COVID-19: Rare variants increase the risk of severe COVID-19
COVID-19 is a disease that does not strike equally: while most individuals will experience no or only mild respiratory symptoms, a minority – including young patients in their 20s or 30s – will develop severe pneumonia and acute respiratory distress syndrome, sometimes resulting in death. Identifying the underlying factors that predispose to severe COVID-19, especially in young individuals, is crucial to initiate preventive measures and design treatment strategies for at-risk patients.
Accumulating evidence suggests that rare loss-of-function mutations in a single gene known as TLR7 could predispose men under 50 without known risk factors to severe COVID-19. TLR7 codes for a Toll-like receptor that can recognise single-strand RNA present in viruses such as SARS-CoV-2, the agent responsible for COVID-19. Once activated, the receptor helps to switch on the immune response, triggering the production of pro-inflammatory molecules and the release of type I and II interferon proteins that regulate the activity of the immune system.
Now, in eLife, Alessandra Renieri and colleagues at the University of Siena and a number of other institutes in Italy – including Chiara Fallerini, Sergio Daga, and Stefania Mantovani as joint first authors – report five cases of men (three under 50, and two in their mid-60s) with severe COVID-19 who carry rare TLR7 variants (Fallerini et al., 2021). These data validate and extend two other studies we have been involved in: one highlights two sets of two young brothers (median age of 26) carrying a rare TLR7 variant who suffered from severe COVID-19 (van der Made et al., 2020); the other identified TLR7 variants in a selected group of COVID-19 patients (Solanich et al., submitted to medRxiv). In total, these three reports describe eight rare TLR7 variants in 12 male patients with no medical history who still developed severe COVID-19. We are therefore more confident with suggesting that variants of this single gene are responsible for an important proportion of risk factor for severe COVID-19 in men under 50.
Functional studies have started to shed light on the mechanism by which TLR7 variants can lead to severe COVID-19. This work shows that the variants disrupt the production of type I and type II interferon after stimulation of the TLR7 receptor, which suggests that the mutations lead to a loss-of-function in the antiviral response to SARS-CoV-2 (van der Made et al., 2020). However, Fallerini et al. show that some of the rare TLR7 variants only have a marginal effect on the release of type I interferon, indicating that additional pathways influence the body's defence against SARS-CoV-2.
Given these studies, it is somewhat surprising that a global initiative using exome or genome sequencing in 657 patients with severe COVID-19 did not report TLR7 variants, focusing instead on the pathways that allow the recognition of viral infections such as influenza. This initiative identified defects in the TLR3 and IRF7 pathway that could be responsible for up to 3.5% of patients with severe COVID-19 (Zhang et al., 2020). The field is now anxiously waiting for potential TLR7 variants to be identified in this large dataset as well. Indeed, Fallerini et al. suggest that at least 2% of severely ill Italian COVID-19 patients have loss of function TLR7 variants, but this percentage could be even higher in other populations.
Since the first report on TLR7 variants in severe COVID-19, diagnostic pipelines have been developed to discover such mutations. Being aware that this monogenetic factor predisposes young men to severe outcomes has several consequences. First, families of patients with TLR7 variants could be screened, and individuals fast-tracked for vaccination if identified as carriers. Second, unvaccinated carriers of rare TLR7 variants that predispose to severe COVID-19 could benefit from prophylactic interferon gamma treatment, similar to that given to patients with chronic granulomatous disease to prevent severe infection (The International Chronic Granulomatous Disease Cooperative Study Group, 1991; Marciano et al., 2004). Third, patients with these variants should be admitted to hospital earlier, be monitored more closely for complications, and be treated more aggressively once they become critically ill. Indeed, there is an argument for screening all men under 50 who have been admitted to intensive care (and their families) for the TLR7 variants. Together, these measures might have a dramatic impact on clinical outcome.
References
-
Long-term interferon-gamma therapy for patients with chronic granulomatous diseaseClinical Infectious Diseases 39:692–699.https://doi.org/10.1086/422993
-
A controlled trial of interferon gamma to prevent infection in chronic granulomatous diseaseNew England Journal of Medicine 324:509–516.https://doi.org/10.1056/NEJM199102213240801
Article and author information
Author details
Publication history
Copyright
© 2021, van de Veerdonk and Netea
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.