Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function

  1. Shreyas Bhat
  2. Marco Niello
  3. Klaus Schicker
  4. Christian Pifl
  5. Harald H Sitte
  6. Michael Freissmuth
  7. Walter Sandtner  Is a corresponding author
  1. Medical University of Vienna, Austria
  2. University of Vienna, Austria

Abstract

The concentrative power of the transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT) is thought to be fueled by the transmembrane Na+ gradient, but it is conceivable that they can also tap other energy sources, e.g. membrane voltage and/or the transmembrane K+ gradient. We address this by recording uptake of endogenous substrates or the fluorescent substrate APP+ ((4-(4-dimethylamino)phenyl-1-methylpyridinium) under voltage control in cells expressing DAT, NET or SERT. We show that DAT and NET differ from SERT in intracellular handling of K+. In DAT and NET, substrate uptake was voltage-dependent due to the transient nature of intracellular K+ binding, which precluded K+ antiport. SERT, however, antiports K+ and achieves voltage-independent transport. Thus, there is a trade-off between maintaining constant uptake and harvesting membrane potential for concentrative power, which we conclude to occur due to subtle differences in the kinetics of co-substrate ion binding in closely related transporters.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2,3,5,6 in the following DOI published by dryad. https://doi.org/10.5061/dryad.6q573n5z8

Article and author information

Author details

  1. Shreyas Bhat

    Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7019-9180
  2. Marco Niello

    Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Klaus Schicker

    2Division of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Pifl

    University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Harald H Sitte

    Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1339-7444
  6. Michael Freissmuth

    Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Walter Sandtner

    Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
    For correspondence
    walter.sandtner@meduniwien.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3637-260X

Funding

Austrian Science Fund (P 31599)

  • Walter Sandtner

Austrian Science Fund (P 31813)

  • Walter Sandtner

Austrian Science Fund (W1232)

  • Harald H Sitte

Vienna Science and Technology Fund (CS15-033)

  • Harald H Sitte

Vienna Science and Technology Fund (LS17-026)

  • Michael Freissmuth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christof Grewer, Binghamton University, United States

Version history

  1. Received: March 1, 2021
  2. Accepted: May 30, 2021
  3. Accepted Manuscript published: June 1, 2021 (version 1)
  4. Version of Record published: June 10, 2021 (version 2)

Copyright

© 2021, Bhat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,025
    views
  • 137
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shreyas Bhat
  2. Marco Niello
  3. Klaus Schicker
  4. Christian Pifl
  5. Harald H Sitte
  6. Michael Freissmuth
  7. Walter Sandtner
(2021)
Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function
eLife 10:e67996.
https://doi.org/10.7554/eLife.67996

Share this article

https://doi.org/10.7554/eLife.67996

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Aaron JO Lewis, Frank Zhong ... Ramanujan S Hegde
    Research Article

    The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61’s lateral gate, widening Sec61’s central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Roberto Efraín Díaz, Andrew K Ecker ... James S Fraser
    Research Article

    Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high-resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.