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Abstract
Background: Predicting neurological recovery after spinal cord injury (SCI) is challenging. Using 
topological data analysis, we have previously shown that mean arterial pressure (MAP) during SCI 
surgery predicts long- term functional recovery in rodent models, motivating the present multicenter 
study in patients.
Methods: Intra- operative monitoring records and neurological outcome data were extracted (n = 
118 patients). We built a similarity network of patients from a low- dimensional space embedded 
using a non- linear algorithm, Isomap, and ensured topological extraction using persistent homology 
metrics. Confirmatory analysis was conducted through regression methods.
Results: Network analysis suggested that time outside of an optimum MAP range (hypotension 
or hypertension) during surgery was associated with lower likelihood of neurological recovery at 
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hospital discharge. Logistic and LASSO (least absolute shrinkage and selection operator) regression 
confirmed these findings, revealing an optimal MAP range of 76–[104- 117] mmHg associated with 
neurological recovery.
Conclusions: We show that deviation from this optimal MAP range during SCI surgery predicts 
lower probability of neurological recovery and suggest new targets for therapeutic intervention.
Funding: NIH/NINDS: R01NS088475 (ARF); R01NS122888 (ARF); UH3NS106899 (ARF); Department 
of Veterans Affairs: 1I01RX002245 (ARF), I01RX002787 (ARF); Wings for Life Foundation (ATE, ARF); 
Craig H. Neilsen Foundation (ARF); and DOD: SC150198 (MSB); SC190233 (MSB); DOE: DE- AC02- 
05CH11231 (DM).

Editor's evaluation
The major strengths of this paper are the use of a combination of relatively novel approaches/appli-
cations to the identification of important predictors for recovery after spinal cord surgery. These 
include various data reduction techniques such as dissimilarity matrices and a subject- centered topo-
logical network analysis to identify phenotypes.

Introduction
Spinal cord injury (SCI) may result in motor, sensory, and autonomic dysfunction in various degrees, 
depending on the injury severity and location. In the USA, the incidence of SCI is around 18,000 new 
cases per year, with a total prevalence ranging from 250,000 to 368,000 cases (National Spinal Cor 
Injury Statistical Center, 2021). The dramatic life event of SCI imposes a high socioeconomic burden, 
with an estimated lifetime cost between $1.2 and $5.1 million per patient (National Spinal Cor Injury 
Statistical Center, 2021).

Prior retrospective observational single- center studies in humans suggest that lower post- surgery 
mean arterial pressure (MAP) predicts poor outcome (Cohn et  al., 2010; Hawryluk et  al., 2015; 
Saadeh et al., 2017; Ehsanian, 2020), which have resulted in clinical guidelines focused on avoidance 
of hypotension by maintaining MAP >85 mmHg during the first 7 days of injury (Aarabi et al., 2013). 
The rational for MAP augmentation to avoid hypotension is based on the hypothesis that decreased 
spinal cord prefusion leads to ischemia and additional tissue lost (Mautes et al., 2000; Soubeyrand 
et al., 2014). Importantly, experimentally raising MAP during acute SCI in animals by using vasopres-
sors increases the risk for hemorrhage and consequent tissue damage (Soubeyrand et  al., 2014; 
Streijger et al., 2018; Guha et al., 1987). In acute cervical patients with SCI, spinal cord hemorrhage 
correlates with poor prognosis for neurological recovery (Miyanji et al., 2007). These findings collec-
tively suggest that hypo- and hypertension must be accounted for in MAP management, but there 
remains a gap in evidence from clinical studies that definitively informs MAP guidelines (Saadeh et al., 
2017).

One of the challenges resulting in the lack of strong evidence for MAP management in patients 
with acute SCI is the heterogeneity of injury. The heterogeneity of SCIs results in data complexity 
that benefit from modern analytic tools. Using the machine intelligence approach of topological data 
analysis, we have previously shown that hypertension during SCI surgery (ultra- acute phase) predicts 
long- term functional recovery in rodent models (Nielson et al., 2015). These prior cross- species find-
ings motivated the present multicenter study where we apply a data- driven workflow in patients with 
ultra- acute SCI surgical records from two different Level 1 trauma centers. By employing machine 
intelligence tools, we show that deviation from an optimal MAP range during surgery predicts lower 
likelihood of neurological recovery and suggest new targets for therapeutic intervention.

Methods
Retrospective data extraction and cohort selection
Operating room (OR) records from n = 94  patients (98 surgical records, 3  patients with multiple 
surgeries) from the Zuckerberg San Francisco General Hospital (ZSFG, from 2005 to 2013) and n = 
33 patients (33 surgical records) from the Santa Clara Valley Medical Center (SCVMC, from 2013 to 
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2015) that underwent spinal surgery were collected retrospectively. For ZSFG, monitoring data was 
extracted from the values manually recorded by the anesthesiologist at 5  min intervals (Q5). For 
SCVMC, monitoring data was extracted from the Surgical Information Systems (SIS) (Alpharetta, GA) 
at 1 min intervals (Q1). Demographics and outcome variables were extracted from an existing retro-
spective registry. AIS (American Spinal Injury Association [ASIA] Impairment Scale) grade at admission 
(first complete AIS upon admission to the hospital before surgery) and discharge (latest complete 
AIS grade after surgery before discharge from hospital) were estimated using the available ISNCSCI 
exams (International Standards for Neurological Classification of SCI) and the neurosurgery, trauma 
surgery, emergency department, and physical medicine and rehabilitation physical exam notes. To 
ensure compatibility between centers on the estimated AIS grades, one independent physician 
conducted the estimates for all the patients in each center (SM for SCVMC and JT for ZSFG) and one 
independent ISNCSCI certified physician (WW) extracted the AIS grades for all the patients (across 
centers). In case of conflict between grades, both physicians established a consensus. From the total 
131 surgical records, three records were excluded for not having monitoring recorded for both MAP 
and HR, three were excluded because surgeries were not related to SCI, and seven surgeries were 
excluded from   three patients that were submitted to more than one surgery. The final cohort for 
exploratory topological data analysis included 118 patients with complete MAP and heart rate (HR) 
monitoring. For confirmatory regression analysis, 15 patients were excluded because AIS grade could 
not be extracted either at admission and/or discharge (Figure 2—figure supplement 1). AIS improve-
ment was defined as an increase of at least one AIS grade from admission to discharge. The final list of 
extracted variables included: MAP and HR continuous monitoring, age, length of surgery in minutes, 
days from surgery to hospital discharge, estimated AIS grade at admission, estimated AIS grade at 
discharge and AIS improvement (‘yes’, ‘no’). All data was de- identified before pre- processing and 
analysis. Protocols for retrospective data extraction were approved by Institutional Research Board 
(IRB).

eLife digest Spinal cord injury is a devastating condition that involves damage to the nerve fibers 
connecting the brain with the spinal cord, often leading to permanent changes in strength, sensation 
and body functions, and in severe cases paralysis. Scientists around the world work hard to find ways 
to treat or even repair spinal cord injuries but few patients with complete immediate paralysis recover 
fully.

Immediate paralysis is caused by direct damage to neurons and their extension in the spinal cord. 
Previous research has shown that blood pressure regulation may be key in saving these damaged 
neurons, as spinal cord injuries can break the communication between nerves that is involved in 
controlling blood pressure. This can lead to a vicious cycle of dysregulation of blood pressure and limit 
the supply of blood and oxygen to the damaged spinal cord tissue, exacerbating the death of spinal 
neurons. Management of blood pressure is therefore a key target for spinal cord injury care, but so 
far, the precise thresholds to enable neurons to recover are poorly understood.

To find out more, Torres- Espin, Haefeli et al. used machine learning software to analyze previously 
recorded blood pressure and heart rate data obtained from 118 patients that underwent spinal cord 
surgery after acute spinal cord injury.

The analyses revealed that patients who suffered from either low or high blood pressure during 
surgery had poorer prospects of recovery. Statistical models confirming these findings showed that 
the optimal blood pressure range to ensure recovery lies between 76 to 104- 117 mmHg. Any devia-
tion from this narrow window would dramatically worsen the ability to recover.

These findings suggests that dysregulated blood pressure during surgery affects to odds of 
recovery in patients with a spinal cord injury. Torres- Espin, Haefeli et al. provide specific information 
that could improve current clinical practice in trauma centers. In the future, such machine learning 
tools and models could help develop real- time models that could predict the likelihood of a patient’s 
recovery following spinal cord injury and related neurological conditions.

https://doi.org/10.7554/eLife.68015
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Cohort statistics
The differences in the AIS improvers/non- improvers population characteristics were tested at the 
univariate level using R (see software below). For continuous numerical variables (age, length of 
surgery, and days from surgery to discharge), the group mean differences were tested using unpaired 
Student’s t- test (two- sided test). For categorical variables (AIS admission, AIS at discharge, and 
dichotomized neurological level of injury [NLI]), their levels were compared using Fisher’s exact test 
(two- sided test). p- Values are presented in Table 1.

Table 1. Cohort demographics split by AIS (American Spinal Injury Association [ASIA] Impairment 
Scale) improvement.

AIS improve. N/A
(n = 15)

AIS improve. NO
(n = 61)

AIS improve. YES
(n = 42)

Univariate 
p- value

Age (years) 0.12

  Mean (SD) 46.0 (17.6) 45.3 (19.1) 51.4 (19.7)

  Median [min, max] 45.5 [19.0, 87.0] 47.0 [18.0, 82.0] 55.0 [18.0, 86.0]

  Missing 1 (6.7%) 2 (3.3%) 1 (2.4%)

AIS admission 0.013

  A 1 (6.7%) 33 (54.1%) 18 (42.9%)

  B 0 (0%) 5 (8.2%) 8 (19.0%)

  C 0 (0%) 5 (8.2%) 11 (26.2%)

  D 0 (0%) 14 (23.0%) 5 (11.9%)

  E 0 (0%) 4 (6.6%) 0 (0%)

  Missing 14 (93.3%) 0 (0%) 0 (0%)

AIS discharge <0.0001

  A 0 (0%) 35 (57.4%) 0 (0%)

  B 0 (0%) 5 (8.2%) 5 (11.9%)

  C 1 (6.7%) 4 (6.6%) 15 (35.7%)

  D 0 (0%) 14 (23.0%) 17 (40.5%)

  E 1 (6.7%) 2 (3.3%) 5 (11.9%)

  Missing 13 (86.7%) 1 (1.6%) 0 (0%)

Surgery duration (min) 0.66

  Mean (SD) 433 (167) 392 (146) 407 (181)

  Median [min, max] 432 [121, 725] 389 [120, 728] 343 [151, 950]

  Missing 1 (6.7%) 2 (3.3%) 1 (2.4%)

Surgery to discharge (days) 0.33

  Mean (SD) 9.50 (2.12) 18.8 (20.6) 23.4 (23.8)

  Median [min, max] 9.50 [8.00, 11.0] 11.0 [1.00, 128] 14.5 [4.00, 120]

  Missing 13 (86.7%) 4 (6.6%) 2 (4.8%)

  Dichotomized 
neurological level of injury 
at admission 0.054

  Cervical 2.00 (13.3%) 36 (59%) 33 (78.6%)

  Non- cervical 13.00 (86.7%) 25 (41%) 9 (21.4%)

https://doi.org/10.7554/eLife.68015
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Topological network extraction and exploration of monitoring data 
workflow
Monitoring data pre-processing
Two datasets were generated, one for each center. To ensure compatibility, both datasets were 
harmonized. Given the difference in the sampling frequency of the monitoring data (Q5 for ZSFG 
and Q1 SCVMC) between centers and protocols for data collection, SCVMC monitoring data was first 
pre- processed. Briefly, electronic data was exported from the SIS SQL database, de- identified and 
imported into MATLAB version 2016b (Mathworks Inc, Natick, MA) for filtering. A custom MATLAB 
script generated by the SCVMC team implemented filtering criteria established by clinicians and 
researchers to correct for invalid data (e.g., motion artifacts and injections). Thus, MAP values under 
10 and above 200 mmHg as well as point- to- point changes greater than 40 mmHg were filtered, 
as these instances were found to represent data artifacts. This process was validated by comparing 
clinical curated data and the extracted data from the script with an accuracy of 99.1 %. After filtering, 
SCVMC Q1 monitoring data was downsampled to Q5 by taking the average of five consecutive 
Q1 intervals for compatibility with ZSFG data. Given that the duration of the monitoring for each 
patient was different and the continuous time- series data is not aligned between patients (without 
time dependency on monitoring values), the empirical cumulative distribution function (CDF) for each 
time- series and each patient was computed. To account for the different scales between MAP and HR, 
a bin width for CDF was set as a 1%  of the range of each measure, producing 100 CDF bins for MAP 
and 100 bins for HR (Figure 2—figure supplement 2). Additionally, the average MAP (aMAP) and HR 
(aHR) across time for each patient was calculated for posterior analysis.

Similarity between patients
The CDF bins for both MAP and HR were serialized in one vector per patient and the Euclidean 

distance ( d 
(
p, q

) 
=

√∑n
i=1

(
pi − qi

)2
 , where p and q are two patients’ CDF vectors and n is the

number of CDF bins) calculated for each pair of patients’ vectors. The Euclidean distance matrix was 
then processed using dimensionality reduction.

Dimensionality reduction
Our goal for dimensionality reduction was to increase the signal- to- noise ratio by mapping to a lower 
number of dimensions (d) that contained the major information in the dataset. Dimensionality reduc-
tion was achieved by using the Isomap algorithm (Tenenbaum et al., 2000). Isomap is a non- linear 
dimensionality reduction method that uses multidimensional scaling (MDS) with geodesic distances 
instead of the Euclidean distances as the classic MDS does, and it has been suggested before for 
health data (Weng et al., 2005). Isomap performs three steps: (1) construct an NNG (near neighbor 
graph), (2) estimate the geodesic distances from the graph (shortest paths), (3) compute MDS embed-
ding with the geodesic distances. The algorithm takes one parameter (k or e) to set the threshold 
for the NNG (we used k, the number of near neighbors for NNG). For selecting k, we considered 
the minimal k the smallest one that produced a connected NNG, in our case k = 3. Then two criteria 
were established for both k optimization and d selection, distance preservation (RV, residual variance) 
and topological persistent homology preservation as described (Rieck and Leitte, 2015; Paul and 
Chalup, 2017). We considered Isomap solutions for k = 3–7 (Figure 2—figure supplement 1). The RV 

was computed as (Tenenbaum et al., 2000): 
 
1 − R2

(
D̂m, Dy

)
 
 where  R  is the standard linear correlation

coefficient taken over all entries of  ̂Dm  and  Dy .  ̂Dm  is the input distance matrix that the algorithm is 

trying to estimate the real dimensions of (k- geodesic distance matrix for k- Isomap).  Dy  is the Euclidean 
distance matrix of the low- dimensional solution. No major differences were observed in RV between 
the solutions for different k, except for the first dimension where RV increases as k increases. Isomap 
persistence diagrams were obtained using Vietoris- Rips filtration (Paul and Chalup, 2017) for  ̂Dm  and 

 Dy  for different d solutions (Figure 2—figure supplement 1). Then the topological zero- dimensional 
and one- dimensional Wasserstein (power = 2) distances (WD0 and WD1, respectively) were computed 
between  ̂Dm  and  Dy . In persistent homology, dimension 0 measures zero- dimensional holes in the data 
(the connectivity of the datapoints, i.e., the number of connected sets) and topological dimension 1 
measures one- dimensional holes, namely loops. We sought to select the solution (determine d and k) 

https://doi.org/10.7554/eLife.68015
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that minimized the WD0 and WD1, indicative of the optimal solution preserving the major topological 
information (Rieck and Leitte, 2015; Paul and Chalup, 2017). Given that k = 6 and k = 7 showed the 
lowest WD0 and WD1, we considered k = 6 as the final solution (Figure 2—figure supplement 1). A d 
= 4 (four dimensions kept in the k = 6 Isomap) was chosen for being the one at the ‘elbow’ of the RV, 
the one that minimized WD0 in k = 6 Isomap and presented a good compromised WD1.

Network analysis
A network from the k = 6 d = 4 Isomap solution was created for visual representation of the connectivity 
of patients (similarity) in the low- dimensional space. In this network, nodes represent each patient and 
edges the connection of two patients that are similar in the Isomap solution. An adjacency (whether 
two nodes are connected) matrix was obtained by computing a k- NNG for the low- dimensional space. 
The cutoff threshold for adjacency was set to the minimal k that produced a full- connected network. 
For network clustering, the walktrap algorithm was used (Pons and Latapy, 2005) as implemented in 
the igraph R package. Walktrap takes a single parameter, the number of random steps the algorithm 
uses to determine if nodes are in the same cluster or not. To select the optimal number of steps we 
computed walktrap solutions of a set of random steps (1–100) and chosen the first solution which 
maximized modularity (Q) as implemented in igraph R package (Clauset et al., 2004). In network 
analysis, modularity can be interpreted as the proportion of within cluster compared to the between 
clusters connectivity (edges). This solution was 47 random steps, producing a dendrogram tree of 
connectivity which maximal modularity cut the tree in 11 clusters (Figure 2—figure supplement 1). 
Then the network was contracted for visual representation of a cluster network of patients, where 
nodes represented the clusters and edges connected clusters that had at least one edge in the simi-
larity network. Both the similarity and the cluster networks were used for exploratory network anal-
ysis and hypothesis generation by mapping patient features and visual inspection (Figure 2—figure 
supplement 1). We used the assortativity coefficient (Ar) to explore the possibility that the network 
was capturing the association between patients and the time of MAP out of a range (Figure 4; see 
time MAP out of range). The Ar was calculated using the igraph implementation in R (Newman, 2003) 
and it can be interpreted as the Pearson coefficient (−1–1) between nodes connectivity and value of 
a variable.

Regression analysis
Logistic regression
We first used a logistic regression to model the probability of predicting improvement by aMAP. 
Visual inspection of the plot (Figure 2) suggested a non- linear relationship between aMAP and the 

Table 2. Logistic regression likelihood ratio test and leave- one- out cross- validation (LOOCV) error (n 
= 103 patients).

Model AIC
Residual 
df

Residual
deviance Deviance p- Value

LOOCV 
error

Null model
 (l = β0) 141.26 102 139.26     0.246

Linear model
 (l = β0 + β1x) 134.8 101 130.80

8.46
(vs. null model)

0.0036**
(vs. null model) 0.231

Quadratic model
 (l = β0 + β1x + β2x2) 128.48 100 122.48

8.32
(vs. linear model)

0.0039**
(vs. linear model) 0.210

Cubic model
 (l = β0 + β1x + β2x2 + β3x3) 126.97 99 118.97

3.50
(vs. quadratic 
model)

0.061
(vs. quadratic 
model) 0.213

Natural Spline model (df = 2)
 (l = β0 + f1

(
x
)
) 128.29 100 122.29

8.50
(vs. linear model)

0.0035**
(vs. linear model) 0.210

Natural Spline model (df = 3)
 (l = β0 + f1

(
x
)
) 127.13 99 119.13

3.34
(vs. quadratic 
model)

0.067
(vs. quadratic 
model) 0.213

** p < 0.01.

https://doi.org/10.7554/eLife.68015
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probability of improvement. Consequently, the following logistic models were considered ( l  being 
the log- odds or logit of the probability of improving): the null model with no predictors ( l = β0 , the 
simple model ( l = β0 + β1x ), the two- grade polynomial model ( l = β0 + β1x + β2x2

 ), the three- grade 
polynomial model ( l = β0 + β1x + β2x2 + β3x3

 ) and a natural spline model ( l = β0 + f1
(
x
)
  )where  f1

(
x
)
  

is the natural spline function with 2 or 3 degrees of freedom (df)). The natural cubic spline was chosen 
to relax the symmetric constraints of polynomial models given that the visual inspection of the data 
suggested an asymmetric aMAP range (Figure 2, distribution of aMAP of improvers is skewed to 
the left). The results of fitting these models and the likelihood comparison between them (by likeli-
hood ratio test) are shown in Table 2. The best fitting model was the two- grade polynomial (Figure 
3) and the natural spline (2df) with significant coefficients, confirming our hypothesis. These results 
were confirmed by leave- one- out cross- validation (LOOCV) (Table 2). To account for the potential 
confounding effect of AIS grade at admission (given differences between groups, Table  1), aHR, 
length of surgery (minutes), days from surgery to discharge and age, we fitted the quadratic model 
with those covariates and LOOCV (Table 3). Considering the independence of the predictors (small 
correlation coefficients between variables; Table 4), the results of the quadratic term being significant 
still holds for the covariate model.

Time out of MAP range
We sought to determine a range of MAP in which time outside that range might predict improvement. 
To consider the time at which MAP was outside a range, we performed an increasing window of MAP 
for either a symmetric range or an asymmetric one. For the symmetric range, a 1 mmHg range incre-
ment at each site of the center (90 mmHg, the mean MAP for improvers) was created. For the asym-
metric range, the lower limit was fixed at 76 mmHg and the upper limit was incremented 1 mmHg at 
the time. The time of MAP (in min) being outside each range was estimated for each patient.

LASSO regression
LASSO (least absolute shrinkage and selection operator) regression (Tibshirani, 1996) was used 
for selecting a single range of MAP (see time MAP out of range) predictor of the logistic model: 

 l = β0 +
∑p

j=1 βjxj , where  xj  is the jth MAP range. LASSO takes as parameter lambda that sets the 
amount of shrinkage or regularization (using L1- norm penalty). LOOCV was used to determine the 
lambda that shrunk the models to one predictor or MAP range. The one- predictor solutions (MAP 
range of 76–104 for symmetric range model, and 76–117 for the asymmetric range model) were used 
as the solo predictor of AIS improvers in a logistic regression with LOOCV (see above). It is important 
to note that given the high multicollinearity in the range data, the Q5 time estimation and the low 
sample size, the LASSO solution should be taken with caution and as an indicator of the MAP range 
hypothesis rather than a hard rule for medical decision making.

Prediction modeling
Logistic regression (see above) was used to build prediction models for three binary outcome metrics: 
AIS improvement of at least one grade from admission to discharge, whether patient was AIS grade A 
at discharge, or whether the patient was AIS grade D at discharge. For each one of the classification 

Table 3. Evaluation of logistic regression (Wald test) and leave- one- out cross- validation (LOOCV) 
error.

Model:  l = β0 + β1x1 + β2x2
1  where  x1 :  average MAP (n = 103 patients)

LOOCV: average observed accuracy = 0.66; average kappa statistic = 0.334

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = –0.55 0.242 –2.293 0.02183*

Average MAP ( x1 )  β1 = 8.62 2.944 2.931 0.00338**

Average MAP ( x
2
1 )  β2 = –7.601 3.039 –2.501 0.0123*

*p < 0.05; **p < 0.01.

https://doi.org/10.7554/eLife.68015
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tasks, the following predictors were considered: quadratic aMAP (both linear and quadratic terms), 
aHR, length of surgery (min), days from surgery to discharge, age, AIS grade at admission, and dichot-
omized NLI. We performed model selection (a.k.a. feature selection) through an exhaustive search of 
all potential combinations of at least one of the predictors using the glmulti R package (Calcagno, 
2020). The most parsimonious models were selected to be the one minimizing the small- sample 
corrected Akaike information criteria (AIC) for each task. We then investigated the performance of 
each one of the most parsimonious models using LOOCV and adjusting the classification threshold to 
balance prediction sensitivity and specificity. Briefly, each model was trained n (patient) times with an 

Table 4. Evaluation of logistic regression with covariates (Wald test) and leave- one- out cross- 
validation (LOOCV).

Model:  l = β0 + β11x1 + β12x2
1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 + β8x8 + β9x9 , where  x1 :  

average MAP;  x2  : average HR;  x3 :  length of surgery (min);  x4 :  days to AIS discharge (days);  x5 :  age; 
 x6 :  AIS admission D (‘yes’,’no’);  x7 :  AIS admission C (‘yes’,’no’);  x8 :  AIS admission B (‘yes’,’no’);  x9 :  AIS 
admission A (‘yes’,’no’); (AIS admission E was set as the reference level for AIS admission variable and is 
part of the intercept) (final n = 93)

LOOCV: average observed accuracy = 0.688; average kappa statistic = 0.362

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = –1.530 121.8 –0.013 0.99

Average MAP ( x1 )  β11 = 7.398 3.112 2.377 0.017*

Average MAP ( x
2
1 )  β12 = –8.053 3.530 –2.281 0.022*

Average HR ( x2 )  β2 = –2.087 0.0245 –0.851 0.394

Length of surgery ( x3 )  β3 = 0.0011 0.0015 0.728 0.466

Days to AIS discharge 
( x4 )  β4 = 0.0037 0.0109 0.344 0.730

Age ( x5 )  β5 = 0.0082 0.013 0.634 0.526

AIS admission D ( x6 )  β6 = 1.454 1.218 0.012 0.990

AIS admission C ( x7 )  β7 = 1.645 1.218 0.014 0.989

AIS admission B ( x8 )  β8 = 1.585 1.218 0.013 0.989

AIS admission A ( x9 )  β9 = 1.527 1.218 0.013 0.990

  Correlation matrix (Spearman)

  
Average 
MAP

Average
HR Length of surgery

Days to AIS 
discharge Age

AIS 
admission

Average 
MAP 1

Average 
HR –0.126 1

Length of 
surgery –0.152 0.101 1

Days 
to AIS 
discharge 0.088 –0.059 0.165 1

Age 0.006 –0.245 0.011 0.022 1

AIS 
admission 0.024 0.003 –0.01 0.258 –0.13 1

*p < 0.05.

https://doi.org/10.7554/eLife.68015
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n−1 training sample and tested the performance in the remaining sample. A vector of n probabilities 
of predictions was then used to measure the LOOCV model performance. Model fitting and predic-
tion performance were conducted using the caret R package (Kuhn et al., 2019). Receiving operating 
curves (ROC) and area under the curve (AUC) for the LOOCV prediction were obtained using the 
ROCR R package (Sing et al., 2005).

Software
All data wrangling, processing, visualization, and analysis was performed using the R programming 
language (R version 3.5.1) (R core team, 2019) and RStudio (RStudio version 1.2.1335) (Team, 2018) 
in Windows 10 operating system, with the exception of the Q1 OR measures form SCVMC that were 
preprocessed in MATLAB before downsampling to Q5 in R. The most relevant R functions and pack-
ages (beyond the installed with R) used and the references for each function/package and methods 
are reported in the following table. For more details, see the source code available (Supplementary 
file 1 and Source code 1).

R packages used

Package Version Usage Reference

igraph 1.2.4.1 Building, manage and analyze networks Csárdi and Nepusz, 2006

dplyr 0.8.3 Data cleaning and wrangling Wickham et al., 2018

ggplot2 3.2.1 Data visualization and plotting Wickham, 2016

vegan 2.5–5 For Isomap implementation Jari et al., 2019

RColorBrewer 1.1–2 To control and create colormaps Neuwirth, 2014

TDAstats 0.4.0
Utilities for topology data analysis for persistent 
homology Wadhwa et al., 2018

cccd 1.5 For generating NNGs Marchette, 2015

table1 1.1 Generates table of demographics Rich, 2018

glmnet 2.0–18 For fitting LASSO Friedman et al., 2010

glmnetUtils 1.1.2 For fitting LASSO Ooi, 2019

caret 6.0–84
To fit logistic regression with leave- one- out cross- 
validation Kuhn et al., 2019

splines 3.5.1 To fit the spline models R core team, 2019

VisNetwork 2.0.7
Visualization suit for network graphs using the  vis. 
js JavaScript library Almende, 2019

stats 3.5.1 Fit generalized linear models R core team, 2019

glmulti 1.0.8 For model search Calcagno, 2020

ROCR 1.0–11 For ROC visualization and performance Sing et al., 2005

reshape2 1.4.3 From wide to long view dataframe formatting Wickham, 2007

Data and code availability
The final de- identified datasets for analysis are deposited and accessible at the Open Data Commons 
for SCI ( odc-  sci. org, RRID:SCR_016673) under DOIs 10.34945 /F5R59J and 10.34945 /F5MG68. The R 
code to run all the analysis present in this publication, including visualizations, is available as supple-
mentary material. The code would reproduce the entire analysis and plots when run using the same 
versions of R, RStudio, and packages specified in this publication. Otherwise results might change.

https://doi.org/10.7554/eLife.68015
https://identifiers.org/RRID/RRID:SCR_016673
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Results
Exploratory network analysis suggests an upper and lower limit of 
intra-operative MAP for recovery
Intra- operative monitoring records (MAP, HR) and neurological outcome data were extracted and 
curated from two Level 1 trauma centers. A final cohort of 118 patients was included (Figure 1a and 
Table 1). The cohort represents a varied dataset of intra- operative MAP and HR patterns and respec-
tive aMAP across time in surgery and aHR across time in surgery values (Figure 1b–c). Using a machine 
intelligence analytical pipeline (Figure 2a), we extracted a similarity network of patients (Pai and Bader, 
2018; Parimbelli et al., 2018) from a low- dimensional space embedded using a non- linear algorithm, 
Isomap (Tenenbaum et al., 2000), on a distance matrix derived from the MAP and HR records and then 
performed topological network extraction using persistent homology metrics (Rieck and Leitte, 2015; 
Figure 2a and Figure 2—figure supplement 1). The results of this dimensionality reduction suggested 
that four dimensions are enough to capture most of the variance and the topological structures of the 
original data (Figure 2—figure supplement 1c- e). Clustering the network of patients through a random- 
walk algorithm, Walktrap (Pons and Latapy, 2005), revealed 11 different clusters where patients were 
regarded to share intra- operative hemodynamic phenotypes (Figure 2 andFigure 2—figure supple-
ment 1f- h). Importantly, this workflow was unsupervised: only the OR hemodynamic time- series was 
used to derive patient clustering, and therefore any association captured by the network must be 
dependent on hemodynamic patterns. Exploratory network analysis showed a gradient distribution of 
patients by their aMAP (Figure 2b–d) and aHR (Figure 2e–g), confirming that the network captured a 
valid representation of the raw high- dimensional dataset. We then investigated the association of the 
clusters to patient recovery as defined by whether the patient improved at least one AIS grade A–D 
(Roberts et al., 2017) between time before surgery and time of discharge from the hospital. Mapping 
the proportion of patients with AIS improvement onto the similarity network (Figure 2h–j) revealed that 
patients with recovery localized to clusters associated with a middle range of MAP (Figure 2k). Those 
clusters also showed a higher proportion of less severe AIS grades at discharge (AIS C, D, and E) than 
other clusters (Figure 2—figure supplement 2). In contrast, clusters of patients showing an extreme 
variation of MAP were highly enriched with patients with no AIS recovery and patients with more severe 
AIS grades at discharge (AIS A and B, Figure 2—figure supplement 2). This analysis suggested that 
there is a limited range of MAP during surgery associated with neurological recovery.

MAP has a non-linear association with probability of recovery
The exploratory network analysis revealed that clusters with higher proportion of patients that 
increased AIS of at least one grade were associated with having a middle range aMAP (Figure 2 and 
Figure 2—figure supplements 1 and 2) and that clusters of patients with aMAP on the extremes 
contained fewer improvers. We hypothesized that there might be a non- linear relationship between 
intra- operative MAP and the probability of AIS grade improvement. To confirm this hypothesis, 
logistic regression models with LOOCV were used (Figure 3, Table 2). We fitted a null model (no 
predictors) as well as linear, polynomial, and cubic models of aMAP (Figure 3, Table 2) to test the non- 
linearity of the hypothesis. The linear model showed a significant improvement over the null model 
with a positive association, suggesting that the higher the aMAP, the higher the probability of AIS 
grade improvement. However, polynomial logistic regression demonstrated a significant quadratic 
fit (Table 2) with lower LOOCV error than the linear model, indicating that a quadratic form of aMAP 
better predicts the probability of improvement. Notably, the cubic model did not show significant 
improvement over the quadratic one. Exploratory network analysis suggested an asymmetrical func-
tion of AIS improvement with respect to aMAP (Figure 2k); we therefore also tested spline models to 
relax the symmetry of polynomial models. A spline model of degree 2 resulted in a significant fit over 
the linear model (Table 2) while a spline model of degree 3 resulted in a similar fit as compared to 
the cubic model. There was no evidence from which to choose between the spline model of degree 2 
and the quadratic model. Accordingly, we did not pursue the asymmetric model further, although we 
explore an asymmetric MAP range below.

Factors influencing MAP association with recovery
We sought to explore additional patient characteristics that might explain or affect MAP associa-
tion with recovery. To test whether other factors could be responsible for the observed non- linear 

https://doi.org/10.7554/eLife.68015
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Figure 1. High- frequency monitoring operating room (OR) data. Flowchart of retrospective study and cohort selection criteria (a). A final cohort 
of 118 patients were identified and values of mean arterial pressure (MAP) (b) and heart rate (HR), (c) by time (bins of 5 min; Q5) retrospectively 
extracted from patients’ records. Colormaps represent the MAP (mmHg; green marks normotensive MAP, while blue and red marks hypotension and 
hypertension, respectively) and HR (beats per min, bpm; dark yellow lowest to purple highest) at each Q5 time, depicting the temporal fluctuation of 
each measure for each patient (row). The average MAP (aMAP, right plot in b) and average heart rate (aHR, right plot in c) were computed.

https://doi.org/10.7554/eLife.68015


 Research article      Computational and Systems Biology | Medicine

Torres- Espín, Haefeli, et al. eLife 2021;0:e68015. DOI: https:// doi. org/ 10. 7554/ eLife. 68015  12 of 26

Figure 2. Topological network analysis of intra- operative monitoring. Intra- operative mean arterial pressure (MAP) and heart rate (HR) sampled every 
5 min (Q5) were curated, processed, and formatted in a unique data matrix (a) (Figure 2—figure supplement 1). The similarity matrix between patients 
was computed and a four- dimensional subspace extracted using Isomap (Figure 2—figure supplement 1). A network was constructed where nodes 
represent patients and edges the connection of pairs of patients under a specified threshold of similarity (see Methods). The network was clustered and 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.68015
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collapsed (Figure 2—figure supplement 1) by using the walktrap algorithm conveying in 11 clusters. These networks captured both the average MAP 
(aMAP) (b–d) and the average HR (aHR) (e–g) in a gradient fashion. Similarly, at least one AIS grade gain at discharge (‘yes’, ‘no’) was mapped over the 
network (h–j, gray: 15 AIS grades could not be extracted). Clusters of higher proportion of patients with recovery had an aMAP in a middle range, while 
clusters with higher proportion of patients without recovery presented extreme aMAPs (k). The mean cluster aHR showed a less apparent relationship 
with the proportion of AIS improvers (l).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Data preprocessing, dimensionality reduction, and clustering optimization.

Figure supplement 2. Exploratory network analysis of AIS (American Spinal Injury Association [ASIA] Impairment Scale) at discharge.

Figure 2 continued

Figure 3. Non- linear relationship of average mean arterial pressure (aMAP) with the probability of improving 
at least one AIS grade. Logistic regression models were fitted to study the potential non- linearity of the aMAP 
predictor as suggested by the exploratory analysis. Six different models were studied: naïve, linear, quadratic, 
cubic, spline of degree 2, and spline of degree 3. The estimated leave- one- out cross- validation (LOOCV) error for 
each model showed that both the quadratic and the spline of degree 2 have the minimal cross- validation error (a). 
This suggests that the linear model did not capture all the potential explainable variance of the response variable 
by aMAP, while the cubic and spline of degree 3 were probably overfitting the model (Table 2). (b) shows the logit 
function (blue line) and standard error (gray ribbon) of the quadratic model over the fitted values (points).

https://doi.org/10.7554/eLife.68015
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association, we first compared the quadratic model with aMAP as a predictor alone, a model that 
also includes several covariates (aHR, length of surgery, days from surgery to discharge, age, and AIS 
grade at admission), and a model with only the covariates. The significance of the quadratic fit holds 
even after accounting for the covariates (Table 3, 4), and none of the terms in the covariates- only 
model had a significant coefficient (Table 5). These results indicate that even in the presence of the 
other factors, aMAP is still non- linearly associated with AIS grade improvement at discharge.

Patients with more severe injuries are more likely to suffer hemodynamic dysregulations (Lehmann 
et al., 1987). Hence, we studied whether the relationship of MAP and AIS improvement was main-
tained in the subcohort of patients with an AIS grade of A at admission. We first filtered the data for 

Table 5. Evaluation of logistic regression covariates only (Wald test) and leave- one- out cross- 
validation (LOOCV).

Model:  l = β0 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 + β8x8 + β9x9 , where  x2  : average HR;  x3 :  
length of surgery (min);  x4 :  days to AIS discharge (days);  x5 :  age;  x6 :  AIS admission D (‘yes’,’no’);  x7 :  AIS 
admission C (‘yes’,’no’);  x8 :  AIS admission B (‘yes’,’no’);  x9 :  AIS admission A (‘yes’,’no’); (AIS admission E 
was set as the reference level for AIS admission variable and is part of the intercept) (final n = 93)

LOOCV: average observed accuracy = 0.612; average kappa statistic = 0.17

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = –1.585 138.2 –0.011 0.991

Average HR ( x2 )  β2 = –0.0209 0.029 –0.911 0.362

Length of surgery ( x3 )  β3 = 0.0016 0.00141 1.151 0.250

Days to AIS discharge 
( x4 )  β4 = 0.0105 0.0106 0.993 0.320

Age ( x5 )  β5 = 0.0052 0.012 0.424 0.672

AIS admission D ( x6 )  β6 = 1.511 1.382 0.011 0.991

AIS admission C ( x7 )  β7 = 1.715 1.382 0.012 0.991

AIS admission B ( x8 )  β8 = 1.643 1.382 0.012 0.990

AIS admission A ( x9 )  β9 = 1.574 1.382 0.011 0.991

Table 6. Evaluation of logistic regression in American Spinal Injury Association (ASIA) Impairment 
Scale (AIS) A at admission cohort (Wald test) and leave- one- out cross- validation (LOOCV).

Model:  l = β0 + β11x1 + β12x2
1 + β2x2 + β3x3 + β4x4 + β5x5 , where  x1 :  average MAP;  x2  : average HR;  x3 :  

length of surgery (min);  x4 :  days to AIS discharge (days);  x5 :  age (final n = 51)

LOOCV: average observed accuracy = 0.63; average kappa statistic = 0.197

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = –0.931 3.433 –0.271 0.786

Average MAP ( x1 )  β11 = 10.79 5.014 2.153 0.031*

Average MAP ( x
2
1 )  β12 = –6.73 4.591 –1.468 0.142

Average HR ( x2 )  β2 = –0.016 0.035 –0.468 0.639

Length of surgery ( x3 )  β3 = 0.0039 0.0026 1.504 0.132

Days to AIS discharge 
( x4 )  β4 = 0.0067 0.014 0.477 0.633

Age ( x5 )  β5 = –0.012 0.020 –0.599 0.549

*p < 0.05.

https://doi.org/10.7554/eLife.68015
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the subcohort and then fitted a full model as above but without the AIS grade at admission covariate. 
The resulting model showed the linear aMAP coefficient to be significant and the quadratic term close 
to significant (p = 0.14) with the second biggest coefficient (Table 6). A likelihood ratio test between 
a linear model with covariates and a quadratic model with covariates resulted in p- values = 0.07. On 
the other hand, in the full model with covariates fitted to the entire cohort, none of the AIS grades at 
admission had significant coefficients, which suggested that the non- linear relationship of MAP with 
neurological recovery was sustained across injury severity in that model. This apparent divergence in 
results might be explained by the reduction in power for the AIS A cohort model.

Next, given that the level of the cord injury can be related to different degrees of hemodynamic 
dysregulation (Lehmann et al., 1987), we studied the effect of the NLI at admission on the asso-
ciation of MAP and patient recovery. Our cohort was very heterogeneous on the NLI, with most 
patients having cervical injuries and the rest distributed along the mid and lower segments of the 
cord (Table 7). Thus, we divided the population into two categories: cervical and non- cervical patients. 
Running the same full model with just the cervical patients resulted in similar results as compared to 
the full model on the entire cohort, maintaining the quadratic aMAP significance (Table 8). In the non- 
cervical cohort, we did not find a significant association of the quadratic aMAP to recovery (Table 9). 
We then performed additional analyses to determine whether this difference in aMAP relationship 
to recovery between cervical and non- cervical patients was due to differences in the likelihood of 
recovery between the two NLI populations. A univariate analysis suggested that the proportion of 
improvers and not improvers in the cervical and non- cervical population were marginally different 

Table 7. Neurological level of injury cases.

Cervical (n = 71) Non- cervical (n = 32)

NLI C2 C3 C4 C5 C6 C7 C8 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 S1 S5

Cases 3 3 24 28 4 8 1 1 3 3 1 2 1 3 1 3 2 4 6 2

Table 8. Evaluation of logistic regression in Cervical cohort (Wald test) and leave- one- out cross- 
validation (LOOCV).

Model:  l = β0 + β11x1 + β12x2
1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 + β8x8 , where  x1 :  average MAP; 

 x2  : average HR;  x3 :  length of surgery (min);  x4 :  days to AIS discharge (days);  x5 :  age;  x6 :  AIS admission 
D (‘yes’,’no’);  x7 :  AIS admission C (‘yes’,’no’);  x8 :  AIS admission B (‘yes’,’no’); (AIS admission A was set as 
the reference level for AIS admission variable and is part of the intercept, no AIS admission E was present 
in this cohort) (final n = 93)

LOOCV: average observed accuracy = 0.688; average kappa statistic = 0.362

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = 2.747 3.018 0.91 0.363

Average MAP ( x1 )  β11 = 7.594 3.056 2.485 0.013*

Average MAP ( x
2
1 )  β12 = –7.528 3.358 –2.242 0.025*

Average HR ( x2 )  β2 = –0.055 0.034 –1.608 0.108

Length of surgery ( x3 )  β3 = 0.0014 0.0019 0.720 0.472

Days to AIS discharge 
( x4 )  β4 = 0.0022 0.012 0.182 0.855

Age ( x5 )  β5 = 0.0079 0.016 0.482 0.630

AIS admission D ( x6 )  β6 = –0.747 0.87 –0.840 0.730

AIS admission C ( x7 )  β7 = 0.745 0.80 0.925 0.355

AIS admission B ( x8 )  β8 = 0.301 0.88 0.346 0.401

*p < 0.05.

https://doi.org/10.7554/eLife.68015
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(Table 1). Moreover, a logistic regression predicting AIS grade improvement by NLI categorization 
indicated that non- cervical patients were significantly less likely to recover ( β  = –0.93, p = 0.041). 
While these results suggest that a quadratic aMAP is important for predicting AIS grade recovery in 
cervical patients, the lack of significant results in the non- cervical patients must be interpreted with 
caution due to the reduced number of cases, the heterogeneous distribution, and the low number of 
improvers in the group.

Finally, we sought to determine whether the probability of recovery associated to MAP could be 
influenced by the time the patient is in the hospital. For that, we break down the potential causal 
pathway between MAP dysregulation, AIS improvement, and days from surgery to discharge. We 
first fitted a logistic regression model with AIS improvement as response and days to discharge as the 
only predictor. This resulted in a non- significant p- value of p = 0.32, suggesting that days to discharge 
does not associate with probability of improvement. Second, we fitted a linear model with days to 
discharge as a response and quadratic aMAP (both linear and quadratic terms) as predictors. This 
resulted as a significant coefficient of the quadratic term (p = 0.047), although the model was not 
significant (p = 0.13 for the F statistic) and the adjusted R2 was small (0.0217). We also investigated 
whether days to discharge interacts with MAP and quadratic MAP to predict AIS improvement, with 
no significant results on the interaction (interaction days to discharge with aMAP: linear term p = 0.61; 
quadratic term p = 0.91). These suggest that these two factors do not moderate each other. Finally, 
eliminating days to discharge from the full covariate model predicting AIS improvement does not have 
a major effect on the model fit. A likelihood ratio test between both models shows a non- significant 
change in variance explained (p = 0.729) with a deviance difference of ~0.1 %. All together indicates 
that the non- linear relationship between aMAP and AIS improvement is independent of the days from 
surgery to discharge.

Intra-operative MAP range from 76-[104-117] mmHg predicts recovery
Since aMAP can obscure episodes of high deviation from average (Hawryluk et al., 2015) and has a 
non- linear relationship with recovery, we hypothesized that there might be a range of intra- operative 

Table 9. Evaluation of logistic regression in non- cervical cohort only (Wald test) and leave- one- out 
cross- validation (LOOCV).

Model:  l = β0 + β11x1 + β12x2
1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7 + β8x8 + β9x9 , where  x1 :  

average MAP;  x2  : average HR;  x3 :  length of surgery (min);  x4 :  days to AIS discharge (days);  x5 :  age; 
 x6 :  AIS admission D (‘yes’,’no’);  x7 :  AIS admission C (‘yes’,’no’);  x8 :  AIS admission B (‘yes’,’no’);  x9 :  AIS 
admission A (‘yes’,’no’); (AIS admission E was set as the reference level for AIS admission variable and is 
part of the intercept) (final n = 93)

LOOCV: average observed accuracy = 0.688; average kappa statistic = 0.362

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = –1.883 352.4 –0.005 0.996

Average MAP ( x1 )  β11 = –0.206 4.713 –0.044 0.965

Average MAP ( x
2
1 )  β12 = –8.064 7.643 –1.055 0.291

Average HR ( x2 )  β2 = –0.0002 0.0649 0.004 0.997

Length of surgery ( x3 )  β3 = 0.0018 0.0054 0.336 0.737

Days to AIS discharge 
( x4 )  β4 = 0.076 0.0613 1.240 0.215

Age ( x5 )  β5 = –0.0047 0.051 –0.921 0.357

AIS admission D ( x6 )  β6 = 1.727 3.524 0.005 0.996

AIS admission C ( x7 )  β7 = 3.557 5.782 0.005 0.996

AIS admission B ( x8 )  β8 = 1.738 3.524 0.005 0.995

AIS admission A ( x9 )  β9 = 1.686 3.524 0.005 0.996

https://doi.org/10.7554/eLife.68015
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MAP that better predicts AIS grade improvers. To test this hypothesis, we analyzed the amount of 
time MAP was out of a specific range (Figure 4). Since our modeling suggested both a symmetric 
and asymmetric range, we performed two different analyses. First, starting at a MAP of 90 mmHg, we 
implemented an algorithm to iteratively expand the MAP range symmetrically 1 mmHg higher and 
lower and calculate the time MAP was outside the range (Figure 4a). Exploratory analysis of the simi-
larity network indicated a high association between the time out of a MAP range of 73–107 mmHg with 
the topological distribution of patients (Figure 4b and Figure 4—figure supplement 1). To validate 
this range and the associated lower and upper MAP thresholds, we used a logistic model with LASSO 
regularization with the predictors being the time outside of each MAP range as in Figure 4b. This 
allowed us to systematically reduce the number of relevant predictors until only one remained (non- 
zero coefficient). Interestingly, the logistic LASSO regression with LOOCV revealed that a MAP range 
from 76 to 104 mmHg was optimal in our dataset since it produced the most reproducible predic-
tion of recovery (average LOOCV prediction accuracy of 61.16 %; Figure 4c and Figure 2—figure 

Figure 4. Range of mean arterial pressure (MAP). To find the optimal MAP range, a moving MAP range was computed and the time of MAP outside 
range calculated (a and d, example of the same patient for symmetric and asymmetric map range, respectively). Calculating the assortativity coefficient 
(Ar) of the network for each range revealed that the distribution of patients in the network was most highly associated with the range 73–107 mmHg for 
the symmetric range (b, Figure 4—figure supplement 1), and 76–116 mmHg for the asymmetric range study of upper limit threshold (e, Figure 4—
figure supplement 1). A logistic LASSO (least absolute shrinkage and selection operator) regression (Figure 4—figure supplement 2a, Figure 4—
figure supplement 3) was used as a confirmatory analysis and to obtain the MAP range that most highly predicts AIS grade recovery. For the symmetric 
range, the time of MAP outside the 76–104 mmHg (c, Table 10) was found to be the ‘last- standing’ predictor during LASSO regularization (Figure 4—
figure supplement 2a), suggesting that greater duration outside this range is associated with lower probability of neurological recovery. In the case of 
the asymmetric range (Figure 4—figure supplement 3), the last non- zero coefficient was for the range 76–117 mmHg (f, Table 11).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Exploratory network analysis of mean arterial pressure (MAP) out of range.

Figure supplement 2. Logistic least absolute shrinkage and selection operator (LASSO) regression with leave- one- out cross- validation (LOOCV) of 
symmetric range.

Figure supplement 3. Logistic least absolute shrinkage and selection operator (LASSO) regression with leave- one- out cross- validation (LOOCV) of 
asymmetric range.

https://doi.org/10.7554/eLife.68015
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supplement 2, Table 9). Next, we studied the possibility of an asymmetric range by fixing the lower 
limit to 76 mmHg and increasing the upper limit by 1 mmHg at the time (Figure 4d). The associa-
tion of the patient distribution in the network plateau at a range of 76–116 mmHg (Figure 4e and 
Figure  4—figure supplement 1) and the logistic LASSO found the range 76–117  mmHg be the 
most predictive of recovery (average cross- validation prediction accuracy of 57.28 %; Figure 4f and 
Figure  4—figure supplement 2a, Table  10). While both the exploratory analysis and the logistic 
LASSO produced similar ranges, the later analysis is performed through statistical modeling rather 
than descriptive associations, and therefore we further discuss the results of the LASSO.

Altogether, the findings indicate that the time of MAP outside a measurable normotensive range 
during surgery is associated with lower odds of recovering at least one AIS grade. Our analysis 
suggests the optimal range for recovery is between 76–104 and 76–117 mmHg. Notice that while 
range 76–104  mmHg has higher predictive utility than 76–117  mmHg (mean LOOCV accuracy of 
61.16 % vs. 57.28%), the difference in variance of the probability of AIS improvement explained by 
these two predictors is minimal (<4% difference in RV). Therefore, from a modeling perspective, we 
broadly conclude that the upper limit of the MAP range is probably anywhere between 104 and 
117 mmHg.

Building a predictive model of outcome
Finally, we wanted to study the prediction utility of a model including the analyzed features together 
with other patient characteristics. We focused on three classification tasks: a model predicting AIS 
improvement of at least one grade at discharge, a model predicting AIS A at discharge, and a model 
predicting AIS D at discharge. We chose to predict AIS A and D instead of a multiclass prediction of 
the AIS at discharge in concordance to our previous studies (Kyritsis et al., 2021) and because of 
the low representation of other grades in our dataset (Table 1). For each of the three classification 
tasks, we performed an exhaustive search of all possible additive models with at least one of the 
predictors of interest: quadratic aMAP, aHR, length of surgery, days from surgery to discharge, age, 
AIS grade at admission, dichotomized NLI (cervical, non- cervical), time of MAP out of range 76–104, 
and time of MAP out of range 76–117. We selected the parsimonious model as the model that mini-
mized the small- sample corrected AIC (Table 12). Next, for the selected best model for each task, we 

Table 10. Least absolute shrinkage and selection operator (LASSO) solution and logistic regression 
of most predictive symmetric range with leave- one- out cross- validation (LOOCV).

Model:  l = β0 + β1x1 , where  x1 :  time of MAP outside range 76–104 mmHg (n = 103 patients)

LOOCV: average observed accuracy = 0.61; average kappa statistic = 0.158

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = 0.368 0.333 1.103 0.269

Time MAP out 76–104 
( x1 )  β1 = –0.006 0.0026 –2.566 0.0103*

*p < 0.05.

Table 11. Least absolute shrinkage and selection operator (LASSO) solution and logistic regression 
of most predictive asymmetric range with leave- one- out cross- validation (LOOCV).

Model:  l = β0 + β1x1 , where  x1 :  time of MAP outside range 76–117 mmHg (n = 103 patients)

LOOCV: average observed accuracy = 0.5728; average kappa statistic = 0.102

Predictor Coef. estimate (logit) Std. error z- Value p- Value

Intercept  β0 = 0.2881 0.287 1.002 0.316

Time MAP out 76–117 
( x1 )  β1 = –0.00788 0.0027 –2.828 0.00468**

**p < 0.01.

https://doi.org/10.7554/eLife.68015
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performed LOOCV performance evaluation and prediction threshold calibration balancing prediction 
sensitivity and specificity (Figure 5). The model predicting AIS improvement had a cross- validated 
AUC of 0.74, the model predicting AIS A at discharge had a cross- validated AUC of 0.88, and the 
model predicting AIS D at discharge had a cross- validation AUC of 0.84. Other metrics of classification 
performance can be seen in Table 12. Both the parsimonious model predicting AIS improvement and 
the one predicting AIS A at discharge included quadratic aMAP as an important predictor. The model 
predicting AIS A also included the time of MAP out of range 76–117 mmHg. The model predicting 
AIS D did not include any of the MAP associated terms, suggesting that patients discharged with AIS 
D can be predicted without considering their MAP during OR. In fact, training the same model but 
with the inclusion of the quadratic aMAP term resulted in slightly worse prediction performance (AUC 
0.84 vs. 0.83). Training the models predicting AIS improvement and AIS A at discharge but without a 

Table 12. Best prediction models of outcome.

Model predicting AIS improvement:

 l = β0 + β11x1 + β12x2
1 + β2x2 + β3x3 + β4x4 + β5x5  

Model predicting AIS A:

 l = β0 + β11x1 + β12x2
1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β7x7  

Model predicting AIS D:
 l = β0 + β2x2 + β3x3 + β4x4 + β5x5 + β8x8 + β9x9  
where  x1 :  average MAP;  x2  : AIS admission A (‘yes’, ‘no’);  x3  : AIS admission B (‘yes’, ‘no’);  x4  : AIS 
admission C (‘yes’, ‘no’);  x5  : AIS admission D (‘yes’, ‘no’);  x6  : NLI non- cervical;  x7  : Time MAP out 76–117; 
 x8  : Length of surgery;  x9  : Age; (AIS admission E and NLI cervical were set as the reference levels for the 
corresponding variable and are part of the intercept). All metrics are on LOOCV prediction (n = 93)

  

  Model AIS improv. Model AIS A Model AIS D

Predictor Coef. estimate (logit) Coef. estimate (logit) Coef. estimate (logit)

Intercept  β0 = –16.24  β0 = 20.466  β0 = 1.558

Average MAP ( x1 )  β11 = 7.374  β11 = 27.031

Average MAP (Cohn et al., 
2010) ( x1 )  β12 = –8.215  β12 = –17.138

AIS admission A ( x2 )  β2 = 15.54  β2 = –22.814  β2 = 2.324

AIS admission B ( x3 )  β3 = 16.1818  β3 = –20.38  β3 = 0.41

AIS admission C ( x4 )  β4 = 16.752  β4 = –19.01  β4 = –2.591

AIS admission D ( x5 )  β5 = 14.828  β5 = 0.217  β5 = –2.624

NLI non- Cervical ( x6 )  β6 = –1.228

Time MAP out 76–117 ( x7 )  β7 = 0.017

Length of Surgery ( x8 )  β8 = –0.0044

Age ( x9 )  β9 = 0.03

Model performance metric Metric value Metric value Metric value

Accuracy (95% CI) 0.73 (0.629, 0.818) 0.82 (0.735, 0.898) 0.806 (0.71, 0.881)

AUC 0.743 0.88 0.87

Kappa 0.45 0.629 0.573

Sensitivity 0.71 0.812 0.793

Specificity 0.74 0.836 0.812

Positive predicted value 0.658 0.72 0.657

Negative predicted value 0.788 0.89 0.896

https://doi.org/10.7554/eLife.68015
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MAP component (quadratic MAP term or time of MAP out of range) reduced the model performance 
considerably (AUC, AIS improvement: 0.74 vs. 0.52; AIS A discharge: 0.88 vs. 0.78).

Altogether, this suggests that models can be built for predicting AIS improvement or AIS A at 
discharge and that such the model performance critically depends on MAP during OR. Conversely, we 
did not find evidence that predicting AIS D at hospital discharge is dependent on intra- operative MAP.

Discussion
Acute hypotension is common in patients with SCI due to neurogenic shock (Lehmann et al., 1987; 
Krassioukov et al., 2007) and autonomic dysregulation (Lehmann et al., 1987), probably contrib-
uting to post- traumatic spinal ischemia (Streijger et al., 2018; Hall and Wolf, 1987), which is known 

Figure 5. Leave- one- out cross- validation (LOOCV) performance of prediction models. We built three prediction models, one to predict American Spinal 
Injury Association (ASIA) Impairment Scale (AIS) improvement of at least one grade at discharge (AIS impro., a), one to predict AIS A at discharge (A 
at disch., b) and one to predict AIS D at discharge (D at disch., c). The sensitivity and specificity for each model was computed out of the prediction 
probability of LOOCV, where each leave- one- out patient is predicted with the model that was trained without that patient. For each model, the 
classification threshold was set at the probability that balances sensitivity and specificity (dashed red line). The receiving operation curve (ROC) and area 
under the curve (AUC) for the three models are presented in d.

https://doi.org/10.7554/eLife.68015
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to cause impaired neurological recovery in animal models (Fehlings et al., 1989). Level 4 evidence 
from a small single- center case series study in the 1990s suggested that MAP augmentation to 
85–90 mmHg during the first 5–7 days after injury was linked to neurological recovery in acute SCI 
(Levi et al., 1993; Vale et al., 1997). These results are the basis of clinical guidelines for avoidance of 
hypotension in acute SCI management (Aarabi et al., 2013). However, while numerous clinical studies 
support MAP augmentation, the arbitrary, recommended MAP goal has been controversial (Cohn 
et al., 2010; Hawryluk et al., 2015; Saadeh et al., 2017). Recent analysis of high- frequency ICU 
monitoring data (Hawryluk et al., 2015) and systematic meta- analysis of post- surgery management 
(Saadeh et al., 2017) suggest that the MAP threshold to avoid is actually lower (~75 mmHg) than the 
current recommendation of 85 mmHg, and that MAP management might be effective at shorter dura-
tion (< 5 days post- injury) than the 7 - day goal (Saadeh et al., 2017). The present study represents 
a multicenter, data- driven, and cross- validated re- evaluation in a different setting (during surgery as 
compared with prior ICU studies).

Our analysis support that there must be a MAP range during surgery at which neurological recovery 
is maximized, providing further evidence that MAP management for maintaining normotension might 
be more beneficial for patient outcome than MAP augmentation for hypotension avoidance alone 
(Ehsanian, 2020; Nielson et al., 2015). The low boundary of 76 mmHg found in our ultra- early anal-
ysis further supports previous suggestions for lowering the intervention threshold (Cohn et al., 2010; 
Hawryluk et  al., 2015; Saadeh et  al., 2017). On the other side, we find an upper boundary to 
MAP management between 104 and 117  mmHg, above which the probability of improvement is 
reduced. Thus, the proposal for MAP augmentation with vasopressors to increase spinal cord perfu-
sion (Saadoun and Papadopoulos, 2016) has a limit since spinal hyper- perfusion pressure can be 
detrimental (Saadoun and Papadopoulos, 2016). The physiological rational is that high blood pres-
sure induced by vasopressors can translate to increased risk of hemorrhage in the injured spinal cord, 
exacerbating tissue damage (Soubeyrand et al., 2014; Streijger et al., 2018; Guha et al., 1987). 
Moreover, the use of some vasopressors might cause more complications in patients (Inoue et al., 
2014) while also potentially contributing to intra- spinal hemorrhage. In fact, recent results in acute 
experimental SCI suggest controlling for hemodynamic dysregulation through a cardiac- focused 
treatment instead of using standard vasopressors such as norepinephrine (Williams et  al., 2020). 
Specifically, the authors demonstrated that dobutamine can correct for hemodynamic anomalies and 
increase blood flow to the spinal cord while reducing the risk of hemorrhage compared to norepi-
nephrine. Furthermore, hypertension during surgery in rodent SCI has been associated with lower 
probability of recovery (Nielson et al., 2015), probably related to higher tissue damage. Our findings 
together with previous work (Ehsanian, 2020) also translate these animal study results to humans, 
indicating that prolonged periods of hypertension early after injury can be a predictor of poor neuro-
logical recovery in patients with SCI.

An important finding of our study is the indication that level of injury and injury severity modify 
the association of MAP with neurological recovery. We observed that normotensive MAP during 
surgery predicts AIS improvement in patients with cervical SCI but not in patients with lower injuries 
(thoracic, lumbar, and sacral). While the heterogeneity of our population and low sample size for 
patients with non- cervical SCI sets limitations on interpreting the results, our finding raises a relevant 
question regarding precision management of patients with SCI. Patients with cervical SCI present 
more frequently with hemodynamic and cardiac abnormalities than patients with thoracolumbar SCI, 
increasing the need for treatment (Lehmann et al., 1987). This is due to sympathetic dysregulation in 
upper cord injuries, which reduces sympathetic tone likely causing reduced heart contractility, brady-
cardia, and hypotension (Lehmann et al., 1987; Myers et al., 2007; Teasell et al., 2000). This is partic-
ularly true for individuals with severe cervical injury (Lehmann et al., 1987). In that context, our results 
may indicate that those patients with cervical SCI that are more difficult to maintain within a normo-
tensive MAP are probably less likely to improve in neurological function. Alternatively, it could also 
be the case that more aggressive MAP management treatment is performed in these patients during 
their course in the hospital, which could increase the chances of aggravating secondary cord injury. 
Hemodynamic instability early after injury could serve as a prognostic physiology- based biomarker in 
a subset of the population, providing a potential tool for precision medicine in SCI. Hence, we have 
established basic prediction models around non- linear features of MAP that could serve as a bench-
mark for future machine learning development.

https://doi.org/10.7554/eLife.68015
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Another relevant contribution of this work is the analytical workflow. First, we demonstrate that 
topology- based analytics can undercover associations for hypothesis generation during exploratory 
analysis in a cross- species validation. Our group has previously used a similar workflow in data from 
animal models (Nielson et  al., 2015) suggesting that hypertension is a predictor of neurological 
recovery and providing rational for the present study. Hence, our work constitutes a successful story of 
translating machine intelligence analytical tools from animals to humans. Second, we provide further 
illustration that patient similarity networks are useful and interpretable representations of multidi-
mensional datasets that capture associations during exploratory analysis that can then be validated 
by network- independent confirmatory analysis. Third, we successfully combine Isomap, a non- linear 
dimensionality reduction method, with topology- based metrics to evaluate embedding solutions. 
Fourth, our method for finding the MAP range could be expanded and deployed in other settings. 
Lastly, our workflow captures representations of multidimensional time- series of different lengths into 
a network that is actionable.

Limitations of this study include the retrospective nature of the analysis, the relatively small sample 
size (although large for SCI), and the use of an estimated ordinal scale (AIS grade) as an indicator 
of neurological recovery. An important consideration is the difficulty of determining AIS grade early 
after injury. Moreover, other factors not considered in this analysis such as MAP levels before or after 
surgery or the use of vasopressors might influence the results. Future research with more granular data 
should address these and other important questions.
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