our data (see Behavioural results). 
Given the assertion of the representational hierarchical model that objects are represented in PrC and 

Figure 4. Relationship between brain representational dissimilarity matrices (RDMs) and reports at different levels of perceived visual similarity for 
region of interests (ROIs) showing significant effects in Figure 3D. (A) Correlation of brain-based RDM and participants’ own behaviour-based RDM at 
low, medium, and high levels of similarity. Only activation patterns perirhinal cortex (PrC) and anterolateral entorhinal cortex (alErC) show significant 
correlation with ratings at middle and high levels of perceived similarity (**p < 0.01, *p < 0.05, Bonferroni-corrected for regions and levels). Correlations 
in PrC and alErC were significantly larger than those in early visual cortex (EVC) and lateral occipital cortex (LOC) at the medium and high levels of 
perceived similarity (horizontal lines indicate p < 0.05). (B) Box and whisker plots for classification accuracy of neural activation patterns at each level of 
perceived similarity in different ROIs. We adopted a common classification approach using linear support vector classifier and leave-one-run-out cross-
validation (Misaki et al., 2010). Results from one tailed t-tests to probe whether classifier performance was above chance indicate that patterns in LOC 
are distinguishable only at lowest level of perceived similarity within categories. PrC and alErC are only regions in which patterns are distinguishable at 
medium and high levels of perceived similarity (*p < 0.05, Bonferroni-corrected).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relationship between brain-based representational dissimilarity matrices (RDMs) in even and odd runs, within and between 
participants at different levels of perceived similarity.

https://doi.org/10.7554/eLife.66884
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alErC based on complex feature conjunctions (rather than intermediate features), we predicted that 
the shared component of perceived similarity estimates of the HMAX model would predict activity 
patterns only in VVS regions posterior to PrC and alErC. Indeed, we found a significant predictive 
relationship of activity patterns in regions EVC and LOC (Bonferroni-corrected p < 0.01) but not in PrC 
and alErC (all Bonferroni-corrected p > 0.05; see Figure 6A,B) for average perceived similarity. This 
significant relationship in posterior VVS regions was also only present at low (for EVC and LOC) and 
medium levels of similarity (for LOC; see Figure 6B). Analyses that directly employed the estimates of 
similarity between object images obtained from the computational HMAX model (Riesenhuber and 
Poggio, 1999; Cadieu et al., 2007; Serre et al., 2007; Khaligh-Razavi and Kriegeskorte, 2014) 
revealed strikingly similar findings (see Figure 6B vs D). Activity patterns in EVC and LOC showed 
a significant correlation with the HMAX model at low and medium but not at the highest level of 
similarity; Bonferroni-corrected p < 0.01. Critically, activity patterns in PrC and alErC did not correlate 
with estimates from the HMAX model nor with average ratings at any level of object similarity (all 
Bonferroni-corrected p > 0.05; see Figure 6C,D). Together, these results suggest that activity in VVS 
regions posterior to PrC and alErC capture the components of perceived visual similarity structure 
among exemplars that is shared by observers and that is closely related to object features at the 
intermediate feature level. At the same time, these neural representations in posterior VVS regions 
do not appear to allow for differentiation of exemplars at high levels of perceived similarity that tend 
to be observer specific.

Figure 5. Visualization of region of interests (ROIs) and results from whole-volume searchlight analyses. (A, B) Visual depiction of ROIs. Early visual 
cortex (EVC = green), lateral occipital complex (LOC = cyan), perirhinal cortex (PrC = pink), parahippocampal cortex (PhC = orange), anterolateral 
entorhinal cortex (alErC = blue), posteromedial entorhinal cortex (pmErC = yellow), temporal pole (TP = purple). (C, D) Cortical regions revealed with 
searchlight analysis in which brain-based representational dissimilarity matrices (RDMs) were significantly correlated with behaviour-based perceived 
similarity RDMs across full range. Significant correlations were observed in PrC, alErC, and more posterior ventral visual stream (VVS) regions. (E, F) 
Cortical regions revealed with searchlight analysis in which brain-based RDMs were significantly correlated with behavioural RDMs at highest level of 
perceived similarity. Significant correlations were observed only in PrC and alErC. Maps are displayed with corrected statistical threshold of p < 0.05 at 
cluster level (using threshold-free cluster enhancement).

https://doi.org/10.7554/eLife.66884
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Patterns in PrC and alErC predict fine-grained perceived visual 
similarity structure among exemplars in an observer-specific manner
In the final set of analyses, we directly focussed on the variability across participants’ reports of simi-
larity in order to address whether activity patterns in PrC and alErC predict even those perceived simi-
larities with high precision that are unique to individual observers. We reasoned that if neural patterns 
in a region represent the observer’s unique perceived similarity structure, brain–behaviour correlations 
should be higher when calculated within rather than between participants (Figure 7A, black versus grey 
arrows; see Supplementary file 2 for similar results revealed with a multiple regression approach). In 
other words, if there are observer-specific relationships, activity patterns should predict participants’ 
own perceived similarity structure better than someone else’s. Such analyses would reveal that inter-
individual differences are not only present in the perceptual reports of observers and in their discrim-
ination performance, as demonstrated in our behavioural analyses, but also in corresponding neural 
representations in PrC and alErC. Indeed, initial analyses of our fMRI data demonstrated the presence 
of stable observer-specific activity patterns for the object exemplars probed in our study in all regions 
of interest (see Figure 7—figure supplement 2). The i-index introduced by Charest et al., 2014, 
which directly measures differences in correlations for the same (i.e., own) versus other observers, 
allowed us to examine which of these observer-specific activation patterns predict observer-specific 
structure in reports of perceived similarities. These analyses confirmed our expectation that the 
neural activation patterns in PrC and alErC predict observer-specific perceived visual similarity struc-
ture (Bonferroni-corrected p[within-participant r > between-participant r] < 0.01). In contrast, activa-
tion patterns in posterior VVS regions, EVC and LOC (Bonferroni-corrected p[within-participant r > 

Figure 6. Brain-based representational dissimilarity matrices (RDMs) and their relationship to average perceived visual similarity. Brain-based RDMs 
were correlated with (A) the average behaviour-based similarity RDMs and (B) the different levels of average similarity RDMs; and with (C) the entire 
RDM derived from the HMAX model (D) the RDMs at different levels of similarity derived from the HMAX model. Patterns in EVC and LOC show 
relationship to average whole perceived similarity ratings **p < 0.01, Bonferroni-corrected based on regions. EVC and LOC also show correlations to 
the average low, and LOC to the medium level of perceived similarity *p < 0.05, Bonferroni-corrected. EVC = early visual cortex; LOC = lateral occipital 
complex; PrC = perirhinal cortex; alErC = anterolateral entorhinal cortex; pmErC = posteromedial entorhinal cortex; PhC = parahippocampal cortex; TP 
= temporal pole.

https://doi.org/10.7554/eLife.66884
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between-participant r] > 0.05) did not uniquely predict participants’ own perceived similarity structure 
(Figure 7B). Not surprisingly, regions that did not predict participants’ perceived similarity structure at 
all (pmErC, PhC, and TP; Figure 3D), also did not have significantly above zero i-indices (Bonferroni-
corrected p[within-participant r > between-participant r] > 0.05). Critically, PrC and alErC showed 
significant brain–behaviour i-indices even when we restricted analyses to fine-grained differentiation, 
that is, to the subrange of high levels of perceived similarity (Bonferroni-corrected p[within-participant 
r > between-participant r] < 0.05). Taken together, these results reveal that activity patterns in PrC 
and alErC even predict perceived similarities that are unique to individual observers, which are most 
prevalent in fine-grained structure.

Figure 7. Brain-based representational dissimilarity matrices (RDMs) and their relationship to observer-specific perceived visual similarity. (A) Brain-
based RDMs were correlated with (1) participants’ own behaviour-based similarity RDMs (black double arrows = within subject r) and (2) other 
participants’ behaviour-based similarity RDMs (grey arrows = between subject r) for comparison. (B) Patterns in PrC and alErC show relationship to 
perceived similarity ratings that are observer specific as reflected in brain–behaviour i-index (i.e., within minus between subject correlation; *p < 0.05, 
**p < 0.01, Bonferroni-corrected based on regions, with testing against a null distribution created by randomizing subject labels; error bars represent 
standard error of the mean [SEM] estimated based on randomization). PrC and alErC also show significant higher i-index than other regions as indicated 
with horizontal lines; *p < 0.05, Bonferroni-corrected. (C) Only patterns in PrC and alErC show relationship observer-specific perceived similarity ratings 
at the middle and high levels of perceived similarity; (*p < 0.05, Bonferroni-corrected for regions and levels). Correlations in PrC and alErC were 
significantly larger than those in EVC and LOC at the medium and high levels of perceived similarity (horizontal lines indicate p < 0.05). EVC = early 
visual cortex; LOC = lateral occipital complex; PrC = perirhinal cortex; alErC = anterolateral entorhinal cortex; pmErC = posteromedial entorhinal 
cortex; PhC = parahippocampal cortex; TP = temporal pole; see Figure 5a for visualization.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Comparison between inferotemporal (IT) cortex and lateral occipital complex (LOC): brain-based representational dissimilarity 
matrices (RDMs) and their relationship to perceived visual similarity (A) at all levels of perceived similarity (**p < 0.01, *p < 0.05) and (B) corresponding 
i-index; and (C) at different levels of perceived similarity and (D) corresponding i-index (*p < 0.05).

Figure supplement 2. Relationship between brain-based representational dissimilarity matrices (RDMs) in even and odd runs, within and between 
participants.

https://doi.org/10.7554/eLife.66884
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Discussion
Vision neuroscience has made great strides in understanding the hierarchical organization of object 
representations along the VVS. How VVS representations capture fine-grained differences between 
objects that observers subjectively perceive has received limited examination so far. In the current 
study, we addressed this question by focussing on perceived similarities among exemplars of real-
world categories. Using a novel Category-Exemplar 1-Back Task, we found that visual discrimination 
performance is highly sensitive to the visual similarity structure that is reflected in observers’ subjec-
tive reports. Combining this task with fMRI scanning at ultra-high-resolution allowed us to show, in line 
with our general hypotheses, that activity patterns in PrC and alErC predict perceived visual similari-
ties among exemplars with higher precision than any other VVS region, including prediction of those 
aspects of similarity structure that are unique to individual observers.

Research that has aimed to characterize the nature of object representations in human PrC with 
fMRI has shown that the degree of feature overlap between objects is captured by activation patterns 
in this region. Such a relationship has been revealed in multiple task contexts, with images of real-world 
objects and with words denoting such objects; moreover, it has been observed for feature overlap at 
the perceptual as well as the semantic level (Clarke and Tyler, 2014; Erez et al., 2016; Bruffaerts 
et al., 2013; Martin et al., 2018a). These findings, in combination with work from neurophysiology 
in nonhuman animals and from computational modelling, have been interpreted to suggest that PrC 
integrates features of objects with complex conjunctive coding into representations of whole objects, 
and that the resulting conjunctive representations allow for differentiation of objects even when they 
are highly similar due to a high degree of feature overlap (Bussey et al., 2002; Murray and Bussey, 
1999; Cowell et al., 2010). Indeed, it is this type of conjunctive coding that has motivated the central 
notion of the representational–hierarchical model of VVS organization that PrC, together with alErC 
(Connor and Knierim, 2017; Yeung et al., 2017), can be considered the pinnacle of the VVS object-
processing hierarchy. Using a metric that was rooted in participants’ subjective reports of perceived 
visual similarity and that showed a direct relationship to behavioural discrimination performance, the 
current fMRI findings provide new support for this hierarchical model by revealing increased differ-
entiation of subordinate category exemplars in PrC and alErC, as compared to more posterior VVS 
regions.

Findings from lesion studies conducted with oddity-discrimination tasks support the idea that 
medial temporal lobe structures downstream from IT play a critical role in processes required 
for the appreciation of fine-grained visual similarities between complex real-world objects that 
are expressed in perceptual reports (see Bonnen et  al., 2021, for review). Numerous studies 
conducted in humans and in other species have shown that performance on such tasks relies on 
the integrity of PrC when objects with high visual feature overlap must be judged (Buckley et al., 
2001; Barense et al., 2007; Bartko et al., 2007; Inhoff et al., 2019; cf., Stark and Squire, 2000; 
Levy et al., 2005; Hales and Clark, 2015). For example, Barense et al., 2007 compared perfor-
mance on multiple visual oddity tasks between individuals with lesions in the medial temporal lobe 
that largely spared PrC and ErC, versus individuals with more widespread damage in the medial 
temporal lobes that included PrC and ErC. Most notably, individuals in the latter but not in the 
former group showed impairments in identifying the odd-one out item in sets of images of real-
world objects that shared a high number of overlapping visual features. While the results of these 
prior lesion studies are compatible with the conclusions we draw in the current study, they do not 
allow for characterization of similarity structure of neural representations in PrC and alErC, and 
their direct comparison with representations in other medial temporal and posterior VVS regions, 
as provided here.

The anatomical specificity of our fMRI findings in the medial temporal lobe is striking. While activity 
patterns that reflected the similarity structure among category exemplars were present in PrC and 
alErC, they were absent in medial temporal regions that have previously been implicated in visual 
discrimination of scenes, specifically pmErC and PhC cortex (see Schultz et al., 2015, for review). This 
specificity is noteworthy in light of documented differences in functional connectivity between these 
regions that have been linked to object versus scene processing, with PrC being connected to alErC, 
and PhC being connected to pmErC, respectively (Maass et al., 2015; see Schröder et al., 2015 for 
more broadly distributed differences in functional connectivity between ErC subregions and other 
cortical structures).

https://doi.org/10.7554/eLife.66884
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The higher precision we observed for the representation of perceived similarity relationships in the 
medial temporal lobe, as compared to more posterior VVS regions, is of particular theoretical interest 
for the representational–hierarchical model of VVS organization (Murray and Bussey, 1999; Bussey 
and Saksida, 2007; Cowell et al., 2010; Kent et al., 2016). Most revealing, in this context, is the 
comparison between PrC and ErC versus LOC, a region that is part of the large swath of cortex that 
is often referred to as IT in neuroimaging research and that has been linked to processing of object 
shape in many prior fMRI studies (e.g., Grill-Spector et al., 2001; Kriegeskorte et al., 2008; Connolly 
et al., 2012; Mur et al., 2013; Proklova et al., 2016; Cichy et al., 2019). While activity patterns in 
LOC predicted some aspects of similarity structure among subordinate category exemplars in the 
current work, this relationship was observed at a coarser grain than in PrC and alErC; it only held when 
perceived visual similarity was low, and when performance in behavioural discrimination revealed that 
objects were easily distinguishable. Indeed, complementary pattern classification analyses revealed 
that activity patterns associated with exemplars of high perceived similarity were not sufficiently sepa-
rable in LOC so as to allow for classification as distinct items. By contrast, this classification could be 
successfully performed based on activity patterns in PrC and alErC. Indeed, our searchlight analyses 
showed that these two regions in the medial temporal lobe were the only ones in which activity was 
related to perceived visual similarity at a fine-grained level.

Our analyses of the relationship between activity patterns and aspects of perceived similarity 
among exemplars that are tied to objective image characteristics, as estimated by the computational 
HMAX model, offer support for the central claim of the representational–hierarchical model that the 
transformation of object representations from IT (specifically, LOC) to medial temporal-lobe struc-
tures involves further integration. Notably, the component of perceived similarity structure that was 
shared by observers showed a statistical relationship to the estimates of the HMAX model, which 
describes objects at the intermediate feature level and which has been linked to LOC representa-
tions in prior work (Riesenhuber and Poggio, 1999; Cadieu et al., 2007; Serre et al., 2007; but see 
Khaligh-Razavi and Kriegeskorte, 2014, Kubilius et al., 2016 for limitations as compared to deep 
convolutional neural network models). In the present study, we also found that HMAX estimates of 
the similarity among the exemplars we employed were correlated with activity patterns in LOC, but 
only at low and medium levels of similarity. The fine-grained similarity structure among exemplars that 
led to the largest number of confusion errors in behavioural discrimination on the Category-Exemplar 
1-Back Task during scanning was predominantly observer specific, and this fine-grained observer-
specific structure was solely predicted by activity patterns in PrC and alErC. The coding of objects in 
PrC and alErC as fully integrated entities based on complex feature conjunctions arguably affords the 
flexibility that is required to capture the fine-grained differentiation among exemplars that character-
izes the perception of individual observers. .

Our study was not designed to directly address what factors might drive the variability in perceived 
similarity structure across observers that were present in their subjective reports, their discrimina-
tion performance, and in corresponding activity patterns in PrC and alErC. Prior evidence from fMRI 
research on neural representations in other VVS regions suggests that past experience and object 
familiarity may play an important role. Charest et al., 2014 revealed observer-specific effects in the 
similarity structure of activity patterns in IT that were tied to participants' reports for highly familiar 
real-world objects with unique personal meaning (e.g., images of observers’ own car, their own 
bicycle). Notably, this observer-specific mapping between similarity in activity patterns and reports 
was not present for unfamiliar objects. There is also evidence from behavioural training studies indi-
cating that prior experience with categories has an impact on how the similarity among its exemplars 
is perceived. In a recent study by Collins and Behrmann, 2020, for example, it was shown that just a 
few days of repeated exposure can lead to increased differentiation among exemplars, and that these 
changes are most pronounced at the level of fine-grained similarity structure when observers have 
had some prior experience with the category in question. This change in similarity structure based on 
training occurred in the absence of any apparent opportunity to gain new sematic knowledge about 
the exemplars in question, suggesting it could reflect an increase in perceptual expertise. Indeed in 
recent behavioural research from our laboratory, we have found that the degree of self-reported expo-
sure to real-world object categories, but not corresponding semantic knowledge, predicts observers’ 
perceived visual similarity structure among exemplars, and that this relationship is most notable at the 
level of fine-grained similarity structure (Minos et al., 2021). It is possible that the observer specificity 
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in fine-grained differentiation among exemplars that was predicted by activity patterns in PrC and 
alErC in the current study is tied to similar factors at work; it may reflect interindividual differences 
in perceptual expertise across observers and categories. Although speculative at present, such an 
account would be in line with a large body of evidence revealing learning-related plasticity in object 
representations in these medial temporal lobe structures (see Banks et al., 2014, for review). This 
account can be directly tested with training paradigms that target specific real-world object catego-
ries in future fMRI research. Regardless of the outcome of such future research, the current findings 
highlight the critical value of probing the subjective appreciation of visual object similarities, and their 
variability across observers, for a complete understanding of the transformation of neural representa-
tions from posterior regions to those at the apex of the VVS.

Materials and methods
Participants
A total of 29 participants completed the perceived similarity iMDS arrangement task and fMRI exper-
iment (12 females; age range = 18–35 years old; mean age = 24.2 years). All participants were right 
handed, fluent in English, and had no known history of psychiatric or neurological disorders. Three 
participants were removed due to excessive head motion above the cutoff of 0.8 mm of framewise 
displacement, one participant weas removed due to behavioural performance accuracy 2 SD below 
the average on the fMRI task, and two participants were removed due to poor signal quality in medial 
temporal-lobe regions, i.e., a temporal signal-to-noise ratio 2 SD below average (see Figure 3—figure 
supplement 1 Figure 1). Therefore, 23 participants were included in the final analyses. All participants 
gave informed consent, were debriefed, and received monetary compensation upon completion of 
the experiment. This study was conducted with Western’s Human Research Ethics Board approval.

Stimuli
In order to investigate object representations at the exemplar level, we selected stimuli with varying 
normative levels of perceived visual similarity from the Migo Normative Database (Migo et al., 2013). 
We used 40 greyscale images of objects from 10 categories (Figure 1—figure supplement 1). Each 
category in our set was made up of four exemplars that all shared the same name (e.g., apple, lipstick, 
and stapler). Based on findings from a pilot study (n = 40), only stimuli with perceived similarity ratings 
similar to those from the normative database were selected.

Modelling of perceived visual similarity structure
In order to obtain observer-specific models of perceived visual similarity structure for our stimuli, 
participants provided reports of perceived similarity between all stimuli on a computer outside of 
the scanner prior to scanning. Participants were seated in front of a monitor and completed a modi-
fied version of the iMDS task (Kriegeskorte and Mur, 2012). Specifically, participants were asked 
to drag-and-drop images into a white circle (i.e., arena), and arrange them according to perceived 
visual similarity (Kriegeskorte and Mur, 2012; see Figure 2A). Objects perceived to be more visually 
similar were to be placed closer together, and objects perceived to be less visually similar were to be 
placed further apart. The iMDS task consisted of two phases. In the first phase, participants arranged 
all 40 stimuli according to perceived visual similarity. In the second phase, participants completed 10 
category-specific trials in which they sorted 4 exemplars from the same category according to their 
perceived visual similarity. They were instructed to use the entire space within the circle, and make 
sure they compared each stimulus to every other stimulus. Only data from the second phase were 
considerd in the current analyses. A MATLAB-based toolbox was used to calculate distances between 
each pair of exemplars, and to convert these distances to dissimilarity percentiles (Kriegeskorte and 
Mur, 2012). These dissimilarity percentiles were then used to create observer-specific behaviour-
based RDMs that represented each observers’ perceived similarity space at the exemplar level. The 
behaviour-based RDMs for the entire range included 6 dissimilarity percentiles for each of the 10 
categories (i.e., 6 × 10 = 60 dissimilarity percentiles).

These behaviour-based RDMs, which captured the full range of perceived similarity, were used 
to create three behaviour-based RDMs to reflect three levels of perceived similarity (low, medium, 
and high). The six pairwise distances (expressed as dissimilarity percentile) per category were sorted 
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into the two largest, two medium, and two smallest dissimilarities to create behaviour-based RDMs 
for low, medium, and high perceived visual similarity, respectively. These behaviour-based RDMs for 
each of the levels included 2 dissimilarity percentiles for each of the 10 categories (i.e., 2 × 10 = 
20 dissimilarity percentiles). In order to ensure that the different levels of perceived similarity were 
nonoverlapping, any values that did not allow for at least 0.1 dissimilarity percentile between each 
of the successive levels (i.e., high-middle and middle-low) was excluded. The range of dissimilarity 
percentiles did not differ significantly between the different levels of perceived similarity (p > 0.05; 
Figure 1—figure supplement 1C).

Modelling of objective visual similarity: HMAX model
We obtained estimates of similarities that were derived from a computational model, HMAX (Riesen-
huber and Poggio, 1999; Cadieu et al., 2007; Serre et al., 2007; Khaligh-Razavi and Kriegeskorte, 
2014), developed to describe objects at their intermediate visual feature level, including shape. In this 
biologically inspired model, simple cell layers, akin to V1 cells, detect local orientation using Gabor 
filters. These orientation signals are pooled in complex cell layers to extract global features. In this 
way, HMAX is designed as a four-layer hierarchical feed-forward structure similar to that previously 
described in the VVS. The output layer of HMAX captures an object’s shape over activation patterns 
and has been shown to correspond to activation patterns in IT cortex and LOC (Khaligh-Razavi and 
Kriegeskorte, 2014). We used Matlab implementation of HMAX (https://maxlab.neuro.georgetown.​
edu/hmax.html) to extract the activations from the C2 layer of the model and compute RDM between 
4 exemplars from the 10 categories used in the current study.

Category-Exemplar 1-Back Task
For the main experiment, participants completed a variation of a 1-back task, coined the ‘Category-
Exemplar 1-Back’ in the 3T scanner. We created this new 1-back task to ensure that participants were 
attending carefully to each individual object, given our interest in fine-grained object discrimination. 
As in a classic 1-back task, participants were shown a stream of individual objects and asked to indi-
cate with a button press when the object was an exact repeat of the object previous to it, and no 
response was required when the object was from a different category as the one previous (Figure 2A). 
Our novel twist was the addition of a second response option, whereby participants were asked to 
indicate with a different button when the object was from the same category as the previous one, 
but a different exemplar. The two response trial types served as catch trials to ensure participants’ 
attention focussed on differences between objects across consecutive trials, and to assess behavioural 
performance. These modifications of the classic 1-back task were introduced to ensure that partic-
ipants considered category membership and engaged in object processing at the exemplar level. 
Successful identification of the repetition of different exemplars from the same category could not 
be based on local low-level features, such as changes in luminance, texture, or shape across consec-
utive trials. Participants used their right index and middle finger to respond, with response assign-
ment counterbalanced across participants. Of the three trial types—same exemplar, same category, 
different category—only the no-response trials (i.e., different category) were used in the fMRI analysis 
to avoid motor confounds associated with button presses. By extension, none of the trials considered 
for assessment of similarity in activation patterns were immediate neighbours.

Participants completed a total of eight functional runs that each lasted 4 min (stimulus duration = 
1.2 s, intertrial interval = 1 s). Run order was counterbalanced across participants. Within each run, 
each of the 40 exemplars were presented 3 times as no-response trials, and once as a catch trial, for 
a total of 24 presentations on no-response trials and 8 catch trials (excluded from fMRI analyses) per 
exemplar across the entire experiment. Prior to scanning, each participant completed a 5-min practice 
task with images from categories not included in the functional scanning experiment.

fMRI data acquisition
MRI data were acquired using a 3T MR system (Siemens). A 32-channel head coil was used. Before the 
fMRI session, a whole head MP-RAGE volume (TE = 2.28 ms, TR = 2400 ms, TI = 1060 ms, resolution 
= 0.8 × 0.8 × 0.8 mm isometric) was acquired. This was followed by four fMRI runs, each with 300 
volumes, which consisted of 42 T2*-weighted slices with a resolution of 1.7 × 1.7 mm (TE = 30 ms, TR 
= 1000 ms, slice thickness 1.7 mm, FOV 200 mm, parallel imaging with grappa factor 2). T2*-weighted 
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data were collected at this ultra-high resolution so as to optimize differentiation of BOLD signal in 
anterolateral versus posterior medial entorhinal cortex. The T2* slices were acquired in odd-even 
interleaved fashion in the anterior to posterior direction. Subsequently, a T2-weighted image (TE = 
564 ms, TR = 3200 ms, resolution 0.8 × 0.8 × 0.8 mm isometric) was acquired. Finally, participants then 
completed four more fMRI runs. Total duration of MRI acquisition was approximately 60 min.

Preprocessing and modelling
MRI data were converted to brain imaging data structure (Gorgolewski et al., 2016) and ran through 
fmriprep-v1.1.8 (Esteban et  al., 2019). This preprocessing included motion correction, slice time 
correction, susceptibility distortion correction, registration from EPI to T1w image, and confounds 
estimated (e.g., tCompCor, aCompCor, and framewise displacement). Component based noise 
correction was performed using anatomical and temporal CompCor, aCompCor, and tCompCor, by 
adding these confound estimates as regressors in SPM12 during a first-level general linear model 
(GLM) (Behzadi et al., 2007). Each participant was coregistered to the participant-specific T1w image 
by fmriprep. First-level analyses were conducted in native space for each participant with no spatial 
smoothing to preserve ultra-high-resolution patterns of activity for multivariate pattern analyses 
(MVPA). Exemplar-specific multivoxel activity patterns were estimated in 40 separate general linear 
models using the mean activity of the no-response trials across runs.

ROI definitions for fMRI analyses
Anatomical regions of interest were defined using multiple techniques. Automated segmentation 
was employed to delineate PrC, ErC, and PhC (ASHS; Wisse et al., 2016). We manually segmented 
each ERC obtained from ASHS into alErC and pmErC following a protocol developed by Yeung et al., 
2017, which is derived from a functional connectivity study (Maass et al., 2015). A probabilistic atlas 
was used to define EVC (Wang et al., 2015) and TP (Fischl, 2012). A functional localizer was used 
to define LOC as the contiguous voxels located along the lateral extent of the occipital lobe that 
responded more strongly to intact objects than scrambled objects (p < 0.01, uncorrected; Proklova 
et al., 2016).

In the VVS, we focussed on lateral occipital complex and the TP as they have previously been 
linked to object processing (e.g., Grill-Spector et al., 2001; Martin et al., 2018b), as well as EVC. In 
the medial temporal lobe (MTL), we included ROIs for the posteromedial ErC and PhC, both of which 
have been linked to scene processing (e.g., Maass et al., 2015; Schröder et al., 2015; Schultz et al., 
2015; Epstein and Baker, 2019).

RSAs of fMRI data
For each ROI, linear correlation distances (Pearson’s r) were calculated between all pairs of exemplar-
specific multivoxel patterns using CoSMoMVPA toolbox in Matlab (Oosterhof et al., 2016) across all 
voxels. These correlations were used to create participant-specific brain-based RDMs (1 − Pearson’s 
r), which capture the unique neural pattern dissimilarities between all exemplars within each category 
(n = 10), within each region (n = 8).

Whole-volume RSA were conducted using surface-based searchlight analysis (Kriegeskorte et al., 
2008; Oosterhof et al., 2016; Martin et al., 2018a). Specifically, we defined a 100-voxel neighbour-
hood around each surface voxel, and computed a brain-based RDM within this region, analogous to 
the ROI-based RSA. This searchlight was swept across the entire cortical surface (Kriegeskorte et al., 
2008; Oosterhof et al., 2016). First, the entire perceived similarity RDM for all within category ratings 
was compared to each searchlight. These brain–behaviour correlations were Fisher transformed and 
mapped to the centre of each searchlight for each participant separately. Participant-specific similarity 
maps were then standardized and group-level statistical analysis was performed. TFCE was used to 
correct for multiple comparisons with a cluster threshold of p < 0.05 (Smith and Nichols, 2009).
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