COVID-19: Rare variants increase the risk of severe COVID-19
COVID-19 is a disease that does not strike equally: while most individuals will experience no or only mild respiratory symptoms, a minority – including young patients in their 20s or 30s – will develop severe pneumonia and acute respiratory distress syndrome, sometimes resulting in death. Identifying the underlying factors that predispose to severe COVID-19, especially in young individuals, is crucial to initiate preventive measures and design treatment strategies for at-risk patients.
Accumulating evidence suggests that rare loss-of-function mutations in a single gene known as TLR7 could predispose men under 50 without known risk factors to severe COVID-19. TLR7 codes for a Toll-like receptor that can recognise single-strand RNA present in viruses such as SARS-CoV-2, the agent responsible for COVID-19. Once activated, the receptor helps to switch on the immune response, triggering the production of pro-inflammatory molecules and the release of type I and II interferon proteins that regulate the activity of the immune system.
Now, in eLife, Alessandra Renieri and colleagues at the University of Siena and a number of other institutes in Italy – including Chiara Fallerini, Sergio Daga, and Stefania Mantovani as joint first authors – report five cases of men (three under 50, and two in their mid-60s) with severe COVID-19 who carry rare TLR7 variants (Fallerini et al., 2021). These data validate and extend two other studies we have been involved in: one highlights two sets of two young brothers (median age of 26) carrying a rare TLR7 variant who suffered from severe COVID-19 (van der Made et al., 2020); the other identified TLR7 variants in a selected group of COVID-19 patients (Solanich et al., submitted to medRxiv). In total, these three reports describe eight rare TLR7 variants in 12 male patients with no medical history who still developed severe COVID-19. We are therefore more confident with suggesting that variants of this single gene are responsible for an important proportion of risk factor for severe COVID-19 in men under 50.
Functional studies have started to shed light on the mechanism by which TLR7 variants can lead to severe COVID-19. This work shows that the variants disrupt the production of type I and type II interferon after stimulation of the TLR7 receptor, which suggests that the mutations lead to a loss-of-function in the antiviral response to SARS-CoV-2 (van der Made et al., 2020). However, Fallerini et al. show that some of the rare TLR7 variants only have a marginal effect on the release of type I interferon, indicating that additional pathways influence the body's defence against SARS-CoV-2.
Given these studies, it is somewhat surprising that a global initiative using exome or genome sequencing in 657 patients with severe COVID-19 did not report TLR7 variants, focusing instead on the pathways that allow the recognition of viral infections such as influenza. This initiative identified defects in the TLR3 and IRF7 pathway that could be responsible for up to 3.5% of patients with severe COVID-19 (Zhang et al., 2020). The field is now anxiously waiting for potential TLR7 variants to be identified in this large dataset as well. Indeed, Fallerini et al. suggest that at least 2% of severely ill Italian COVID-19 patients have loss of function TLR7 variants, but this percentage could be even higher in other populations.
Since the first report on TLR7 variants in severe COVID-19, diagnostic pipelines have been developed to discover such mutations. Being aware that this monogenetic factor predisposes young men to severe outcomes has several consequences. First, families of patients with TLR7 variants could be screened, and individuals fast-tracked for vaccination if identified as carriers. Second, unvaccinated carriers of rare TLR7 variants that predispose to severe COVID-19 could benefit from prophylactic interferon gamma treatment, similar to that given to patients with chronic granulomatous disease to prevent severe infection (The International Chronic Granulomatous Disease Cooperative Study Group, 1991; Marciano et al., 2004). Third, patients with these variants should be admitted to hospital earlier, be monitored more closely for complications, and be treated more aggressively once they become critically ill. Indeed, there is an argument for screening all men under 50 who have been admitted to intensive care (and their families) for the TLR7 variants. Together, these measures might have a dramatic impact on clinical outcome.
References
-
Long-term interferon-gamma therapy for patients with chronic granulomatous diseaseClinical Infectious Diseases 39:692–699.https://doi.org/10.1086/422993
-
A controlled trial of interferon gamma to prevent infection in chronic granulomatous diseaseNew England Journal of Medicine 324:509–516.https://doi.org/10.1056/NEJM199102213240801
Article and author information
Author details
Publication history
- Version of Record published: March 23, 2021 (version 1)
Copyright
© 2021, van de Veerdonk and Netea
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,453
- Page views
-
- 197
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor β (TGF-β) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-β in tailoring a suite of bacteria-specific host defenses.
-
- Epidemiology and Global Health
- Genetics and Genomics
Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is partially maintained among repeated serial samples from the same host, it can transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.