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Abstract SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its

patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we

applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring

between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection

identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation

Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and

viral genome sequence data, we show an uneven pattern of transmission between individuals, with

patients being much more likely to be infected by other patients than by HCWs. Further, the data
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were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of

transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-

2 transmission, and sheds light on the need for intensive and pervasive infection control

procedures.

Introduction
Reducing the spread of SARS-CoV-2 is a crucial priority for controlling and limiting the impact of the

COVID-19 pandemic. Key metrics in assessing transmission are the basic and effective reproduction

R numbers, which describe the mean number of infections caused by a typical infected individual in

totally and partially susceptible populations, respectively (Anderson and May, 1992). However, indi-

vidual variations from this mean can be of vital importance (Lloyd-Smith et al., 2005); a study of

SARS-CoV-2 in Hong Kong suggested that 80% of transmission events resulted from only 19% of

cases (Adam et al., 2020). Superspreader events are widely reported to play a key role in the spread

of the virus in community settings (Shen et al., 2004; Kucharski and Althaus, 2015; Hamner, 2020;

Ebrahim and Memish, 2020; Lemieux et al., 2020).

Transmission within hospitals has been identified as a critical concern in managing the COVID-19

pandemic (Iacobucci, 2020). Studying transmission in the hospital environment requires care in dis-

tinguishing cases acquired in the community from cases of nosocomial infection (Sikkema et al.,

2020). The identification of outbreaks may be complicated by the potential for asymptomatic car-

riage of the virus (Rivett et al., 2020). As such, testing of asymptomatic health care workers (HCW)

has been proposed as a means to reduce viral spread and protect the workforce and patients

(Black et al., 2020; Jones et al., 2020).

Evaluating SARS-CoV-2 transmission in a hospital context is not a trivial task. Factors such as the

date of symptom onset relative to the date of admission can be used to identify cases of likely noso-

comial transmission (Rickman et al., 2021; Price et al., 2021). Phylogenetic methods can be used to

identify putative clusters of infection occurring within a single ward or other location within a hospital

setting (Meredith et al., 2020). Epidemiological methods can be used to look at potential contacts

and opportunities for transmission between cases of infection (Cluster Track, Camart Ltd, Cam-

bridge, UK). However, these approaches do not always provide the detail of who infected whom

within a single outbreak or cluster, lacking the resolution to resolve the fine detail of transmission

clusters.

Viral genome sequences provide a valuable resource for evaluating nosocomial transmission. At

the most basic level, highly distinct sequences are unlikely to be related via transmission. Multiple

approaches have been proposed to infer transmission patterns from genome sequences. Typically,

phylogenetic reconstruction is used to infer relationships between sequences, an evolutionary model

being combined with epidemiological data to infer a network of transmission events (Volz and

Frost, 2013; Ypma et al., 2012; Didelot et al., 2014; Hall et al., 2015). Modelling approaches

have been extended to include factors such as unsampled hosts (De Maio et al., 2016), the availabil-

ity of multiple samples per patient (Wymant et al., 2018; Worby et al., 2016), incomplete epidem-

ics (Didelot et al., 2017), and deep sequence data (Ratmann et al., 2019).

Here, we evaluated patterns of viral transmission occurring in epidemiological clusters in Cam-

bridge University Hospitals NHS Foundation Trust (CUH), United Kingdom, where multiple patients

with suspected hospital-acquired COVID-19 infections and/or HCW working on the same wards

tested positive for SARS-CoV-2 within a 2-week period. Using a novel approach to combine genetic

and epidemiological data, we inferred networks of SARS-CoV-2 transmission between these individ-

uals. The tight clustering of genome sequences collected within a single ward places an imperative

on the exploitation of non-genetic information to identify potential transmission events. We did this

by combining an evolutionary model with symptom and location data for individuals considered, and

knowledge of SARS-CoV-2 infection dynamics. Examining data from the largest clusters of infection

identified within the hospital, we showed that the spread of infection in these clusters was driven by

a small set of superspreader individuals.
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Results
We developed a method to infer networks of transmission events between individuals within CUH.

Our method combines knowledge of SARS-CoV-2 infection dynamics with viral genome sequences

and data describing the movements of patients and HCWs within the hospital.

Applying our method to these data, we generated maximum likelihood reconstructions of the

pattern of transmission events occurring within five infection clusters, each of which was centred on

a ward at CUH. For reasons of data protection we term these wards A to E. These five wards were

chosen as they contained the largest number of patients with hospital-onset infections and/or health-

care worker infections in CUH up to the end of the study period. Of the wards analyzed, wards A to

D were ‘green’ wards (designated for patients who had not tested positive for SARS-CoV-2), while

ward E was a ‘red’ ward (designated for known COVID-19 patients). Although referred to here as a

‘ward’ for simplicity, one of the green wards was a number of neighbouring clinical areas within the

hospital. A preliminary analysis of the data, treating individuals in a pairwise manner, suggested that

transmission events between the identified wards was unlikely (Figure 1).

Reconstructed transmission networks for the four green wards are shown in Figure 2. Our

method requires each transmission in a network to be consistent with a statistical model of pairwise

viral transmission (Illingworth, 2020). As such, a broad range of possibilities could in theory be

inferred. At one extreme, the infections on a ward could all arise from a single introduction of the

virus, with all cases arising via transmission from a single individual. At the other extreme, the infec-

tions could all be entirely independent of one another, with no transmission between cases at all.

Our approach uses sequence data and epidemiological information to identify cases that are plausi-

bly linked by direct transmission, before inferring the maximum likelihood network reconstruction of

events. Across the green wards, the majority of cases were inferred to be connected to at least one

other via transmission, with 42 out of 54 cases being joined into networks. These networks involved

between 2 and 11 cases each (mean 5.9 cases). This contrasts with results from the single red ward

(Figure 3), in which only 9 of 19 cases were inferred to be linked to others via transmission (mean

eLife digest The COVID-19 pandemic, caused by the SARS-CoV-2 virus, presents a global

public health challenge. Hospitals have been at the forefront of this battle, treating large numbers of

sick patients over several waves of infection. Finding ways to manage the spread of the virus in

hospitals is key to protecting vulnerable patients and workers, while keeping hospitals running, but

to generate effective infection control, researchers must understand how SARS-CoV-2 spreads.

A range of factors make studying the transmission of SARS-CoV-2 in hospitals tricky. For instance,

some people do not present any symptoms, and, amongst those who do, it can be difficult to

determine whether they caught the virus in the hospital or somewhere else. However, comparing

the genetic information of the SARS-CoV-2 virus from different people in a hospital could allow

scientists to understand how it spreads.

Samples of the genetic material of SARS-CoV-2 can be obtained by swabbing infected

individuals. If the genetic sequences of two samples are very different, it is unlikely that the

individuals who provided the samples transmitted the virus to one another. Illingworth, Hamilton

et al. used this information, along with other data about how SARS-CoV-2 is transmitted, to develop

an algorithm that can determine how the virus spreads from person to person in different hospital

wards.

To build their algorithm, Illingworth, Hamilton et al. collected SARS-CoV-2 genetic data from

patients and staff in a hospital, and combined it with information about how SARS-CoV-2 spreads

and how these people moved in the hospital . The algorithm showed that, for the most part,

patients were infected by other patients (20 out of 22 cases), while staff were infected equally by

patients and staff. By further probing these data, Illingworth, Hamilton et al. revealed that 80% of

hospital-acquired infections were caused by a group of just 21% of individuals in the study,

identifying a ‘superspreader’ pattern.

These findings may help to inform SARS-CoV-2 infection control measures to reduce spread

within hospitals, and could potentially be used to improve infection control in other contexts.
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inferred network size 2.3 cases). Our result corresponds to the nature of the wards studied; the

repeated transfer of infected patients onto a red ward leads to an increased number of independent

introductions.

Individuals in our study were divided into patients and HCWs allowing for the estimation of rates

of transmission between these categories. Of the 38 transmission events in the maximum likelihood

networks, 20 were patient-to-patient, 8 were from patient to HCW, 8 were HCW-to-HCW, and just 2

were from HCW to patient (Figure 2—figure supplement 1) These results suggest that patients

were significantly more likely to be infected by other patients than by health care workers (p-value

6.1 x 10�5, one-tailed binomial test). By contrast, HCWs were at approximately equal risk of being

infected by patients and other HCWs.

Some of the wards analysed appeared to show uneven patterns of viral transmission, with a small

number of individuals responsible for most of the infections observed. For example, in the maximum

likelihood reconstruction derived for ward A, the majority of individuals infected did not pass on the

virus, while individuals A6 and A10 were the sources, respectively, of four and five transmission

events (Figure 2A).

A statistical analysis of the inferred networks provided evidence for a role for superspreading

behaviour during transmission. As a first step in evaluating this, we calculated the level of uncertainty

in each inferred network, combining data from the maximum likelihood network with that from other

plausible, but lower-likelihood networks. Figure 2—figure supplement 2 shows statistical ensem-

bles of networks inferred for the green wards. In this figure, the width of an arrow is proportional to

the probability that transmission occurred between each pair of individuals. The maximum likelihood

network inferred for Ward E was the only plausible solution given by our reconstruction method.

In a second step, we fitted models to data from these ensembles, calculating probability distribu-

tions of the number of individuals infected by each person in the dataset. A negative binomial
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Figure 1. Preliminary analysis of the data with A2B-Covid. Squares indicate the extent to which an individual-to-

individual transmission event is consistent with the data collected, when considered on a pairwise level. Our

analysis highlighted multiple potential transmission events occurring within each ward, but transmission between

individuals on different wards was uniformly assessed as unlikely. Further analyses of the data considered wards as

independent and isolated locations.

The online version of this article includes the following source data for figure 1:

Source data 1. Assessment of pairwise transmission events.
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Figure 2. Maximum likelihood transmission networks for wards A to D. Circles represent individuals and arrows show transmission events. White circles

represent patients while grey circles represent health care workers. Individuals for which no transmission events were inferred are represented as

isolated circles.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Maximum likelihood sources of patient and HCW infections.

Figure supplement 2. Ensemble transmission networks for wards A to D.

Figure 2 continued on next page
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model, in which the extent of viral spreading was overdispersed, gave a better explanation of the

data, measured using the Bayesian Information Criterion, than a simpler model in which all individu-

als transmitted equally (Figure 4). In the best-performing model of viral spreading, 87% of individu-

als either did not transmit the virus, or transmitted only to one other. Taken across all individuals,

21% of individuals were responsible for 80% of viral transmission, a result very similar to that found

among the general population (Adam et al., 2020). A repeat of this calculation for the green wards

alone gave similar statistics (Figure 4—figure supplement 1), with 23% of individuals in these wards

being responsible for 80% of transmission (Figure 4—figure supplement 1).

In our maximum likelihood reconstructions, a total of five individuals infected three or more

others, including one HCW and four patients. Clinical characteristics of these individuals were

explored, but are not described in detail or assigned to their anonymised ward clusters to preserve

patient anonymity. Of the four patients, all had suspected hospital-acquired COVID-19 and signifi-

cant comorbidities: two had a history of chronic liver disease, and two had previous haematological

malignancies, one of whom was still on immunosuppressive treatment. Immunosuppression has

been associated with prolonged viral shedding (Italiano et al., 2020; Avanzato et al., 2020). One

superspreader was confused and mobile on the ward. Another had a fever for several days before

being tested for SARS-CoV-2, which had been attributed to a pre-existing community-acquired bac-

terial infection. The only HCW superspreader exclusively infected other HCWs, and shared accom-

modation with several of these individuals. Cycle threshold (Ct) values of samples collected from

identified superspreader individuals were not statistically distinct from those from individuals in the

study in general (Figure 4—figure supplement 2).

Inferred timings of transmission events caused by superspreaders showed a variety of patterns

(Figure 4—figure supplements 3–5). In ward B, the initial three infections of HCWs by the individual

B0 are likely to have occurred within a short period of the SARS-CoV-2 virus entering the ward

(within 4 days with 95% certainty), suggesting that an outbreak caused by superspreading may

Figure 2 continued

Figure supplement 2—source data 1. Posterior probabilities of transmission between individuals on each ward.
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Figure 3. Maximum likelihood transmission network for ward E. Circles represent individuals and arrows show

transmission events. White circles represent patients while grey circles represent health care workers. Individuals

for which no transmission events were inferred are represented as isolated circles.
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Figure 4. Models of viral transmission. (A) Fit of the output of the Poisson model (black dots) to the ensemble data (yellow bars). The weighted

number of transmissions per individual reflects the uncertainty in the network reconstruction across the ensemble. (B) Fit of the output of the negative

binomial model (black dots) to the ensemble data (yellow bars). (C) Proportions of individuals causing different proportions of infections. A negative

binomial model (red line) fitted to all ward data produces a result similar to that of Adam et al., 2020 (blue dot), with 20% of individuals being

responsible for 80% of infections. A Poisson model fitted to the same data (dashed grey line) has 20% of individuals being responsible for 60% of

infections.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Distributions of number of individuals infected by each individual and fits to these data using Poisson and Negative Binomial models.

Figure supplement 1. Modelling of viral transmission on the green wards.

Figure supplement 1—source data 1. Distributions of number of individuals on green wards infected by each individual and fits to these data using
Poisson and Negative Binomial models.

Figure supplement 2. Ct values of viral samples.

Figure supplement 3. Inferred timings of transmission events in ward A.

Figure supplement 3—source data 1. Distributions of timings of transmission events on ward A.

Figure supplement 4. Inferred timings of transmission events in ward A.

Figure supplement 4—source data 1. Distributions of timings of transmission events on ward B.

Figure supplement 5. Inferred timings of transmission events in ward D.

Figure supplement 5—source data 1. Distributions of timings of transmission events on ward D.
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spread rapidly to multiple individuals. However, the inferred timings on other wards were less con-

clusive; in wards A and C the inferred distributions of infection times were more diffuse. We note

simply that where superspreader events occur, the potential exists for multiple transmissions to

occur within a short space of time.

Discussion
We have here outlined a novel approach for the inference of transmission networks. Our approach

combines an evolutionary model with specific information about SARS-CoV-2 transmission dynamics

to identify the most probable set of transmission events linking a set of cases of infection. Our

approach builds upon previous approaches to analysing SARS-CoV-2 data from hospital settings,

going beyond the identification of clusters to infer directional networks of viral transmission.

The multiple forms of data used by our method each play a critical role in network inference.

Where individuals in a ward become symptomatic at similar times, sequence data provide a strong

indication of whether these infections are linked via transmission or arise from completely indepen-

dent events. However, the potentially short time spanned by a local outbreak may be insufficient for

substantial genetic variation to accumulate in the virtual population; in such cases, other information,

such as dates of symptom onset, become critical for network reconstruction.

The inference of networks allows for detailed study of how SARS-CoV-2 can spread within a clini-

cal environment. Contacts between patients appear to be crucial, as they are primarily infected by

other patients rather than through transmission from HCWs. This finding has potential implications

for the application of protective measures within a hospital environment, wherease face mask usage

was enforced for individuals in outpatients and for HCWs in all areas of the hospital, inpatients were

not at the time of data collection subject to the same precautions. A recent study has suggested

SARS-CoV-2 aerosolisation to be high in areas where patients with COVID-19 are coughing

(Hamilton, 2021).

Our study is biased in its consideration of the largest clusters of infection identified in CUH wards

during the first wave of the pandemic. Examining data from these clusters, we identified a pattern of

superspreading, in which a small proportion of individuals were responsible for the majority of noso-

comial transmission events. Our result is interesting in the context of previous studies of super-

spreading (Shen et al., 2004; Kucharski and Althaus, 2015), providing an example of this in a

hospital context, and a case in which a small proportion of ‘superspreader individuals’ drive ‘super-

spreader events’. We note that, while prolonged or increased viral shedding would increase the

chance of an individual becoming a superspreader, behavioural and environmental factors may also

be influential.

A key feature of SARS-CoV-2 that makes infection prevention and control (IPC) particularly chal-

lenging is its significant infectivity prior to the onset of symptoms. This means that isolating staff or

patients once symptoms are recognised is not sufficient to prevent transmission. The superspreaders

identified here illustrate several principles for limiting the spread of SARS-CoV-2 in hospitals. First,

scrupulous adherence to infection control practices including use of appropriate personal protective

equipment (PPE) at all times, even on green wards and in non-clinical hospital areas, is required to

limit transmission between asymptomatic patients and staff in which COVID-19 is not suspected. Use

of masks by patients, including on green wards, should be instituted if tolerated, particularly when

staff are present in patient bed spaces. Second, healthcare professionals must be vigilant to the pos-

sibility of hospital-onset COVID-19 and have a low threshold for testing inpatients, even where an

alternative differential diagnosis for the patients’ symptoms exists. Third, as soon as positive cases

are confirmed, appropriate isolation and PPE precautions should be used, along with contact trac-

ing, testing and isolation. Patients who have been in direct contact with confirmed cases on green

wards should be isolated. Fourth, regular screening of asymptomatic individuals can help to identify

patients and staff that may be unsuspectingly infected with COVID-19 and infectious, either pre-

symptomatic, pauci-symptomatic or asymptomatic, prompting isolation and contact tracing

(Jones et al., 2020). Fifth, ventilation should be improved to reduce the risk of aerosol dispersal. Of

note, our recommendations concur with the current UK guidance for COVID-19 infection prevention

and control (Public Health England, 2020), which have evolved during the course of the pandemic.

Finally, our identification of transmission from patients to HCWs highlights the use of higher grade
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respiratory precaution to protect HCWs (such as FFP3 respirators) as an important topic for future

research.

The potential for superspreading enhances the difficulty of controlling hospital-acquired infection,

particularly as most transmission events from superspreaders to other people inferred in this study

occurred within a relatively short time period. By the time a second linked case in a ward is identi-

fied, the potential exists for an index case to have infected multiple individuals, making it too late to

prevent a broader outbreak. While this study does not allow for a complete characterisation of

superspreading individuals, it may suggest possible risk factors in these instances such as immuno-

suppression (associated with prolonged shedding), more mobile behaviour that may have contrib-

uted to increased risk of transmission, and extended symptoms (fever) prior to testing and isolation

(due to fever being attributed to an alternative cause).

Our inferences of transmission were performed on the basis of a largely complete dataset. Sam-

pling of infections within wards was likely very close to complete, with sample collection from symp-

tomatic patients and health care workers being conducted in parallel to asymptomatic screening of

hospital staff. A screening programme for asymptomatic HCW was set up at CUH in April 2020

(Rivett et al., 2020) and voluntary weekly screening is currently offered to all HCW. SARS-CoV-2

seroprevalence among staff tested in CUH between 10th June and 7th August 2020 was 7.2% (Coo-

per, 2020). The five outbreaks described here occurred earlier in the pandemic (March to June

2020), when staff seroprevalence would have been lower. The proportion of staff with neutralising

antibodies during the outbreaks was therefore low, and likely played a minor role in transmission

dynamics. Sequencing was attempted for all positive samples; across the green wards data was of

high quality for 55 out of 71 individuals for whom data was collected (>80% unambiguous nucleoti-

des with no more than one ambiguous nucleotide at at a variant site) consensus viral genome in

addition to data describing their location during the period of the study.

We acknowledge several limitations to our study. There is potential for missing or incomplete

data, with some aspects of the data more vulnerable than others to omission. Asymptomatic screen-

ing was offered to all staff working on the five wards analysed in the study during the outbreaks. It is

theoretically possible that HCW could have caught COVID-19 early on in the outbreaks and cleared

the virus quickly, becoming negative at time of testing, or caught the virus asymptomatically after

the screening test, or had levels of virus below the detection limit of the assay (and thus have been

false negatives). However, levels of SARS-CoV-2 RNA below the assay detection limit are unlikely to

be infectious (and thus not significant for the inferred transmission networks), and overall HCW test-

ing coverage was high. Testing of asymptomatic patients varied by ward. Asymptomatic screening

was done for all patients on Wards A and B during the outbreaks, and all patients entering Ward E

(the only ‘red’ ward included in the study) were known SARS-CoV-2 positives. However, for Wards C

and D, systematic asymptomatic screening of all patients on the ward during the outbreaks was not

performed, and it is possible some asymptomatic infections (that could have contributed to the

transmission networks) were missed. Data describing the wards on which patients were treated is

likely to be complete, but the same ward data for HCWs may miss the potential for interactions

between workers outside of their base wards for example in communal non-clinical areas within the

hospital. Missing location data would lead to the non-identification of genuine contacts; our

approach may therefore underestimate the number of infections caused by transmission between

health care workers. Where data were missing our method does not attempt to identify cases of

indirect transmission, for example invoking the presence of unobserved individuals. Only potential

cases of transmission that were compatible with a model of direct transmission were included in our

networks. The number of superspreader individuals identified in this study (five) is too small to draw

general conclusions on superspreader characteristics. Moreover, it is not possible to disentangle

whether superspreading was driven mainly by individual factors (such as infectivity or behaviour) or

environmental factors (such as patient placement and ventilation at time of peak infectivity), or a

combination of these. Ct values can vary for many reasons including the timing of sampling during

COVID-19 infection, sampling type and technique, viral transport, sample preparation and variability

between PCR runs. The finding that Ct values did not vary significantly between superspreader and

non-superspreader individuals should therefore be interpreted with caution.

In conclusion, we have here applied a combined statistical approach to infer and examine SARS-

CoV-2 transmission networks within a hospital environment during the first wave of the pandemic in

the United Kingdom. For the largest ward outbreaks of hospital-onset COVID-19, the majority of
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transmission was driven by a small proportion of individuals. Future developments could include

exploring the impact of variables that may be associated with an increased transmission risk. Exam-

ples would include novel SARS-CoV-2 variants such as B1.1.7 and B1.617.2, which appear to be

more readily transmissible (Rambaut et al., 2020), patient characteristics such as immunosuppres-

sion which are associated with prolonged viral shedding (Avanzato et al., 2020) and environmental

factors such as patient placement and room ventilation. Nevertheless, this unusually comprehensive

dataset has provided detailed insights into the processes of hospital-based transmission. Combining

data from multiple sources into a single analysis provides increased resolution and insight into the

pervasive problem of nosocomial viral transmission.

Materials and methods

Study design, setting, and participants
Prospective surveillance studies of COVID-19 infection in patients and healthcare workers (HCW)

were conducted at Cambridge University Hospitals NHS Foundation Trust (CUH), as previously

described (Rivett et al., 2020; Meredith et al., 2020). Nasopharyngeal swab samples were col-

lected and submitted to the Public Health England (PHE) Clinical Microbiology and Public Health

Laboratory (CMPHL) or the Department of Medicine, University of Cambridge for SARS-CoV-2 diag-

nostic testing, as detailed below. Samples included in this study were collected during the first epi-

demic wave, between 22nd March and 14th June 2020. Clinical, laboratory, and patient location

data were extracted from the hospital information system (EPIC Systems Corporation, Verona, USA).

HCW ward location data were collected by members of the HCW screening team. PHE recommen-

dations for COVID-19 infection prevention and control, including PPE use, were followed throughout

the course of the study.

Testing criteria
Patients and HCW had separate testing criteria and sample workflows. HCW were tested in the CUH

HCW screening programme, which included both asymptomatic screening and symptomatic testing

arms. Asymptomatic screening at the time of this study was focused on staff working on COVID-19

‘red’ wards (designated for patients with confirmed COVID-19 infection), wards with hospital-

acquired infection outbreaks, and wards with high rates of staff positivity. Suggested symptomatol-

ogy to prompt staff testing are described in Rivett et al., 2020, divided into ‘major’ criteria (e.g.

fever and/or new persistent cough) and ‘minor’ criteria (e.g. coryzal symptoms, headache, myalgia).

For all five of the outbreaks described in this study, all staff working on the outbreak wards were

invited for screening by the CUH HCW screening team (i.e. tested regardless of any symptoms or if

asymptomatic) during the outbreak periods (prompted by the outbreak investigations and/or high

rates of staff positivity on the wards).

There was no systematic asymptomatic screening for inpatients in CUH during the study period,

but targeted patient screening on wards with hospital-onset COVID-19 outbreaks was performed.

Ward E was a COVID-19 ‘red’ ward; all patients on this ward had tested positive prior to placement

there. Wards A to D were all ‘green’ wards (designated for non-COVID-19 patients) at the time the

hospital-onset COVID-19 outbreaks started. For Ward A, symptomatic contacts of confirmed cases

were tested initially, and as the outbreak grew and more cases were confirmed, ultimately all

patients on the ward were screened (including asymptomatics). For Ward C, contacts of confirmed

positives and/or patients who developed symptoms were screened, and for Ward D, symptomatic

contacts of the index case were tested. Thus, for Wards C and D, systematic asymptomatic screening

of all patients on the ward during the outbreaks was not performed. For the Ward B outbreak, when

the index patient (case B0) tested positive, all staff members who had worked on the cluster of clini-

cal areas referred to as ‘Ward B’ within the preceding 2 weeks plus all patients on those wards were

screened (regardless of any symptoms). Thus, there is high confidence for Wards A, B and E that all

infections among both staff and patients were detected (providing the amount of SARS-CoV-2 RNA

was sufficient for detection).

Visitor restrictions were introduced on 25th March 2020 and so were present for almost all of this

study (first positive swab was for Ward E, collected a few days before this). After 25th March, visitors
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to adult patients were only permitted in exceptional circumstances: for patients at the end of life or

visitors with a direct care role for the patient.

Laboratory methods
Samples underwent nucleic acid extraction and were tested for presence of SARS-CoV-2 using a vali-

dated in-house RT qPCR assay, as previously described (Price et al., 2021). The test was reported as

SARS-CoV-2 PCR positive if the cycle threshold (Ct) value was less than or equal 36. A 15 microlitre

aliquot of the RNA extract of each positive sample was transferred to the Department of Pathology,

University of Cambridge, for sequencing.

Sequencing and genomic analysis
Samples were assigned COG-UK sequencing codes and sequenced using a multiplex PCR based

approach according to the modified ARTIC v2 protocol with v3 primer set (artic-ncov, 2019;

Quick, 2020). Amplicon libraries were sequenced using MinION flow cells v9.4.1 (Oxford Nanopore

Technologies, Oxford, UK). Genomes were assembled using reference-based assembly and a bioin-

formatic pipeline (Artic Network, 2021). All sequences underwent quality control (QC) filtering,

including a 20x minimum coverage cut-off for any region of the genome and 50.1% cut-off for calling

single nucleotide polymorphisms (SNP).

Sample selection
Patients from CUH were determined to have indeterminate, suspected or definite hospital-acquired

infections (HAI) on the basis of days from admission to first positive SARS-CoV-2 test, using the

same definitions as in Meredith et al., 2020; Price et al., 2021: indeterminate = positive test after

48 hr and less than 7 days post admission; suspected = positive test 7 to 14 days post admission;

definite = positive test greater than 14 days post admission. Wards were ranked by their combined

number of indeterminate, suspected and definite HAI cases plus HCW cases (taking the HCW ward

to be any ward each HCW had worked on within the preceding 14 days before testing positive). 15

wards at CUH had two or more HAI and HCW cases occur within 14 days of each-other. The five

wards with the largest number of combined HAI and HCW cases were chosen for this study and

named wards A to E (Supplementary file 1).

Each of the selected wards had 10 or more HAI plus HCW cases, therefore representing the larg-

est HAI ward-based clusters in CUH during the study period, which encompasses the ‘first wave’ of

the pandemic in the East of England region. Four were ‘green’ wards (A to D), intended to house

patients who did not have COVID-19, and one was a ‘red’ ward (E), intended to house confirmed

COVID-19 cases. In four out of five wards, the majority of cases were HCW. Ward characteristics can-

not be described in detail in order to preserve confidentiality. They were typically organised into

bays, with four to six patients per bay, and a limited number of side rooms (which are critical for

infection control purposes). In summary, Ward A had 30 beds with three side rooms; Ward C had 27

beds with three side rooms; Ward D had 30 beds with four side rooms; Ward E had 26 beds with

three side rooms. The Ward B outbreak was focused around a ward with 32 beds of which 12 were

side rooms, although several adjacent clinical areas were screened as part of the outbreak investiga-

tion (as staff were shared between these wards).

An initial network analysis of patient bed movements was conducted to add patients to each

ward cluster that may have been in contact with the HAI cases, either with community onset infec-

tions on the same ward or while they were co-located on other wards outside of the ‘outbreak

wards’ themselves. This analysis was undertaken in two steps using SQL v18.5.1 and FoodChain-Lab

(an extension of the Knime Analytics Platform v3.6.1). The first step involved utilising SQL to process

case and ward movements data from CUH patients, creating a list of ward-based case co-locations

that were within the set parameters of the network analysis model. These parameters were (1) an

infectious period that included the 4 days prior to symptom onset up until 7 days after symptom

onset, and (2) a susceptibility period of 14 days prior to symptom onset. Where symptom onset date

was not available, the case positive specimen date was used instead. The second step was to import

the case co-locations data into FoodChain-Lab, which was used to draw a social network diagram of

cases and their ward co-locations with one another that met the set parameters. This network dia-

gram was used to identify any clustering of cases by ward that had not met the original criteria of
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HAI and HCW cases but could have been involved in shared transmission with those individuals

based on their co-location within the infection period of the virus. This yielded the final case set for

each ward cluster taken forward for analysis using the transmission reconstruction model.

Data collection
Data were collected on COVID-19 symptom onset dates for all included individuals from the five

ward clusters. These were collected separately for HCW and patients. HCW testing was part of the

CUH HCW screening programme, and testing criteria are described in Rivett et al (Sikkema et al.,

2020). (Table 1). Staff who tested positive were then contacted by members of the HCW screening

team and asked retrospectively about their symptoms, and onset dates were recorded by the HCW

screening team and used in this analysis. For patients, symptom onset dates were collected by retro-

spective review of patients’ electronic hospital records (EPIC Systems), usually noted at presentation

by the clerking doctor but all records were examined for any suggestion of symptoms. Symptom

definitions followed the standard national recommendations at the time: initially fever, breathless-

ness, and new continuous cough; muscle aches were added in early May and loss of taste or smell

was included from mid-May. If the infection was asymptomatic, or symptom onset dates could not

be determined, then the date of first positive SARS-CoV-2 test was used instead.

Patient ward movement data through the hospital was downloaded from the hospital electronic

records system (EPIC). Data on HCW shift patterns were collected manually using hospital shift ros-

tering information and, in some cases, directly contacting the HCW. HCW were defined as being

either present or absent on each ‘outbreak’ ward within each 24 hr period (i.e. time of day or shift

length was not taken into account). No HCW worked on multiple outbreak wards, although staff con-

tact outside of wards (during lunch, outside of work etc) cannot be excluded.

Each anonymised patient code was linked to COG-UK sequencing codes, with sample collection

date and laboratory receive dates recorded for each sample that was sequenced. Dates of symptom

onset and sample collection for each individual are shown in Figure 5.

Model development
Given a set of data from infected individuals, comprising viral genome sequences collected from

each infection, dates on which individuals became symptomatic, and when individuals were co-

located, we sought to identify whether and how these cases are linked by transmission. We noted

that, prior to analysis, we did not know whether the cases for which we had data were connected via

Table 1. Case numbers in the five major ward clusters.

‘Total cases before network analysis’ were derived by adding patients with potential hospital-acquired COVID-19 infections and HCW

cases from each ward. The five wards with the largest combined number of HAI and HCW cases within the study period were analysed,

with anonymised ward names A to E. ‘Ward type’ refers to whether wards were ‘green’ (intended for patients negative for COVID-19),

or ‘red’ (intended for COVID-19 patients). The breakdown of HAI and HCW cases for each of the included wards is shown in columns

‘HAI cases before network analysis’ and ‘HCW cases before network analysis’, respectively. The ‘network analysis’ at this stage identi-

fied additional patients that could have been involved in transmission with the HAI patients on the basis of co-location on the same or

other wards within a plausible timeframe for SARS-CoV-2 transmission (described in Materials and methods). This yielded the final

cases analysed for each ward cluster using the transmission reconstruction model. The final column shows the number of cases from

each ward cluster for which genomic data were available. In total, there were 98 cases with genomic data and 129 SARS-CoV-2

genomes analysed in the study (the larger number of genomes than cases is because of multiple samples per patient that underwent

SARS-CoV-2 sequencing). Three patients were included in two ward clusters each (which is why the total of the ‘Cases after network

analysis with genomic data’ column is 101). HAI = hospital-acquired infection (definition in Methods); HCW = healthcare worker.

Ward
name

Ward
type

Total cases before
network analysis

HAI cases before
network analysis

HCW cases before
network analysis

Cases after
network analysis

Cases after network analysis
with genomic data

A Green 14 12 2 16 15

B Green 11 2 9 15 12

C Green 12 5 7 20 19

D Green 14 4 10 16 16

E Red 13 3 10 47 39
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Figure 5. Overview of events on different wards. Blue squares show days on which individuals became

symptomatic, while green squares show inferred days of individuals becoming symptomatic when these dates

were unknown or not applicable. Red circles show days on which samples were collected from individuals for

genome sequencing. Dates within each ward are normalised so that the first event on any ward is day zero. We

note that not all collected samples led to genome sequences of sufficient quality to be useful in this study.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Figure supplement 1. Ensemble transmission networks for wards B, D, and E generated without extending the
times at which HCWs were present beyond the direct observations made.

Figure supplement 1—source data 1. Posterior probabilities of transmission between individuals on each ward
inferred under a model in which no padding for HCW locations was included.

Figure supplement 2. Modelling of viral transmission in the absence of an extension to HCW locations.

Figure 5 continued on next page
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transmission; a set of cases may be anything from completely unlinked to a single connected trans-

mission network.

As a first stage in our method, we partitioned our data into subsets of cases that might plausibly

be linked by transmission events. This step was conducted using a pairwise measure of the consis-

tency of the data observed from two individuals with the hypothesis of direct transmission having

occurred between these two individuals; calculation of this measure was previously implemented in

the A2B-COVID software package (Illingworth, 2020). The mathematical principles of this pairwise

measure of consistency are explained fully elsewhere (Illingworth, 2020); below we provide a

summary.

Pairwise likelihood of transmission
Our pairwise likelihood function combines information from a broad variety of sources. Firstly, dates

on which individuals first reported symptoms give an indication of the likelihood of transmission

between individuals. Previous publications have characterised the infectivity profile of SARS-CoV-2

(i.e. the time between becoming symptomatic to transmitting the virus to another person conditional

on causing infection), by fitting a shifted gamma distribution to data from confirmed infection, infer-

ring the distribution parameters a=97.185, b=0.2689, and shift s=25.625 (Ashcroft et al., 2020;

He et al., 2020). Further, the time between an individual being infected with SARS-CoV-2 and devel-

oping symptoms has been described as a lognormal distribution, with inferred parameters m=1.434

and s=0.6612 (He et al., 2020; Li et al., 2020). We use these distributions to assess the extent to

which the observed symptom-onset times are compatible with transmission. Specifically, we denote

by XT the event that transmission from i to j occurred on day T, and by X the event that transmission

from i to j occurred at all. For convenience we collect together parameters, writing q1={a, b, s, m, s}.

Supposing that individuals i and j became symptomatic on the days Si and Sj respectively, we then

derive the expression:

P Tj�1;Si;Xð ÞP Sjj�1;XT

� �

¼
Z T�Siþ0:5

T�Si�0:5

e� xþsð Þ=b xþ sð Þa�1
b�a

G að Þ dx

" #

Z Sj�Tþ0:5

Sj�T�0:5

e
� log xð Þ��ð Þ2

2s2

xs
ffiffiffiffiffiffi

2p
p dx

2

4

3

5

where a time of becoming symptomatic was unknown, the date at which that individual tested posi-

tive was used, corrected by a constant term estimated from the distribution of known times between

positive test dates and dates of becoming symptomatic (Illingworth, 2020).

We elaborate on this model by incorporating data describing the location of individuals, noting

that transmission can only occur when people are co-located, and viral genome sequences collected

from individuals in the study.

Incorporating location data
We have, for individuals in our study, information describing the wards on which patients were

hosted, and the wards on which HCWs worked shifts. Given individuals i and j we defined a contact

metric wij(T) equal to the probability that i and j were co-located on any given day T.

Ward data describing patient locations and health care worker shift dates were used to calculate

values wij for each pair of individuals. For any given ward, we set the value wi(W,T) to equal one if

the individual i was known to be on ward W on day T. If a healthcare worker worked a shift on ward

W on day T, we further assigned a minimum value of 0.5 to the values wi(W,T-1) and wi(W,T+1),

accounting for night shifts overlapping days, and the potential for fomite transmission. Removing

Figure 5 continued

Figure supplement 2—source data 1. Distributions of number of individuals on all wards infected by each indi-
vidual, as inferred under a model in which no padding for HCW locations was included, alongside fits to these
data using Poisson and Negative Binomial models.

Figure supplement 3. Assigning mutations to the transmission tree.

Figure supplement 4. Restrictions placed on the network by sequence variants.

Figure supplement 5. Convergence of the statistical ensemble of networks for ward A.

Figure supplement 5—source data 1. Probabilities of transmission events between individuals inferred from data
describing ward A calculated across partial and fuller sets of networks.
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these additional days led to some small alterations in the inferred networks (Figure 5—figure sup-

plement 1), but did not substantially affect our primary result, with again 80% of cases being caused

by 21% of individuals (Figure 5—figure supplement 2). For all other dates, we set wi(W,T) to be

zero. In the event that location data was unknown, we assigned a value for wi(W,T) of 1 for patients

for the most common ward on which individuals in a cluster were located, and a value for wi(W,T) of

4/7 for health care workers, reflecting common shift patterns of work. The value wij(T) for any two

individuals i and j was then defined as the maximum of the product of wi(X,T) and wj(X,T) calculated

across all wards X for that value of T.

Incorporating viral genome sequences
Our pairwise likelihood accounted for data from viral genome sequencing using a separate likeli-

hood function. For each pair of individuals, sequences were assessed according to the number of

nucleotides by which they differed from a pairwise consensus, calculated from the two sequences,

with reference to the broader set of sequences collected from a ward. At a given genome position,

the consensus was defined as the nucleotide shared by the two sequences if they were identical, or

by the most common nucleotide in the broader set if the two sequences differed.

The Hamming distances between each individual sequence and the pairwise consensus were

measured. Each distance reflects both the potential evolution of the virus and the extent of measure-

ment error inherent to the sequencing process. Using data from CUH, an estimate of the measure-

ment error was previously calculated as E=0.414 nucleotides per pair of sequences, or 0.212

nucleotides per sequence (Illingworth, 2020). To model viral evolution we adopted the rate

gG=0.0655 nucleotide substitutions per day, equal to the global rate of viral adaptation

(Hadfield et al., 2018). We then derived a Poisson model for the observed number of nucleotide

changes resulting from evolution and error. We denote the days on which viral sequence data was

collected from the individuals i and j as D = {Di, Dj}, and the Hamming distances of each sequence

from their consensus as Hi and Hj, and again use a shorthand expression q2={E, gG}. We then have

the result that

P Hi;Hjj�2;D;XT

� �

¼ E=2þgGPið ÞHie� E=2þgGPið Þ

Hi!

 !

E=2þgG Dj�Qi

� �� �Hj
e� E=2þgG Dj�Qið Þð Þ

Hj!

 !

We now combine the above terms, writing y = {Si, Sj, Hi, Hj}, q = {q1,q2}, and denoting by X the

event that transmission occurred from i to j at any time to obtain

P yj�;D;Xð Þ ¼
X

T

P TjSi; �1ð ÞP Sjj�1;XT

� �

wij Tð ÞP Hi;Hjj�2;D;XT

� �

This expression was used to assess the consistency of the data y from each pair of individuals with

the hypothesis of transmission from i to j.

Pairwise thresholds
The value p(y|q,D,X) is defined over a discrete space of symptom times and sequence measure-

ments. Calculating this over all feasible terms within this discrete space, we derived threshold values,

conditional upon D, for which 95% and 99% of genuine transmission events would obtain values

greater than the threshold. In this way, potential transmission events were classified into ‘consistent’

events (probability greater than the 95% threshold), ‘borderline’ events (probability between the

95% and 99% thresholds) and ‘unlikely’ events (probability below the 99% threshold).

The pairwise analysis, described to this point, was used to assess the data for potential between-

ward transmission events.

Inferring a maximum likelihood transmission network
As a first step in identifying transmission networks in our data, we clustered individuals using the

pairwise thresholds. By way of notation we denote the transmission event from individual i to individ-

ual j as i!j.

Beginning with a single subset containing an arbitrary individual, we added an individual j to the

subset S if for some individual i in S, either i!j or j!i has a likelihood that was ‘consistent’ or
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‘borderline’ under the pairwise likelihood. If no such subset existed, j was placed in a new subset,

repeating the process until all individuals were clustered into sets between which transmission events

were unlikely.

If clustering identified individuals that were alone within a subset, these individuals were removed

from the analysis at this point, giving further attention to clusters that contained at least two

individuals.

Network likelihood of transmission
Building upon our pairwise method, we calculated the likelihood of a transmission network. A trans-

mission network must contain at least one transmission event. We consider the network N, compris-

ing transmission events i1!j1, i2!j2, etc, in which the transmission even ik!jk occurs on day Tk. We

here write T* = {Tk} to represent the set of all transmission times.

Similar to the calculation above, we consider symptom onset times, the locations of individuals,

and sequence components, using these to derive an expression for a particular network of transmis-

sion events. Considering the non-genetic data, we make the assumption that the intrinsic dynamics

of each transmission are independent of one another, so that the joint distribution of the observed

symptom times Sif g given a particular network and set ot transmission times XTkf g, is

P Sif gj�1; XTkf gð Þ ¼
Y

k

wik jk Tkð ÞP Tkj�1;Sikð ÞP Sjk j�1;XTk

� �

For the sequence component of the likelihood, we consider the transmission tree defined by our

network. Adopting an infinite sites model (Kimura, 1969), we assume that each observed nucleotide

substitution occurred only once, with the reversion of substitutions being impossible. Further, we

assumed that, while a substitution that was observed in only one sequence could have arisen from

measurement error, substitutions that were observed in two or more sequences could not have

resulted from error. Under these assumptions, we classified potential substitutions by the sequences

they would be observed in, then adopted a Poisson likelihood model, comparing the periods of

time in which sets of substitutions could have occurred to the numbers of substitutions that were

observed in the data (Felsenstein, 1981).

We first describe this likelihood for a transmission network in which all times of transmission are

known. From the sequence data, we identified nucleotide substitutions occurring in viral sequences

relative to the consensus sequence. We denote the number of substitutions observed in a sequence

or group of sequences I by MI. Windows of time were then assigned to substitutions in reverse

order. Diagrams illustrating this process are shown in Figure 5—figure supplement 3.

We first consider the final transmission event to occur (Figure 5—figure supplement 3A). We

suppose that this transmission is A!B, occurring at time tAB. It is clear that the time of sample col-

lection DB occurs no earlier than tAB; we divide the scenario into two possibilities.

Firstly, if DA � tAB, we have that substitutions observed only in individual B must have occurred in

the DB - tAB days between tAB and DB, while substitutions observed only in A must have occurred in

the DA - tAB days between tAB and DA. We note that substitutions observed only in single individuals

are treated as potentially arising from either evolution or noise. We therefore calculated the likeli-

hood of having observed MA substitutions from a Poisson distributed variable with expectation E/2

+ gG(DA - tAB), and MB substitutions from a Poisson distributed variable with expectation E/2 +

gG(DB - tAB).

Alternatively, if DA < tAB, then there exists a time P, equal to the latest of the set of times includ-

ing DA and all other times of transmission tAX from A to an individual X other than B. We note that

mutations observed only in B can then have occurred in the DB - P days of this interval, while muta-

tions that were observed only in A can only have arisen through sequencing error. We therefore cal-

culated the likelihood of having observed MA substitutions from a Poisson distributed variable with

expectation E/2 + gG(DA - P), and MB substitutions from a Poisson distributed variable with expecta-

tion E/2. We note that the inclusion of a non-zero rate of sequencing error allows for A to transmit

to B at a time after the observation of a viral consensus sequence from A that contains a substitution

not observed in the viral consensus from B.

A similar logical process was carried for each transmission event working backwards in time. A

more general case, representing a joining of two branches of the tree, is shown in Figure 5—figure
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supplement 1B. We here consider the individuals A, B, C, and D, noting that these may not be ter-

minal branches in the tree. That is, if a mutation occurs early in the infection of individual C, it will be

observed both in the sequence collected from C and in sequences collected from individuals to

which C later transmits the virus.

In this case, there are a variety of possibilities here to enumerate. If DA � tAD, then mutations

which are observed precisely in A, D, and individuals downstream of A and D, must occur in the win-

dow between tAB and tAD. If DA < tAD but DA � tAB, then the same mutations must occur in the win-

dow between tAB and DA.

Finally, if DA < tAB, it is impossible for mutations to be observed in precisely A, D, and individuals

downstream of A and D. However, there exists a point P, equal to the latest of a set of times includ-

ing DA and all other times of transmission from A to another individual prior to tAB. In this scenario,

substitutions occurring between P and tAB will be observed in B, C, D, and all individuals of these.

In all the above scenarios, mutations which are observed in B and C, plus individuals downstream

of B and C, must occur in the window between tAB and the latter of DB and tBC. In each case, we cal-

culate the likelihood of having observed the given number of substitutions from a Poisson distrib-

uted variable with expectation given by the rate of evolution gG multiplied by the time available for

substitutions to occur, plus the measurement error E/2 where a variant was observed in only one

sequence.

In this manner, we derived a phylogenetic hierarchy, dividing the transmission tree into sets of

individuals that would be expected to share genetic substitutions; we denote these sets Ia, for a=0,

1, 2, etc. For each such set, we calculate the length of time in which these substitutions would have

to occur; we denote these times ta, counting the number of substitutions in each set, denoted Ma.

We then have that

P Iaf g; taf g; Maf gj�2ð Þ ¼
Y

a

daE=2þgGtað ÞMae� daE=2þgG tað Þ

Ma!

 !

where the term da is equal to one if Ia contains a single individual and 0 otherwise.

We now construct our final expression. We write G = {{Ia}, {ta}, {Ma}}, and note that G, through

the values ta, is dependent on the times of transmission T* and the times of sample collection, which

we denote more generally by D = {Dk}. Denoting by y the set of all data collected from the individu-

als in the network, we then have the result

P yj�;D;XNð Þ ¼
X

T�¼ Tkf g

Y

n

k¼1

wik jk Tkð ÞP Tkj�1;Sikð ÞP Sjk j�1;XTk

� �� �

P Gj�2;D;XT�ð Þ
" #

where XN is the event that the transmission events in the network occurred at some set of times. We

convert this into a log likelihood, calculating the likelihood of a given network N:

logL Njyð Þ ¼ logP yj�;D;XNð Þ

We find the maximum likelihood network N, and using likelihoods calculated for multiple net-

works generate statistical ensembles of networks, to estimate, for example, the number of individu-

als infected by a specific person on a ward.

Identifying plausible networks and orderings
The likelihood calculation above presupposes the existence of an ordered transmission network with

times assigned to each transmission event. Calculations were performed in order to derive these

networks.

Plausible networks describe sets of transmission events that could potentially describe a pattern

of individuals within a subset. Four criteria were used to identify such networks. Firstly and secondly,

networks had to be acyclic, and span all individuals in a subset. Thirdly, networks had to be likely,

with each transmission event in the network having a pairwise likelihood that was classified as ‘con-

sistent’ with the pairwise likelihood model. Where computational time allowed it, that is, for all but

ward A, this criterion was relaxed to also consider transmission events that were classified as ‘bor-

derline’; details on computability are given later in the Methods. Fourthly, networks had to be con-

sistent with the observed sequence data.
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Consistency with sequence data can be described in terms of patterns of shared substitutions

observed in sequences from different individuals. We consider a set Ia of all individuals in the subset

with viral sequences that share a substitution or set of substitutions. Under a maximum parsimony

assumption that variants are gained only once and cannot revert, consistency requires that (i) there

can only be one transmission event i!j with i =2 Ia and j 2 Ia and (ii) with the exception of this specific

individual j in Ia, there can be no transmission events j!k with j 2 Ia and k =2 Ia (Figure 5—figure sup-

plement 4). This has to apply for all such sets Ia.

For each subset of individuals created using the pairwise likelihood an exhaustive search of plausi-

ble networks was conducted. In the event that no such network was identified, the assumption that

the network must span all individuals in the subset was gradually relaxed, reducing the number of

individuals required successively by one until at least one plausible network was identified. In some

cases, this relaxation led to the identification of multiple plausible networks involving non-overlap-

ping sets of individuals; we return to this later in the Methods section.

Given a plausible network, we next considered orderings of the transmission events that it com-

prised. To achieve this, transmission events were given a nominal index. In an ordering the place-

ment of the transmission ia!ja before ib!jb implied that ia! ja occurred before or at an identical

time to ib!jb if it was true of the indices that a < b, but implied that ia!ja occurred strictly before

ib!jb if a > b.

Plausible orderings were required to fulfil three criteria. Firstly, on a logical principle, ia!ja must

occur before ib!jb if ja = ib; an individual must be infected before transmitting the virus. We insisted

that an individual who had received the virus via transmission could not themselves transmit until at

least one day after they had been infected. Secondly, orderings had to fulfil characteristics imposed

upon them by the likelihood function. If the first day on which the pairwise likelihood LP describing

transmission between ib and jb was greater than zero was after the last day on which the equivalent

likelihood for the transmission between ia and ja was greater than zero, it followed that ia!ja must

occur before ib!jb.

A third criterion was imposed by the existence of shared substitutions in the sequence data.

Returning to the criteria imposed for network plausibility we suppose that for the set of sequences Ia
that contain shared substitutions we have identified the transmission event i!j for which i =2 Ia but j

2 Ia, and that there exist a series of transmission events in the network j!k for this j. In this case, the

last transmission for which k =2 Ia must occur before the first transmission for which k 2 Ia, the substi-

tution event necessarily occurring in individual j between these two times (Figure 5—figure supple-

ment 5). All plausible orderings were stored for each plausible network; we note that the existence

of a plausible network did not imply the existence of a plausible ordering of transmission events.

Potential times for transmission events were determined by the first and last time points for which

each event had a non-zero pairwise symptomatic likelihood. These times, in addition to the ordering

constraints, impose a combinatorial set of possible times at which transmission occurred.

Finally, the likelihood of a transmission network was calculated as the sum over all orderings of

the sum over all sets of times of the timings-dependent network likelihood. Denoting the set of all

orderings of transmission events as O, and the set of possible sets T* as T**, we have

logLn ¼ log
X

O

X

T��
LT

��

n

Maximum likelihood and uncertainty
Calculating likelihoods for plausible transmission networks, the maximum likelihood network was

identified. Uncertainty about properties of the network, for example whether a network includes a

particular transmission event, and the number of individuals infected by each individual, was quanti-

fied by Bayesian methods. Assuming a uniform prior over the space of possible networks, the poste-

rior probability that each potential network is the true network is obtained as the likelihood of this

specific network divided by the sum of the likelihoods of all possible networks. Further statistics

were calculated using these network probabilities. For example, the probability that individual A

infected individual B was calculated as the sum of the probabilities of networks for which A infected

B, while the probability that A infected a total of n other individuals was calculated as the sum of the

probabilities of the networks in which A infected n other individuals.
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Where in the initial subsetting of individuals disjoint subsets were identified, independent net-

work reconstructions were calculated for each subset. Where the largest complete network in a sub-

set omitted more than one individual from the subset, repeat calculations, removing those

individuals inferred to be in that network, were performed, aiming to identify transmission events

between other individuals in the subset.

Computational considerations
Our algorithm runs at a combinatorial level of complexity dependent upon the number of individuals

and the number of plausible paths through the network. We adopted different computational meth-

ods to identify maximum likelihood networks and statistical properties. For wards other than A, a

rapid and comprehensive calculation of likelihoods for all plausible networks was possible. Uncer-

tainty about properties of the network was then computed over the complete space of possible net-

works. For ward A, a first calculation was performed, generating likelihoods for a systematically

chosen set of 0.2% of the plausible networks. From these networks, a heuristic likelihood threshold

was chosen, identifying 10 networks with the highest likelihood values. These networks were used as

starting points for independent downhill optimisation calculations. Given each network, the set of

adjacent networks was identified, each constructed by the breaking and replacement of a single

transmission event. Likelihoods were calculated for these networks, choosing the maximum likeli-

hood network among these before repeating the calculation. Across these independent calculations,

convergence to the reported maximum likelihood network was observed.

Uncertainty calculations for ward A were performed initially over the systematic sample of net-

work space, plus networks sampled in the downhill optimisation, plus all networks one or two steps

adjacent from the maximum likelihood network; this included a total of 14,040 networks. A second

calculation of statistics describing network uncertainty was performed across all these networks but

also including any remaining networks three steps adjacent from the maximum likelihood network;

this included a total of 19,238 networks. Statistics derived from the smaller and larger ensembles of

networks were then compared. The high degree of similarity between these statistics suggests con-

vergence towards the true statistical average (Figure 5—figure supplement 5).

Evaluating superspreading
Estimates of the distribution of the number of individuals infected by each person in each ward were

used to assess the existence of superspreader individuals, comparing the fit of two models to the

data.

Our network inference provided for each individual a distribution of the number of people

infected, so we could say that each individual i infected j others with probability pij. We used these

values to define ‘latent data’ to which we can fit Poisson models describing different hypotheses

about heterogeneity in transmission rates. Under a model with no superspreading, the number of

individuals infected by each person would be expected to follow a Poisson distribution with some

rate R of transmission. The marginal likelihood of this model, defined as the Poisson likelihood inte-

grated over the distribution of the latent number of individuals infected by each person, is derived

as

logL1 ¼
X

i

log
X

j

pij
rje�r

j!

� �

This was maximised to estimate the common transmission rate r. We compared this hypothesis to

an alternative, negative binomial model. This is equivalent to a model where the transmission rate is

different for each person, so that each person infects a number of people described by a Poisson

with a random rate drawn from a gamma distribution. We found parameters p and r maximising the

marginal likelihood

logL2 ¼
X

i

log
X

j

pij
rþ j� 1

r� 1
1� pð Þjpr

The marginal likelihoods L1 and L2 were then compared using the Bayesian Information Criterion

(Schwarz, 1978) to account for the additional parameters in the second model.
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Source of patient infections
In the maximum likelihood networks, of 22 cases of patients being infected, two were inferred to

originate from HCWs, with 20 of these being infected by other patients. We compared these values

using a one-tailed test, calculating the cumulative density function of a binomial distribution with

N=22 and probability 0.5 for the observed sample.
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COG-UK and GISAID sequence IDs for these samples are shown in Supplementary files 1 and

2. Genomic data are publicly accessible through the COG-UK website data section (https://www.
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patients into their shared ward locations in hospital, are not for public release linked to their

sequencing identifiers (eg. COG-UK sequence codes). This is because of the risk of deductive disclo-

sure, potentially compromising study participant anonymity. However, code to fully reproduce the

transmission network analysis using anonymised metadata and altered SARS-CoV-2 sequences is

available via GitHub at https://github.com/cjri/a2bnetwork (Illingworth, 2021; copy archived at swh:

1:rev:2c08d1a789b7f1a9ce758a86db27fc3d78b9d003) If a researcher requires access to restricted

metadata (including healthcare worker status and patient ward locations) linked to the COG-UK

sequence codes, then this will require a formal data sharing agreement with the COG-UK Consor-
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