1. Ecology
  2. Epidemiology and Global Health
Download icon

Physiology and ecology combine to determine host andvector importance for Ross River virus

  1. Morgan P Kain  Is a corresponding author
  2. Eloise B Skinner  Is a corresponding author
  3. Andrew F van den Hurk
  4. Hamish McCallum
  5. Erin A Mordecai
  1. Stanford University, United States
  2. Department of Health, Australia
  3. Griffith University, Australia
Research Article
  • Cited 1
  • Views 721
  • Annotations
Cite this article as: eLife 2021;10:e67018 doi: 10.7554/eLife.67018

Abstract

Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.

Data availability

All data analyzed and all code generated during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Morgan P Kain

    Biology, Stanford University, Stanford, United States
    For correspondence
    kainm@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0605-7289
  2. Eloise B Skinner

    Biology, Stanford University, Stanford, United States
    For correspondence
    ebskinn@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew F van den Hurk

    Public Health Virology, Forensic and Scientific Services, Department of Health, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Hamish McCallum

    School of Environment, Griffith University, Nathan, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Erin A Mordecai

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (DEB-1518681)

  • Erin A Mordecai

Fogarty International Center (DEB-2011147)

  • Erin A Mordecai

National Institute of General Medical Sciences (R35GM133439)

  • Morgan P Kain
  • Eloise B Skinner
  • Erin A Mordecai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas S Churcher, Imperial College London, United Kingdom

Publication history

  1. Preprint posted: January 28, 2021 (view preprint)
  2. Received: January 28, 2021
  3. Accepted: August 19, 2021
  4. Accepted Manuscript published: August 20, 2021 (version 1)
  5. Version of Record published: September 22, 2021 (version 2)

Copyright

© 2021, Kain et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 721
    Page views
  • 110
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Ecology
    Li Liu et al.
    Research Article

    Fungal Hülle cells with nuclear storage and developmental backup functions are reminiscent of multipotent stem cells. In the soil, Hülle cells nurse the overwintering fruiting bodies of Aspergillus nidulans. The genome of A. nidulans harbors genes for the biosynthesis of xanthones. We show that enzymes and metabolites of this biosynthetic pathway accumulate in Hülle cells under the control of the regulatory velvet complex, which coordinates development and secondary metabolism. Deletion strains blocked in the conversion of anthraquinones to xanthones accumulate emodins and are delayed in maturation and growth of fruiting bodies. Emodin represses fruiting body and resting structure formation in other fungi. Xanthones are not required for sexual development but exert antifeedant effects on fungivorous animals such as springtails and woodlice. Our findings reveal a novel role of Hülle cells in establishing secure niches for A. nidulans by accumulating metabolites with antifeedant activity that protect reproductive structures from animal predators.

    1. Ecology
    Meret Huber et al.
    Research Article

    Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions.