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Abstract Although studies of Saccharomyces cerevisiae have provided many insights into muta-
genesis and DNA repair, most of this work has focused on a few laboratory strains. Much less is 
known about the phenotypic effects of natural variation within S. cerevisiae’s DNA repair pathways. 
Here, we use natural polymorphisms to detect historical mutation spectrum differences among 
several wild and domesticated S. cerevisiae strains. To determine whether these differences are 
likely caused by genetic mutation rate modifiers, we use a modified fluctuation assay with a CAN1 
reporter to measure de novo mutation rates and spectra in 16 of the analyzed strains. We measure 
a 10- fold range of mutation rates and identify two strains with distinctive mutation spectra. These 
strains, known as AEQ and AAR, come from the panel’s ‘Mosaic beer’ clade and share an enrichment 
for C > A mutations that is also observed in rare variation segregating throughout the genomes 
of several Mosaic beer and Mixed origin strains. Both AEQ and AAR are haploid derivatives of 
the diploid natural isolate CBS 1782, whose rare polymorphisms are enriched for C > A as well, 
suggesting that the underlying mutator allele is likely active in nature. We use a plasmid comple-
mentation test to show that AAR and AEQ share a mutator allele in the DNA repair gene OGG1, 
which excises 8- oxoguanine lesions that can cause C > A mutations if left unrepaired.

Introduction
Mutations are a double- edged sword. At the molecular level, they usually arise as a spontaneous conse-
quence of DNA replication errors or damage and are the ultimate cause of genetic diseases (Iossifov 
et al., 2014; Sebat et al., 2007; Antonarakis and Beckmann, 2006; Crow, 1997; Nei, 1983). All 
organisms have evolved complex mechanisms for keeping mutation rates low and safeguarding their 
genetic information as it is passed from generation to generation (Beckman and Loeb, 1993; Eisen 
and Hanawalt, 1999); in multicellular organisms, these mechanisms also safeguard somatic tissues 
from mutations that can cause cancer and age- related decline (Alexandrov et al., 2013; Loeb, 2016; 
Risques and Kennedy, 2018). A low mutation rate is essential for long- term population survival, and 
the larger and more complex a genome is, the lower the mutation rate must be to prevent deleterious 
mutations from arising faster than natural selection can eliminate them (Eigen, 1971; Drake, 1991; 
Sung et al., 2012a; Acosta et al., 2015). Over long time scales, however, mutations also serve as the 
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raw material for evolution. Although beneficial mutations are rare occurrences, they are essential for 
the acquisition of novel phenotypes and adaptations (Gompel et al., 2005; McGregor et al., 2007).

A large body of theory has been written to describe how natural selection might act on the 
mutation rate to balance these beneficial and deleterious effects (Sturtevant, 1937; Kimura, 1967; 
Leigh,, 1970; Johnson, 1999; André and Godelle, 2006; Sung et al., 2012a). One prediction is 
that organisms living in more changeable environments might evolve higher mutation rates than 
organisms living in more stable environments, assuming that the environment determines whether a 
higher rate of beneficial mutations is likely to counterbalance a higher rate of deleterious mutations. 
This prediction has been borne out in laboratory evolution experiments, where mutator phenotypes 
sometimes emerge in populations that are forced to tolerate challenging conditions (Good et al., 
2017; Tenaillon et al., 2016; Couce et al., 2017) and mutator strains are often observed to take 
over chemostat populations by producing beneficial mutations at a higher rate than competing non- 
mutator strains (Chao and Cox, 1983). Many mutator phenotypes in E. coli have been linked to 
defects in DNA repair enzymes (Horst et al., 1999). Mutator phenotypes also commonly occur in 
cancer (Loeb, 2001; Prindle et al., 2010), likely either because of relaxed selection against cellular 
dysfunction or because it is beneficial for cancer cells to adapt rapidly to their aggressive growth 
niche. However, it is less clear how much mutation rate variation exists within and between natural 
populations, and if such variation exists, whether it is maintained by natural selection. The drift 
barrier hypothesis predicts that mutator alleles will usually be deleterious because they produce 
more damaging mutations than beneficial ones, but that mutator alleles with relatively small effects 
may persist in populations because they are not deleterious enough to be efficiently eliminated 
(Lynch et al., 2016).

Although next- generation sequencing has rapidly increased our ability to measure the genetic 
variation that currently exists within populations, the extent of mutation rate variation is still more 
difficult and expensive to measure. One of the original methods for measuring mutation rates is the 
Luria- Delbrück fluctuation assay (Lang and Murray, 2008; Gou et al., 2019; Luria and Delbrück, 
1943), in which a population of microorganisms is allowed to grow clonally for a controlled length of 
time, then challenged with a form of artificial selection that kills most cells except for those that have 
happened to acquire specific resistance mutations. The mutation rate can then be calculated from the 
number of colonies that manage to grow after this artificial selection is imposed.

Although fluctuation assays are an elegant and efficient way for measuring the mutation rates of 
specific reporter genes, the results are potentially sensitive to the reporter gene being used and where 
it is located within the genome (Lang and Murray, 2008; Lang and Murray, 2011); in addition, they 
are not applicable to multicellular organisms. These drawbacks have motivated the development of 
newer methods that take advantage of high- throughput sequencing, such as mutation accumulation 
(MA) assays in which a laboratory population is serially bottlenecked for many generations, eliminating 
most effects of natural selection and allowing mutations to be directly counted by sequencing at the 
end of the experiment. MA studies have been used to estimate mutation rates in a wide variety of 
organisms (Lynch et al., 2008; Sharp et al., 2018; Zhu et al., 2014; Farlow et al., 2015; Wang et al., 
2019; Keightley et  al., 2009), including a recent study of nine heterozygous S. cerevisiae strains 
(Dutta et al., 2021). However, higher throughput MA experiments require DNA repair genes to be 
knocked out to induce higher mutation rates that can be accurately measured with fewer generations 
of labor- intensive propagation, as in Liu and Zhang, 2021.

An alternative source of information about mutational processes in strains with low mutation rates 
is genetic variation among related individuals who share common ancestors. Polymorphic sites are 
easier and cheaper to discover than new mutations, because they are present at a higher density 
within the genome and often shared among several individuals. Mining polymorphisms for informa-
tion about mutation rates can be difficult since their abundance is affected by genetic drift and natural 
selection (Scally and Durbin, 2012; Ségurel et al., 2014; Zhu et al., 2017), but despite these limita-
tions, they have provided surprisingly strong evidence for the existence of historical changes to the 
mutation spectrum, meaning the tendency of mutations to occur most often in certain nucleotide 
contexts (Hwang and Green, 2004). In humans, for example, Europeans and South Asians have a 
significantly higher proportion of TCC> TTC mutations than other human groups (Harris, 2015; Harris 
and Pritchard, 2017), a pattern that is difficult to explain without a recent population- specific increase 
in the rate of this type of mutation. This pattern might have been caused by either a genetic mutator 
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or an environmental mutagen, but is not explicable by the action of selection or drift or any other 
process that simply modulates the retention or loss of genetic variation.

Polymorphism data has revealed that each human population and great ape species appears to 
have a distinctive triplet mutation spectrum, which implies that genetic and/or environmental muta-
tors likely emerge relatively often and act within localized populations to increase mutation rates in 
specific sequence contexts (Harris and Pritchard, 2017; Goldberg and Harris, 2021). However, iden-
tifying these hypothetical mutators is a challenging proposition, not least because some population- 
specific signatures such as the human TCC> TTC enrichment appear to be relics of mutators that are 
no longer active. A recent study of de novo mutations in diverse human families found some evidence 
of mutation rate variation between human populations (Kessler et al., 2020), but argued that most 
of this variation was driven by the environment rather than genetics. Given that humans from different 
populations tend to be born and raised in different environments, it is extremely challenging to deter-
mine the degree to which genetics and/or the environment are responsible for variation of the rates 
and spectrum of de novo mutations accumulating within human populations today.

More is known about the genetic architecture of mutagenesis in model organisms, including the 
single- celled organism Saccharomyces cerevisiae, where it is tractable to disentangle genetic mutator 
effects from environmental ones by accumulating mutations on different genetic backgrounds in 
controlled laboratory environments (Serero et al., 2014; Lang et al., 2013; Stirling et al., 2014; 
Huang et  al., 2003; Herr et  al., 2011). Many S. cerevisiae mutator alleles have been discovered 
using genetic screens, which involve creating libraries of artificial mutants in the lab and determining 
which ones have high mutation rates (Stirling et al., 2014). Mutation rates can be elevated by up 
to a thousand- fold in lines where DNA proofreading and repair capabilities are artificially knocked 
out (Herr et al., 2011; Serero et al., 2014; Lang et al., 2013), and quantitative trait loci with more 
modest effects have been found to underlie a five- fold range of mutation rate variation among a 
few natural S. cerevisiae strains (Gou et al., 2019). A more complex mutator phenotype has been 
observed as a result of epistasis between two incompatible alleles found as natural variation in the 
mismatch repair genes MLH1 and PMS1, although the natural isolates in which these alleles are found 
appear to have acquired compensatory variants that suppress this mutator phenotype (Bui et  al., 
2017; Argueso et al., 2003; Raghavan et al., 2018; Heck et al., 2006). An extreme case of long- term 
maintenance of a hypermutation lineage comes from phylogenetic analysis of bipolar budding yeasts 
Hanseniaspora which shows large amounts of gene loss, accelerated evolutionary rates and altered 
mutation spectra (Steenwyk et al., 2019).

Mild environmental stressors, such as high salt, ethanol, and heat, can also alter the mutation rate 
of S. cerevisiae (Liu and Zhang, 2019; Voordeckers et  al., 2020) as well as Arabidopsis thaliana 
(Jiang et al., 2014; Belfield et al., 2021). The same environmental perturbations can cause detect-
able changes to both species’ mutation spectra. The mutation spectrum has also been observed to 
depend on whether S. cerevisiae is replicating in a haploid or diploid state (Sharp et al., 2018). In 
addition, environmental mutagens, more complex ploidy, and genetic mutation rate modifiers could 
all conceivably affect the mutation spectrum of natural variation as it accumulates. However, no study 
to our knowledge has looked at whether any mutational signatures measured in the laboratory are 
capable of explaining natural mutation spectrum variation observed in polymorphism data from a 
model species.

Recently, comprehensive sampling efforts have produced a collection of 1011 natural isolates of 
S. cerevisiae (Peter et  al., 2018). This is a uniquely powerful system containing abundant natural 
variation that accumulated within diverse environments during the recent and ancient evolution of S. 
cerevisiae, and the panel is also amenable for experimental accumulation of mutations over laboratory 
growth. Many genetic polymorphisms differentiate these strains, and these are relics of mutations 
that accumulated over many generations on divergent genetic backgrounds adapted to diverse envi-
ronmental conditions, ranging from forests to beverage fermentation pipelines. Both environmental 
mutagens and genetic mutators may have created differences among the mutation spectra of these 
1011 strains, but only genetically determined mutation spectrum differences should have the poten-
tial to be reproduced in the spectra of mutations accumulated in a controlled lab environment.

We hypothesized that yeast strains with outlying spectra of natural polymorphisms are more likely 
to have distinct de novo mutation spectra than strains whose polymorphisms have indistinguishable 
mutation spectra. The same hypothesis underlies previous inferences of de novo mutation spectrum 
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variation from polymorphism data (Harris, 2015; Harris and Pritchard, 2017; Dumont, 2019; Gold-
berg and Harris, 2021), and rare mutations found in mouse colonies (Dumont, 2019), but this hypoth-
esis has been difficult to test in vertebrate species. To enable such direct testing in S. cerevisiae, we 
describe a new Luria- Delbrück- based assay that efficiently measures the spectra of de novo mutations 
in haploid strains using pooled amplicon sequencing. We then use this assay to identify strains with 
reproducibly measurable mutator phenotypes that explain the spectrum biases of these strains’ poly-
morphisms. Some proportion of natural mutation spectrum variation might not be reproducible in the 
lab if it is driven by environmental mutagens, bioinformatic artifacts, or extinct genetic mutators, but 
our assay has the potential to identify which gradients of mutation spectrum variance are driven by 
extant genotypic differences.

Results
The mutation spectrum of natural variation in S. cerevisiae
To measure the mutation spectrum of genetic variation present in the 1011 S. cerevisiae natural isolates 
(Peter et al., 2018), we polarized single nucleotide polymorphisms using the outgroup S. paradoxus 
(Yue et al., 2017), then classified them into two transition types and four transversion types based 
on their ancestral and derived alleles. Closely related strains were excluded to avoid overrepresenta-
tion of certain groups (Materials and methods). We calculated the proportion of each mutation type 
among the derived alleles present in each individual strain, utilizing all derived variants present below 
50 % frequency (a total of 1,213,508 SNPs). In order to minimize bias from ancestral allele misidenti-
fication, we excluded strains with extensive, pre- documented introgression from S. paradoxus (Peter 

A all natural variants rare natural variantsB

Figure 1. Mutation spectra of natural isolates of S. Cerevisiae. Principal component analysis of segregating mutation spectrum variation from a subset 
of the 1011 yeast strains. (A). Mutation spectrum PCA of all natural variants under 50 % derived allele frequency. Each strain’s mutation spectrum 
histogram is projected as a single point, colored to indicate its population of origin (Peter et al., 2018). The inset summarizes the loadings of the first 
and second principal component vectors. (B). Mutation spectrum PCA of rare variants (derived allele count 2–4). Singleton variants are excluded to 
minimize the impact of sequencing error. Strains appearing more than 1.8 standard deviations from the origin along both PC1 and PC2 are labeled with 
their strain names.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Mutation spectrum PCA after subsampling to avoid overlap between lineages.

Figure supplement 2. PCA of synonymous variant mutation spectra.

Figure supplement 3. Mutation PCA using all variants stratified by triplet context.

Figure supplement 4. PCA of singleton mutation spectra.

Figure supplement 5. Mutation spectrum comparison of natural variants versus de novo mutations from a previous mutation accumulation (MA) study.
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et al., 2018). A final set of 729,357 SNPs with ancestral alleles that passed the derived allele frequency 
filter were used for the following analysis (a subset of the 838,568 SNPs with callable ancestral alleles). 
Principal component analysis (PCA) on these individual mutation spectra reveals that strains from 
the same population tend to have more similar mutation spectra than more distantly related strains 
(Figure 1A, Supplementary file 1A). Some of this structure disappears when SNPs are subsampled 
to eliminate double- counting of variants that are shared among multiple strains (Figure 1—figure 
supplement 1), but several clades appear as consistent outliers in both analyses, including the African 
beer and European wine strains. The compact architecture of the yeast genome makes it infeasible 
to exclude coding regions and conserved regions, but we obtain similar PC structures when we use 
only synonymous protein- coding variants and when we use all polymorphisms passing quality filters 
(Figure 1—figure supplement 2).

Figure 1A shows that the Taiwanese and African beer populations are outliers along PC1. As seen 
from the principal component loadings, these two groups mainly differ from the rest in the relative 
proportions of the two transition types (A > G and C > T): Taiwanese strains are enriched for C > T 
mutations, whereas African beer strains are enriched for A > G mutations. In contrast, PC2 separates 
the majority of other populations, such as human- associated strains isolated from wine, dairy, and 
bioethanol production, along a gradient of varying transition/transversion ratio.

Although strains from the same population tend to cluster together, this trend is less pronounced 
in the 1,011 S. cerevisiae genomes than in previously reported mutation spectrum PCAs of humans, 
great apes, and mice (Harris and Pritchard, 2017; Dumont, 2019; Goldberg and Harris, 2021). 
That being said, one methodological difference from these previous studies is that we only partition 
the yeast mutation spectra into six basic types (A > C, A > G, etc.) rather than the 96 trinucleotide- 
based types used in analyses of vertebrate mutation spectra, a concession to the small size of the 
yeast genome. We found that the trinucleotide mutation spectra of yeast exhibit similar PCA structure 
(Figure 1—figure supplement 3), but that the sparsity of yeast triplet spectra appears to limit their 
utility.

Figure 1B shows a PCA of rare variant mutation spectra from the same collection of strains used 
in 1 A. We define rare variants as those with derived allele counts of 2, 3, and 4 (423,312 SNPs out of 
729,357 fall within this allele count range) and exclude singletons to minimize the impact of sequencing 
error. These spectra are noisier than the spectra computed from variants up to 50 % frequency, but 
are potentially more likely to reflect recently active mutational processes. While rare variant spectra 
exhibit less clustering by population than those in Figure 1A, a subset of strains from several groups 
appear as outliers. For example, a few Mixed origin and Mosaic beer strains are outliers along a C > 
A mutation gradient, and African beer and French dairy strains separate out along an A > G mutation 
gradient. For completeness, we also examined mutation spectra of singleton variants alone (Materials 
and methods), which are the youngest mutations among polymorphisms (Figure 1—figure supple-
ment 4). It resembles the PCA of non- singleton rare variants, except that C > A mutation variation 
explains a larger fraction of variation and becomes the PC1 axis.

Several previous studies have found a puzzling discrepancy between the spectra of de novo muta-
tions and polymorphisms in S. cerevisiae: polymorphisms have a transition- to- transversion (ts/tv) ratio 
around 3:1, compared to only 1:1 for de novo mutations (Agier and Fischer, 2012; Zhu et al., 2017). 
Our analysis of the 1011 strain collection replicates this finding (Figure 1—figure supplement 5). We 
also replicate the prior finding that singletons and higher frequency variants have nearly identical ts/
tv ratios, but that singletons inferred to be young based on their presence on long shared haplotypes 
have a lower ts/tv ratio somewhat closer to that of new mutations (Figure 1—figure supplement 
5). We note that a discrepancy between de novo and segregating mutation spectra has also been 
observed in A. thaliana, though in the opposite direction, as A. thaliana de novo mutations are surpris-
ingly enriched for C > T transitions (Weng et al., 2019).

A scalable experimental pipeline for measuring de novo mutation rates 
and spectra
In order to test whether any of the mutation spectrum differences evident from natural variation 
in different S. cerevisiae strains are driven by extant genetic mechanisms that increase the rates of 
specific mutation types, we set out to measure several strains’ de novo mutation spectra and rates 
experimentally. To this end, we developed an experimental pipeline using the reporter gene CAN1. 

https://doi.org/10.7554/eLife.68285
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Traditional reporter gene fluctuation assays only estimate the overall rate of mutations, but we intro-
duced an extra step that utilizes Illumina sequencing of pooled amplicons derived from CAN1 mutants 
to estimate each strain’s mutation spectrum as well.

The gene CAN1 encodes a transport protein that imports arginine and arginine analogs into yeast 
cells from the surrounding growth media. This means that strains with a functional CAN1 transporter 
are sensitive to poisoning by the arginine analog canavanine, while a single loss- of- function mutation 
can render such cells able to survive on canavanine media (Whelan et al., 1979). Poisoning a culture 
with canavanine is thus a very efficient method to select for cells with point mutations in CAN1. A 
limitation of this method is that it only works on genomes that contain exactly one functional copy of 
CAN1, since canavanine resistance is recessive. This means that it cannot be used to measure muta-
tion rates in diploid or polyploid strains directly, which unfortunately include the Taiwanese strains and 
African beer strains that are PCA outliers in Figure 1A. However, 133 of the 1011 strains are haploid, 
leaving many strains of interest that are amenable to the assay, including several outliers in the rare 
variant PCA (Figure 1B).

A schematic overview of our experimental setup is shown in Figure 2. First, we estimated muta-
tion rates using established fluctuation assay methodology (Lang and Murray, 2008; Gou et  al., 
2019), which involves plating multiple independent cultures from each strain being investigated. After 
plating, we picked a single colony from each plated culture and grew it to saturation in canavanine- 
containing media. We then selected mutants observed to grow in culture to similar saturation density 
and pooled them in equal proportions to give each mutant a roughly equal frequency in the pool. Indi-
vidual pools of mutants from each strain were then subjected to PCR amplification of CAN1 followed 
by Illumina sequencing. Individual mutants were called from the sequencing pools using a customized 
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Figure 2. Schematic overview of the experimental pipeline. Overview of the experimental pipeline used to estimate the mutation rate and spectrum for 
each strain using the reporter gene CAN1. First, mutation rates were estimated using fluctuation assays. Independent mutants were then pooled and 
sequenced to estimate the mutation spectrum of each strain.
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pipeline (Materials and methods). Mutations collected from different pools of the same strain were 
combined to calculate the strain’s mutation spectrum. We aimed to collect roughly 300 mutants per 
strain, enough to detect mutation spectrum differences of the magnitude estimated from polymor-
phism data in several of the 1011 genomes populations.

Pooling mutants across canavanine media cultures before sequencing allowed us to efficiently esti-
mate mutation spectra at scale, yielding measurements of many individual mutations per library prep. 
However, pooling too many mutants during this step could have the potential to compromise the 
pipeline’s accuracy by putting the frequency of each mutation too close to the expected frequency 
of Illumina sequencing errors. To test for this failure mode, we Sanger- sequenced 38 independent 
mutants generated using the lab strain LCTL1 (SEY6211- MATɑ). After pooling these 38 mutants, we 
performed two replicate library preps and Illumina- sequenced both using our standard procedure. 
Sanger sequencing identified 37 mutants with single nucleotide mutations plus one containing two 
adjacent mutations (Supplementary file 1). We expect each of these mutations, which should be 
present at a frequency of about 1/38 in the pooled culture, to be easily distinguishable from Illumina 
sequencing errors that occur at a rate of less than 1 % per base.

To identify bona fide mutations from each Illumina sequencing pool, we developed a pipeline 
designed to call mutations present at or above an expected frequency that is inversely proportional to 
the number of mutants being pooled. In order to minimize false positive mutation calls introduced by 
sequencing errors, we excluded low coverage regions located at the ends of the amplicons (Materials 
and Methods). We also identified multinucleotide mutations (MNMs) based on the co- occurrence of 
variation on the same reads (Averof et al., 2000; Schrider et al., 2011), separating these complex 
mutations from single base substitutions and small indels. When we tested this Illumina sequencing 
pipeline on the same mutant pool (~17,000 x coverage) that we had previously Sanger sequenced, 
we detected 37 of the 38 mutations identified by Sanger sequencing, missing only one mutation that 
occurred at the end of the amplicon located outside our pipeline’s callable region. A second Illumina 
sequencing replicate measured only 36 of these mutations, missing one additional true mutation. 
Neither Illumina replicate produced any false positives, verifying that the pipeline is accurate enough 
to permit pooling of up to 40 CAN1 mutants before each library prep.
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Figure 3. Haploid natural isolates exhibit a 10- fold range of mutation rate variation. Mutation rate variation measured among haploid natural isolates 
using our CAN1 reporter gene Luria- Delbrück fluctuation assays. Strains are shown ordered by their mean mutation rates. Mutation rates for each strain 
were estimated using at least two replicates, each estimate represented here by a dot. A standard boxplot spans the interquartile confidence interval of 
possible mutation rates for each strain.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Relationship between growth rate versus measured mean mutation rate.
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Mutation rate variation among haploid natural isolates
We used our pipeline to measure mutation rates and spectra in 16 haploid strains from a wide variety 
of environments (Supplementary file 1). We selected these strains such that to the extent possible, 
they include two euploid strains per clade without any copy number variation at the scale of whole 
chromosome arms. We also selected two lab strains, LCTL1 and LCTL2, to use as controls, since their 
mutation rates were previously measured: the mutation rate of LCTL1 was measured using a genome- 
wide mutation accumulation assay by Sharp et al., 2018, while the mutation rate of LCTL2 (GIL 104, 
a derivative of W303) was measured by Lang and Murray, 2008 using a CAN1 fluctuation assay. Two 
additional strains from the 1011 collection, AAA and ACS, were selected because their mutation rates 
had been previously measured in another study (Gou et al., 2019).

We observed a 10- fold range of mutation rate variation in CAN1 among the strains we surveyed: 
from 2.1⨉10–7 to 2.1⨉10–6 canavanine resistance mutations per gene per cell division (Figure 3). This 
range of variation is larger than the five- fold range of mutation rate variation found among six S. cere-
visiae strains in a recent study (Gou et al., 2019). All estimates from different replicates of the same 
strain were generally consistent with each other, though three strains (ACS, LCTR2, and AAR) showed 
close to a twofold difference between our highest and lowest mutation rate measurements. This is 
within the margin of error observed in previously published fluctuation assays performed at large scale 
(Gou et al., 2019). Among the three strains (LCTL2, AAA, and ACS) with previously published muta-
tion rate measurements, our results fall within a 1.5- fold range of those estimates, with no particular 
trend of upward or downward bias.

We noticed that AAR and AEQ, the two strains with the highest mutation rates, formed larger 
colonies during the fixed duration of the experimental growth period compared to many of the other 
strains tested. This suggests that AAR and AEQ may have high growth rates. This motivated us to test 
for correlation between the mutation rates we measured and strain- specific growth rates reported 
in the literature (Peter et al., 2018), but overall, we found no significant correlation between these 
attributes (R2 <0.001; p = 0.95) (Figure 3—figure supplement 1).

We observed that strains from the Mosaic beer, Sake, African palm wine, and Asian fermentation 
clades exhibited higher mutation rates than have been previously reported for any natural S. cere-
visiae strains. The two strains with the highest mutation rates, roughly 10- fold higher than that of 
the control strain LCTL1, were AAR and AEQ, both from the Mosaic beer clade. While this is milder 
than some mutator phenotypes that have been artificially generated in the lab, to our knowledge, 
no comparably high mutation rate has been previously reported in a natural isolate of S. cerevisiae, 
with the exception of the spore derivatives of the incompatible cMLH1- kPMS1 diploid natural isolate 
(Raghavan et al., 2018).

CAN1 sequencing reveals de novo mutation spectrum differences
We identified a total of 5571 CAN1 mutations across all strains, including 4561 point mutations, 837 
indels (Supplementary file 1), and 173 multinucleotide mutations (MNMs) (Supplementary file 1). 
Ninety  percent of the observed indels are single base- pair indels (754 out of 837), and for simplicity 
we included only single base- pair indels along with point mutations when reporting each strain’s 
mutation spectrum.

Two of the 4561 point mutations occurred at strain- specific non- reference sites. The remaining 
4559 mutations consisted of repeated observations of only 727 unique mutations at 476 posi-
tions in CAN1. Given that each mutation was observed an average of 6.2 times, our dataset likely 
contains a large fraction of the mutations that are able to knock out CAN1’s functionality. While 
23 % of the mutations are observed only once, there are several hotspots that are mutated many 
times in our dataset (Figure 4—figure supplement 1, Figure 4—figure supplement 2, Supple-
mentary file 1). For example, genomic location 32,399 on chromosome V was hit more than 100 
times across different genetic backgrounds. Eighty- five of these hits created the same G > T muta-
tion, while 19 created another G > C mutation. Across all mutations counted with multiplicity, we 
observed 2676 missense mutations, 1866 nonsense mutations and only 17 synonymous mutations. 
These synonymous mutations made up less than 0.37 % of the total point mutations observed. 
Since synonymous mutations are considered a priori unlikely to cause CAN1 to lose functionality, 
these variants are likely sequencing errors or hitchhikers that occurred in cells containing other 
inactivating mutations, or possibly rare examples of synonymous mutations disrupting translation 
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(Arthur et al., 2015) in CAN1. This low synonymous mutation rate further demonstrates the accu-
racy of our pipeline.

We were able to identify MNMs, complex mutation events that create multiple nearby substitu-
tions or indels at once (Stone et al., 2012; Harris and Nielsen, 2014; Averof et al., 2000; Schrider 
et al., 2011), by looking for the presence of multiple mutations on the same Illumina read (Materials 
and methods). We estimate that MNMs generate 3.1 % of all point mutations, similar to the 2.6 % 
previously reported in a single strain background (Lang and Murray, 2008). Most of our strains have 
similar ratios of MNMs to single base- pair mutations, but there exist a few outliers (Figure 4A). For 
example, strain AAB has disproportionately many MNMs (Figure 4A and Figure 4—figure supple-
ment 3) while AAR and AEQ have strikingly few MNMs relative to SNPs.

To our knowledge, the largest previous CAN1 fluctuation assay in S. cerevisiae observed point 
mutations at 102 distinct positions (Lang and Murray, 2008). We observed mutations at 100 of these 
sites as well as 376 additional sites not previously known to abrogate CAN1 function. Among the two 
mutations observed by Lang and Murray that are missing from our dataset, one is located near the 
end of the CAN1 amplicon in a region we exclude due to insufficient sequencing coverage in most 
strains. The other site is the location of a mutation changing the anticodon ‘CTA’ to ‘TTA’, which is 
synonymous and thus not likely to have affected CAN1 function.

One possible contributor to the observed differences in mutation rates and spectra are differences 
in target size: the number of distinct CAN1 mutations that are able to help the strain survive on canav-
anine media. However, we were able to rule this out as a significant contributor by comparing the ratio 
of observed missense to nonsense mutations among strains, which was previously used by Lang and 
Murray, 2008 to estimate mutational target size. We estimate that the mutational target size varies 
at most two- fold among strains, from 145 bp to 299 bp (Supplementary file 1). Lang and Murray, 
2008 previously estimated a target size of 163 bp, falling within our range. This range is too narrow to 
explain the 10- fold range of mutation rate variation we observe among strains, but it is large enough 
that we cannot confidently translate our CAN1- based mutation rate estimates into genome- wide esti-
mates of the mutation rate per base pair per generation.

We performed hypergeometric tests to determine whether the mutation spectra we measured 
from the two control lab strains LCTL1 and LCTL2 were distinct from those measured from haploid 
natural isolates and from the spectrum measured from the same LCTL2 strain by Lang and Murray, 
2008 (Materials and methods). We found the spectra of point mutations we measured from the lab 
strains LCTL1 and LCTL2 to be statistically indistinguishable from the spectra Lang and Murray, 2008 
obtained using Sanger sequencing of canavanine- resistant mutants (p = 0.82 for LCTL1 and p = 0.087 
for LCTL2). With indels included, our LCTL1 spectrum appears significantly different from that of Lang 
and Murray, 2008 (p = 0.0012, Bonferroni corrected p- value: 0.042), but the LCTL2 spectra remain 
indistinguishable with indels included (p = 0.0054, Bonferroni corrected p- value: 0.189).

The lab strain LCTL1 appears to have a mutation spectrum that is representative of most natural 
isolates (Figure 4C, Figure 4—figure supplement 4, Figure 4—figure supplement 5). Using Bonfer-
roni corrected p- values to determine significance, we found the strains AAA, ACS, AGM, AHH, AHC, 
AEF, ADF, ACM, AGR, AAI, and AAB to have mutation spectra that are statistically indistinguishable 
from that of LCTL1. We found that CEV and AFH are distinguished only by their high proportions of 
insertions. ADN showed significant but subtle divergence from LCTL1 in the spectrum of single nucle-
otide variants (Figure 4—figure supplement 4, Figure 4—figure supplement 5).

A natural mutator phenotype with a distinctive mutation spectrum
We identified two strains with mutation spectra that diverged strikingly from the reference LCTL1 
spectrum: AEQ (p < 1e- 4) and AAR (p < 1e- 4), the two strains that also have 10- fold higher muta-
tion rates than LCTL1. Both strains appear highly enriched for C > A mutations compared to LCTL1 
(Figure 4B). The strain AAR’s mutation rate estimates appear somewhat bimodal (Figure 3), but C > 
A mutations are consistently enriched in replicate pools with both lower and higher estimated muta-
tion rates. The main spectrum difference between the two mutation rate modes appears to be a small 
difference in the C > G mutation proportion (Figure 4—figure supplement 6).

In both AEQ and AAR, the proportion of C > A mutations was measured to be elevated nearly 
threefold above the proportion of C > A mutations in LCTL1 and similar strains (Figure 4B). Remark-
ably, this C > A enrichment appears sufficient to explain the placement of AEQ and AAR as rare 
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Figure 4. De novo mutation rates and spectra in natural isolates. (A). Single nucleotide mutation rates plotted against MNM rates across strains. These 
rates were calculated by multiplying the mean mutation rate estimated using CAN1 by the proportion of mutations in each strain measured to be either 
single- nucleotide mutations or MNMs. Here, single nucleotide mutations include both single base pair substitutions and indels. (B). Mutation spectra 
in AEQ and AAR show significant enrichment of C > A mutations compared to the control lab strain LCTL1. Only single base- pair indels were used to 
generate these counts. (C). A PCA of the same strains’ de novo mutation spectra compared to the mutation spectrum reported in Lang and Murray, 
2008.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Hotspots of CAN1 mutation across different strain backgrounds (chr V).

Figure supplement 2. Distribution of multiplicity of mutations observed at each mutated site in CAN1.

Figure supplement 3. Fraction of multinucleotide mutations (MNMs) in each strain.

Figure supplement 4. De novo mutation spectra of all strains (single base- pair substitutions and single base- pair indels).

Figure supplement 5. De novo mutation spectra of all strains (single base- pair substitutions only).

Figure supplement 6. Comparison of AAR mutation spectra from high versus low mutation rate batches.

Figure supplement 7. Comparison of mutation spectra from CAN1 reporter assays versus whole genome mutation accumulation (MA).
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variant mutation spectrum outliers that we previously saw in Figure 1B, which was computed from 
polymorphisms sampled genome- wide, not just within CAN1. Both strains have rare variant spectra 
that are displaced from the population norm along a principal component vector pointing in the direc-
tion of increased C > A enrichment. These strains’ high mutation rate, C > A- heavy de novo mutation 
spectrum, and concordant C > A- heavy rare variant spectrum all point to the conclusion that these 
Mosaic beer strains display a naturally occurring genetically encoded mutator phenotype.

To assess whether the C > A enrichment phenotype observed in AAR and AEQ is likely shared 
with any of the 1,011 strains for which we lack mutation spectrum measurements, we ranked all 1011 
strains (excluding close relatives) according to the C > A enrichment of their rare variants. We found 
that SACE_YAG and BRM, the two strains closest to AAR and AEQ in the global neighbor- joining 
phylogeny, clustered with AAR and AEQ in having high C > A fractions within the top 5 % in the 
dataset. The rest of the top- ranking 5 % of the strains exhibit some phylogenetic clustering, but no 
others fall within the Mosaic beer clade (Figure 5A). Instead, they are somewhat dispersed across 
two large, diverse clades known as ‘Mosaic region 3’ and the ‘Mixed origin’ clade. We also used 
a bootstrapping method to find strains with enriched C > A fractions, using an empirical p- value 
threshold of 0.05. Many of the same strains are outliers in both tests, including the four Mosaic beer 
strains (Figure 5—figure supplement 1). The phylogenetic clustering of C > A rare variant enrichment 
suggests that multiple clades may be genetically predisposed toward accumulating relatively higher 
rates of this mutation type.

Focusing on the small clade containing AAR, AEQ, BRM, and SACE_YAG with all members showing 
C > A enrichment (Figure 5B), we found that all but BRM are haploid derivatives of the diploid Saccha-
romyces cerevisiae var diastaticus strain CBS 1782, which was isolated in 1952 from super- attenuated 
beer (Andrews and Gilliland, 1952). AEQ and AAR differ at roughly 14,000 variant sites (the median 
pairwise genetic distance in the 1011 strains is 64,000) and SACE_YAG differs from AEQ and AAR at 
about 11,000 sites each. These differences among haploid derivatives reflect the high level of hetero-
zygosity in the parental diploid strain. The fourth strain with an elevated C > A mutation fraction, BRM, 
is derived from an independent source: it was isolated in 1988 from a cassava flour factory in Brazil 
(Laluce et al., 1988). Despite its distinct origin, BRM differs at only 14,000–17,000 sites from each of 
the aforementioned three strains.

In AAR, AEQ, BRM, and SACE_YAG, rarer variants are notably C > A- enriched, but higher frequency 
variants exhibit weaker C > A enrichment that declines with increasing allele frequency such that vari-
ants of allele count greater than eight have C > A fractions more typical of other strains. We verified 
that the same pattern holds for variants present in the whole genome of the ancestral diploid isolate 
CBS 1782, which we sequenced after obtaining a sample from the NCYC database (see Materials and 
Methods). This suggests that AAR and AEQ indeed inherited their mutator phenotype from their wild 
ancestors and that this phenotype is at least partially penetrant in the diploid state. In contrast, the 
four closest outgroups to AAR, AEQ, BRM, and SACE_YAG in the 1011 yeast genomes phylogeny 
exhibit a consistently lower C > A fraction that does not vary with allele frequency (Figure 5B and 
Figure 5—figure supplement 2). The concordant enrichment of C > A mutations in rare polymor-
phisms and de novo mutations from the same strains suggests that this C > A enrichment is geneti-
cally determined and is not specific to the CAN1 locus but has affected the entire genome during the 
recent history of this clade.

A scan for candidate mutator alleles
To explore genetic variation that could underlie the C > A enrichment phenotype observed in AEQ 
and AAR, we scanned for nonsense and missense mutations in a list of 158 candidate genes known 
to play roles in DNA replication and repair, including genes that were previously identified to harbor 
mutator alleles through genetic screens (Supplementary file 1; Boiteux and Jinks- Robertson, 2013; 
Stirling et al., 2014). No candidate premature stop codons were found to be both present in AAR and 
AEQ and rare (MAF <0.05) in the 1011 yeast genomes overall. However, we identified 40 sites with at 
least one rare non- synonymous allele (MAF <0.05) shared by AEQ and AAR and absent from the other 
haploid strains that we experimentally found to have normal mutation spectra (Supplementary file 1).

One of these missense variants was observed within OGG1, a glycosylase involved in the oxidative 
stress response that excises the guanine lesion 8- oxo- G. ogg1 null mutants are known to have high C 
> A mutation rates (Shockley et al., 2013) and mutation rates that are 10- fold elevated above normal 
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(Ni et al., 1999). The OGG1 missense variant present in AAR and AEQ is homozygous in the parental 
diploid CBS 1782; the same variant is also shared by two other Mosaic beer strains, AQH and AAQ, 
which are not enriched for C > A rare variants. A close examination of rare variant mutation spectra 
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Figure 5. Enrichment of C > A mutations in rare natural variants. (A) Phylogeny of the 1011 collection with strains in the top 5 % of C > A fraction shown 
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Enrichment of C > A in rare polymorphisms in the 1,011 collection (measured using empirical bootstrapping).

Figure supplement 2. Enrichment of C > A mutations in rare natural variants from Mosaic beer strains that are closely related to AEQ and AAR from the 
1,011 collection.

Figure supplement 3. Mutation spectra of rare natural polymorphisms in AQH stratified by minor allele count.
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revealed that AQH may have a C > A enrichment phenotype that is masked by a high rate of C > T 
mutations (Figure 5—figure supplement 3), but no evidence of C > A enrichment was found in AAQ.

Experimental evidence that OGG1AEQ/AAR is a mutator allele
We sought to experimentally test whether the OGG1 allele present in AEQ and AAR, hereafter called 
OGG1AEQ/AAR, contributes to the AEQ/AAR mutator phenotype. We accomplished this by expressing 
the OGG1AEQ/AAR allele in a lab strain with its endogenous ogg1 allele deleted. If OGG1AEQ/AAR contrib-
utes to the mutator phenotype of AEQ and AAR, then this gene variant should be less effective at 
rescuing the ogg1 deletion phenotype than the wild- type OGG1 allele.

To test this hypothesis, we constructed two CEN plasmids. One plasmid was constructed to 
express OGG1AEQ/AAR; the other was constructed to express OGG1wt, with the same sequence as the 
OGG1 allele present in the S288C reference. Through Sanger sequencing, we found that OGG1AEQ/

AAR in fact contains two single nucleotide differences from the reference sequence (Figure 6A). One 
of these variants (an A > G substitution) lies 156 bp upstream of OGG1, presumably in the gene’s 
promoter region, which we previously missed when examining the coding sequence. The other variant 
is a nonsynonymous change from C to T at position 800, which changes alanine to leucine. While 
the nonsynonymous mutation in OGG1 is present in only seven strains from the Mosaic beer clade 
(including AEA which is a close relative of BRM) from the 1011 collection, the promoter mutation is 
present in 57 strains. Since the promoter mutation is more widespread and not linked to the nonsyn-
onymous mutation, we hypothesize that it is less likely to cause the mutator phenotype. To avoid 
truncating any important regulatory sequences, we used PCR to amplify two fragments with different 
lengths of flanking sequence from each endogenous OGG1 locus: one shorter fragment called OGG1- 
A, (1.7 kb) and one longer fragment called OGG1- B (2.2 kb), creating a total of four plasmids. We then 
used these OGG1 plasmids, as well as an empty plasmid, to transform haploid S. cerevisiae with an 
ogg1 deletion derived from the heterozygous diploid deletion collection (SGA) (Boone, 2007).

We used fluctuation assays to estimate the mutation rates of ogg1 deletion strains complemented 
with these different OGG1 plasmids. We found that the mutation rate of the ogg1 null yeast with an 
empty control plasmid was elevated fourfold compared to the mutation rate of the strain transformed 
with OGG1wt. This difference is smaller than the 10- fold mutation rate difference previously measured 
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Figure 6. Mutation rates of an ogg1 deletion strain complemented by OGG1AEQ/AAR versus OGG1wt. (A) Locations of the genetic variants differentiating 
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between an ogg1 null mutant and a strain with an intact endogenous OGG1 allele (Ni et al., 1999), 
possibly reflecting a difference in the efficiency of endogenous OGG1 expression versus expression of 
the same allele from a plasmid. We found that the strain transformed with OGG1AEQ/AAR had a 2.4- fold 
higher mutation rate than the strain transformed with OGG1wt, suggesting that the AEQ/AAR allele is 
less effective at complementing the DNA repair deficiency of the ogg1 deletion strain. This supports 
our hypothesis that the OGG1AEQ/AAR allele is at least in part responsible for the high mutation rate of 
the AEQ and AAR strains. We measured similar mutation rates in strains transformed by the shorter 
and longer PCR fragments containing each OGG1 allele, suggesting that the additional regulatory 
DNA present in the longer sequence did not substantially impact OGG1 expression.

Discussion
In this study, we compare the mutation spectra of natural variants and de novo mutations within 
diverse strains of S. cerevisiae. We find both population genetic and experimental evidence pointing 
to a recent increase in the rate of C > A mutations within one clade as a result of a naturally occurring 
genetically encoded mutator phenotype.

Our highly accurate pipeline uses a classical fluctuation assay to quantify de novo mutation rate in 
the reporter gene CAN1, then utilizes sequencing of pooled mutants to measure mutation spectra. 
Sanger validations confirmed that this approach has an undetectably low false positive rate and a very 
low false negative rate. The reliability of our pipeline is further supported by concordance between 
our mutation spectrum measurements and previous measurements made from the same lab strains 
(Lang and Murray, 2008). Using this method, we identified two extreme mutation spectrum outliers—
the Mosaic beer strains AEQ and AAR—as well as several strains with more subtle mutation spectrum 
phenotypes that are good candidates for future investigation.

Although the mutation spectrum variation from natural polymorphisms we report here is remi-
niscent of observed mutation spectrum variation among humans, great apes, and laboratory mouse 
strains, we note that S. cerevisiae mutation spectra separate less by population compared to verte-
brate mutation spectra. While it is possible to infer a human genome’s continental group of origin 
using its mutation spectrum alone, the same is not generally true in S. cerevisiae. Several factors, 
which are not mutually exclusive, might underlie this difference. One is the presence of complex 
population structure and pervasive gene flow between S. cerevisiae clades (Schacherer et al., 2009; 
Peter et al., 2018; Liti et al., 2009). Another factor is the small size of the S. cerevisiae genome; each 
strain has two orders of magnitude fewer derived alleles than most vertebrate genomes have. This 
limits our ability to detect how flanking base pairs affect the mutation rate of each site in the genome 
and constrains us to study a lower dimensional mutation spectrum than the context- dependent ones 
studied in species with larger genomes.

While gene flow and genome size might be responsible for the relatively modest magnitude of 
mutation spectrum divergence between most strains of S. cerevisiae, it is also possible that DNA repli-
cation and repair are intrinsically more uniform in S. cerevisiae than in vertebrates, perhaps because of 
the greater efficiency of selection against weakly deleterious mutator alleles in a unicellular organism 
that exists at large effective population sizes and often reproduces asexually. Asexual reproduction 
should theoretically increase the efficiency of selection against mutator alleles because deleterious 
variants created by the mutator cannot recombine onto other genetic backgrounds; on the other 
hand, it can also limit the efficiency of selection against individual deleterious mutations by perma-
nently tethering them to particular genetic backgrounds. Further measurements of mutation spec-
trum variation within other species will be needed to determine whether the stability observed here 
is indeed characteristic of unicellular eukaryotes. If mutation spectra tend to be stable within species 
that have low mutation rates and strong selection against mutation rate modifiers, we might expect to 
see even less mutation spectrum variation among populations of ciliates like Paramecium and Tetra-
hymena, whose mutation rates are substantially lower than that of S. cerevisiae (Sung et al., 2012b).

Many questions about mutation spectrum variation within S. cerevisiae and other species remain 
unresolved and present important avenues for future work. For example, it is unclear whether rare 
polymorphisms in the Mixed origin and Mosaic region three clades are enriched for C > A mutations 
due to the same genetic mechanisms active in AEQ and AAR. Other genes might underlie the muta-
tion spectrum differences observed among other strains, though our analyses suggest that some 
mutation spectrum gradients that dominate the common variation PCA are unlikely to be explained 
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by extant mutators. One such gradient is the A > G enrichment in the African beer yeast clade, which 
is less pronounced in our rare variant PCA (Figure 1B) compared to our PCA extracted from variation 
of all frequencies (Figure 1A). This is somewhat reminiscent of the frequency distribution of the TCC> 
TTC mutation ‘pulse’ that distinguishes Europeans and South Asians from other human populations, 
and may suggest that the African beer A > G enrichment was caused by an extinct mutator allele or a 
mutagen found in a past environment.

Natural selection might contribute to the mutation spectrum variation within S. cerevisiae if certain 
mutation types are more often beneficial than others and if such asymmetries vary between popula-
tions. One example of how natural selection can affect mutation spectrum variation is that transitions 
are more often synonymous than transversions are (Freeland and Hurst, 1998), leading to more 
frequent selection against transversions in genic regions. However, we note that most of the gradient 
structure observed in our analyses can be reproduced with synonymous mutations alone, meaning 
that selection is unlikely to explain much of the natural yeast mutation spectrum variation we observe.

The C > A mutations enriched in AEQ, AAR, and their relatives might be a signature of oxidative 
stress damage; such mutations are a known signature of failure to repair 8- oxoguanine lesions, which 
is consistent with a causal role for these strains’ missense substitution in the oxidative stress response 
gene OGG1 as verified through our OGG1 plasmid assay. A recent study knocked out OGG1 in 
human cells and found that this elevated the rate of a C > A- dominated mutational signature known 
in the Cosmic catalog as SBS18 (Zou, 2020). SBS18 was initially identified in tumors from individuals 
with pathogenic variation in Mutyh (Viel et al., 2017), a direct interacting partner of OGG1 in the 
8- oxoguanine repair pathway that has also been implicated in a C > A- dominated germline mutational 
signature in mice (Sasani et al., 2021).

Although our OGG1 plasmid assay provides compelling evidence that the 8- oxoguanine repair 
pathway plays a role in the AAR/AEQ mutator phenotype, we note that C > A mutations do not 
comprise all of the excess mutations measured in AEQ and AAR. Compared to LCTL1, the ratio of C 
> A mutations to C > T mutations is elevated roughly threefold in AEQ and AAR, which is less than 
the 10- fold overall elevation of the mutation rate in these strains. These mutation data imply that all 
mutation types have higher rates in AEQ and AAR compared to other S. cerevisiae strains, not just C > 
A. Further work will be required to verify whether the C > A enrichment and broad- spectrum mutation 
rate increase are driven by the same biochemical mechanism.

Although our estimates of de novo mutation spectra are all based on the CAN1 locus, we note 
that CAN1 mutation spectra are generally similar to the genome- wide spectra obtained from MA 
experiments (Zhu et al., 2014; Sharp et al., 2018), except that CAN1 spectra have more mutations 
at C/G base pairs and relatively fewer mutations at A/T base pairs (Figure 4—figure supplement 7). 
The 2676 and 1866 missense and nonsense mutations in our dataset contain numerous instances of 
all six mutation types that comprise our summary mutation spectrum, suggesting that CAN1 contains 
many opportunities to ascertain the full spectrum observed genomewide. We noticed that the CAN1 
spectra we measured from the LCTL2 strain showed a slightly higher proportion of C > A mutations 
than that measured from the same strain by Lang and Murray, 2008 also using a CAN1 reporter. This 
could be due to the fact that Lang et al. used ten times the concentration of canavanine that we used, 
which might mean that some mutants could have grown after plating on our canavanine media (Shor 
et al., 2013). The fact that we do not see elevated C > A mutations in LCTL1 suggests that this could 
be a LCTL2 strain- specific behavior.

In summary, the results presented in this paper provide some of the most direct evidence to date 
that eukaryotic mutation spectra are variable within species (Harris, 2015; Harris and Pritchard, 
2017; Dumont, 2019; Goldberg and Harris, 2021). It has been proposed that the best explanation 
for such mutation spectrum heterogeneity is the frequent emergence of nearly neutral mutator alleles 
that turn over rapidly as a consequence of weak purifying selection on the mutation rate. Our de 
novo mutation spectrum measurements provide experimental verification of this claim, showing that 
at least one mutational signature whose activity varies among natural yeast strains is likely caused by 
an extant mutator allele.

Although our results show that the mutation spectrum bias shared by certain Mosaic beer yeast 
is genetically encoded, it is worth noting that this C > A gradient is not the principal axis of muta-
tion spectrum variation in the 1011 yeast genomes that we computed from all variants (Figure 1A). 
It remains to be seen how many other mutator or antimutator alleles might exist within this strain 
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collection and to what extent they can explain the mutation spectrum variation observed among 
strains from different environments. A broader question still is whether the forces that created S. 
cerevisiae’s mutation spectrum variation are similar to the forces that shaped the distinctive muta-
tion spectra of different human populations and great ape species. If we can identify the genes that 
underlie natural yeast mutator phenotypes such as the one described in this study, it will likely be more 
straightforward to test these genes for mutator activity in humans and other species than to discover 
mutator alleles via any kind of agnostic genome scan.

Materials and methods
Variant filtering and mutation PCA analysis
We filtered the original variants from the 1011 S. cerevisiae collection (Peter et al., 2018) by including 
biallelic SNPs with less than 20 % missing genotypes. We restricted to regions in the genomes where 
reads can be uniquely mapped (‘ mregions_ 100_ annot_ 2011. bed’ from Jubin et  al., 2014) and 
excluded repeat- masked regions. Closely related strains (pairwise genetic distance less than 8000) 
are excluded from the 1011 dataset. Singletons were excluded when counting individual mutations 
in Figure 1 to minimize the impact of sequencing errors. Strains with extensive introgression from S. 
paradoxus (clades 2, 9, and 10 from Peter et al., 2018) were excluded in order to minimize bias from 
errors in the inference of ancestral and derived alleles. Ancestral states of mutations were inferred 
using five S. paradoxus sequences (Yue et al., 2017), aligned to the S. cerevisiae reference genome 
R64- 1- 1 using lastz v1.04.00 (Harris, 2007). Only sites that are fixed in four out of five strains were 
inferred to be the ancestral alleles, and other sites were ignored. When computing the mutation 
spectra of strains from variants for Figure 1A, each individual strain was assumed to be diploid, with 
homozygous derived alleles counted with twice the weight as heterozygous derived alleles. When 
counting rare variants, homozygous derived alleles were given the same weights as heterozygous 
derived alleles.

To further minimize confounding of the mutation spectrum by ancestral allele misidentification, only 
variants with derived allele frequency less than 0.5 were used. Variants that passed all filtering criteria 
were used to compute a normalized mutation spectrum histogram for each individual strain. When 
performing PCAs, no more than 30 strains from each population were randomly sampled to minimize 
bias from uneven sampling. The same strains were used to generate PCA plots in Figure 1—figure 
supplements 1–4 (Supplementary file 1), except that strains with fewer than eight singletons or rare 
variants were further excluded when generating Figure 1—figure supplement 4 and Figure 1B. Our 
definition of singletons varied as a function of ploidy (Figure 1—figure supplements 4–5): In haploids 
and homozygous diploids (as defined in Peter et al., 2018), a singleton will be fixed in the strain 
where it occurs (represented as homozygous), but in other types of strains, a singleton is required to 
be heterozygous. In all cases, a singleton is a variant present in only a single strain.

Fluctuation assays and sequencing
We performed fluctuation assays according to an established protocol (Lang, 2018) with the following 
modifications: 4μl of overnight inoculant was diluted in 40 ml SC- Arginine +2 % Glucose media. 50μl 
of the diluted cultures were distributed in 96- well round- bottom plates (Costar 3788) for each strain. 
Plates were sealed with Breathe- Easy sealing membrane (Sigma Z380059). SC- Arginine- Serine+ Cana-
vanine (60  mg/liter L- canavanine) Omni plates (Nunc OmniTray 242811) were used and dried for 
2–4 days in a 30℃ incubator before using. Depending on the strains, 50μl of culture were diluted 
one- to fourfold when plating on the Omni plates, either to reduce the background or to avoid growth 
of too many mutant colonies. After plating, the plates were dried and then incubated at 30℃ for 
48 hr. Independent mutants from separate cultures were inoculated into 200μl SC- Arginine- Serine 
+ 60 mg/Liter Canavanine +2 % Glucose media, and then grown to saturation over ~43 hr at 30℃ 
with shaking. Optical densities (ODs) were measured after incubation, and only mutants that reached 
similar saturation ODs were pooled (150μl each) to achieve equal proportions. Genomic DNA from 
each pool was extracted using the Hoffman Winston protocol (Hoffman and Winston, 1987). CAN1 
was then PCR amplified using published primers (Lang and Murray, 2008) with 15 cycles. Two inde-
pendent 25μl PCR reactions were then pooled and cleaned up with a Zymo Clean & Concentrator Kit 
(D4004). Sequencing libraries were prepared using the Nextera XT DNA Library Preparation Kit with 
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customized indices. Sequencing runs with 75 or 150 bp paired- end reads were performed using an 
Illumina NextSeq 550 sequencer (BioProject: PRJNA691686).

Calculation of mutation rates
The rSalvador package (Zheng, 2017) was used to estimate the number of mutation events (m) in 
each fluctuation assay using maximum likelihood under the Lea- Coulson model (Lea and Coulson, 
1949; Luria and Delbrück, 1943; Ma et al., 1992). The total number of cells (Nt) was measured by 
counting colonies seeded with dilutions of cells on YPD plates with dilutions ranging from 1:10,000 
to 1:40,000. The rate of loss- of- function mutations per CAN1 gene per cell division was estimated to 
be m/Nt.

Mutation calling
Sequencing reads were first mapped using bowtie v2.2.3 (Langmead and Salzberg, 2012) to the Scer3 
S288C reference CAN1 PCR fragment sequence using primers designed by Lang and Murray, 2008. 
Mutation coordinates were therefore called relative to the start of the CAN1 amplicon. Adapters were 
trimmed using the program trim_galore v0.6.6 (Krueger, 2021) and paired- end reads were merged 
using pear v0.9.11 (Zhang et al., 2014). The command `fastq_quality_filter -q 20 p 94` was used to 
remove low quality reads before running bowtie. A MAPQ cutoff of 40 was used for SNPs and a cutoff 
of 20 was used for indels. Pysamstats v1.1.2 (Alistair, 2021) was used to compute the frequencies 
of all possible alleles at each base pair. Sites with read depth less than 200 or with less than 40 % 
coverage of the amplicon were excluded. After the first round of mapping, sites that were fixed in 
each strain were called and compared to the SNPs in the 1011 collection to confirm strain identity. We 
then performed a second round of read mapping using the same pipeline except that each strain’s 
reads were mapped to a strain- specific CAN1 reference sequence.

For each sequencing pool, we let N be the number of mutants that were pooled prior to sequencing. 
Non- reference alleles with frequencies between 0.65 ⨉ 1 /N and 0.95 were included as evidence of 
mutations, discarding alleles below this frequency range as likely to be sequencing errors and alleles 
above this frequency range as likely to be strain- specific SNPs. Adjacent indels were merged if their 
frequencies differed by less than 10%. MNMs were identified in each pool by first flagging pairs of 
mutations occurring at similar frequencies (plus or minus 9%) within 10 bp of one another and then 
verifying the coexistence of the two mutations on at least 70 % of the paired- end reads where at least 
one of the two mutations appears. Complex MNMs containing three or more variants were identi-
fied by merging MNMs that share an SNP in common. To obtain single nucleotide mutation counts 
and indel counts, mutations that are part of MNMs were first excluded from each pool. The coordi-
nates of each mutation were converted back from CAN1- specific coordinates to genomic positions. 
Point mutations were further annotated using VEP (McLaren et al., 2016) to further categorize into 
missense, nonsense, or synonymous mutation types.

Allele frequencies were used to estimate the multiplicity of each mutant as follows: First, the mean 
and standard deviation of all mutant allele frequencies were calculated from each pool. Each allele 
frequency more than two standard deviations above the mean was then translated into a mutation 
count by dividing it by the mean allele frequency and then rounding to the nearest integer. Mutations 
with frequencies less than two standard deviations above the mean are assumed to be mutations with 
count 1.

Statistically quantifying mutation spectrum differentiation
To compare the mutation spectra between strains, mutations were first classified as one of the six 
general classes of base- substitutions (A > C, A > G, A > T, C > A, C > G, C > T) or as single base- pair 
insertions or deletions. We then compared the mutation spectra of the two control strains LCTL1 and 
LCTL2 to all other haploid isolates as well as one spectrum published by Lang and Murray, 2008 (a 
total of 35 tests) using a pairwise hypergeometric test (Adams and Skopek, 1987), a custom python 
script (Tracy et al., 2020). In the first round of this test, the paired mutation counts were arranged 
in a 2 × 8 contingency table. To test the null hypothesis that the two mutation spectra are the same, 
the hypergeometric probability of the observed table was calculated and compared to the hyper-
geometric probabilities of 10,000 random tables with the same row and column totals. The number 
of random tables with a higher hypergeometric probability than the observed provides an estimate 
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of the p- value. We used the conservative Bonferroni correction to compute the significance cutoff 
(0.05/35 = 0.001429). A second set of Bonferroni- corrected p- values was calculated after excluding 
indels to form a 2 × 6 contingency table. These p- values were used to determine how many of the 
significant mutation spectrum differences were driven by the indel category (Figure 4—figure supple-
ment 4, Figure 4—figure supplement 5).

Whole-genome sequencing and variant calling of CBS 1782
A sample of CBS 1782 was obtained from the National Collection of Yeast Cultures (NCYC 361) 
January of 2021. Genomic library was prepared from the Illumina Nextera DNA Flex Library Prep kit 
(Illumina 20018704). Sequencing runs with 150 bp paired- end reads were performed using an Illumina 
NextSeq 550 sequencer to roughly 250  x coverage. Sequencing reads were mapped using BWA 
mem v 0.7.17 (Li and Durbin, 2009). Only reads that are uniquely mapped with MQ >20 were used. 
GATK4 HaplotypeCaller was used for variant calling (Poplin, 2018). Variant sites (±2 bp) that overlap 
with deletion were filtered out. The variants for CBS 1782 were then merged with the raw vcf file for 
the 1011 collection excluding closely- related strains, and underwent the same filtering as for the PCA 
analysis.

Constructing OGG1 plasmids
Haploid yeast with both ogg1 and leu2 deleted was generated from spores dissected from the hetero-
zygous diploid strain #20,510 of the SGA collection (Boone, 2007). CEN plasmids were generated 
using pRS415 with LEU2 as the selection marker (Chee and Haase, 2012). OGG1- A and OGG1- B were 
amplified by PCR from strain AAR for OGG1AEQ/AAR or from LCTL1 for OGG1wt. Primers for OGG1- A:  
CGATAGTTTGGCGTGCGATA, CGCCTTGGTGACCGTTTT. Primers for OGG1- B:  GGTTCTTCCCAAT-
CATCCGA, AGGGCTTATTGACGACGACA. pRS415 were linearized by HindIII and BamHI, followed by 
Gibson assembly with the OGG1 alleles.

Acknowledgements
We dedicate this paper to the memory of Dr. Alan J Herr, a sorely missed colleague, mentor, friend 
and inspiring role model. We thank all members of the Harris and Dunham labs for helpful comments 
and discussions. We thank Nathaniel Sharp and Greg Lang for sharing strains. We also thank Joseph 
Schacherer for sharing the 1,011 strain collection with the Dunham lab. PJ was supported by a 
Burroughs Wellcome Fund Career Award at the Scientific Interface awarded to KH. KH acknowl-
edges additional support from a Searle Scholarship, a Sloan Research Fellowship, a Pew Biomed-
ical Scholarship, and National Institute of General Medical Sciences Grant 1R35GM133428- 01. AJH 
was supported by the National Institute for General Medical Sciences (NIH/NIGMS R01GM118854). 
ARO was supported by the National Human Genome Research Institute of the NIH under award T32 
HG00035. The research of MJD was supported by NIH/NIGMS award P41 GM103533 and a Faculty 
Scholar grant from the Howard Hughes Medical Institute. The content is solely the responsibility of 
the authors and does not necessarily represent the official views of the Burroughs Wellcome Fund, 
the Kinship Foundation, the Sloan Foundation, the Pew Charitable Trust, HHMI, the NIH, or NIGMS.

Additional information

Funding

Funder Grant reference number Author

National Institute of 
General Medical Sciences

1R35GM133428-01 Kelley Harris

National Institute of 
General Medical Sciences

P41GM103533 Maitreya J Dunham

National Institute of 
General Medical Sciences

R01GM118854 Alan J Herr

https://doi.org/10.7554/eLife.68285


 Research article      Evolutionary Biology | Genetics and Genomics

Jiang et al. eLife 2021;10:e68285. DOI: https:// doi. org/ 10. 7554/ eLife. 68285  19 of 24

Funder Grant reference number Author

Burroughs Wellcome Fund Career Award at the 
Scientific Interface

Kelley Harris

Kinship Foundation Searle Scholarship Kelley Harris

Pew Charitable Trusts Pew Scholarship Kelley Harris

Alfred P. Sloan Foundation Sloan Fellowship Kelley Harris

National Human Genome 
Research Institute

T32HG00035 Anja R Ollodart

Howard Hughes Medical 
Institute

Faculty Scholar Award Maitreya J Dunham

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Pengyao Jiang, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, 
Project administration, Software, Visualization, Writing – original draft, Writing – review and editing; 
Anja R Ollodart, Methodology, Validation; Vidha Sudhesh, Investigation; Alan J Herr, Methodology, 
Resources, Supervision, Writing – review and editing; Maitreya J Dunham, Conceptualization, Funding 
acquisition, Methodology, Resources, Supervision, Writing – review and editing; Kelley Harris, Concep-
tualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Soft-
ware, Visualization, Writing – original draft, Writing – review and editing

Author ORCIDs
Alan J Herr    http:// orcid. org/ 0000- 0002- 9498- 0972
Maitreya J Dunham    http:// orcid. org/ 0000- 0001- 9944- 2666
Kelley Harris    http:// orcid. org/ 0000- 0003- 0302- 2523

Decision letter and Author response
Decision letter https:// doi. org/ 10. 7554/ eLife. 68285. sa1
Author response https:// doi. org/ 10. 7554/ eLife. 68285. sa2

Additional files
Supplementary files
•  Transparent reporting form 

•  Supplementary file 1. List of strains from the 1011 Genomes used for the mutation spectrum PCA.

Data availability
Sequencing data have been uploaded to the SRA and approved (Accession numbers PRJNA691686).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Jiang P, Ollodart A, 
Sudhesh V, Herr A, 
Dunham M, Harris K

2021 A modified fluctuation 
assay reveals a natural 
mutator phenotype 
that drives mutation 
spectrum variation within 
Saccharomyces cerevisiae

http://www. ncbi. nlm. 
nih. gov/ bioproject/? 
term= PRJNA691686

NCBI BioProject, 
PRJNA691686

https://doi.org/10.7554/eLife.68285
http://orcid.org/0000-0002-9498-0972
http://orcid.org/0000-0001-9944-2666
http://orcid.org/0000-0003-0302-2523
https://doi.org/10.7554/eLife.68285.sa1
https://doi.org/10.7554/eLife.68285.sa2
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA691686
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA691686
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA691686


 Research article      Evolutionary Biology | Genetics and Genomics

Jiang et al. eLife 2021;10:e68285. DOI: https:// doi. org/ 10. 7554/ eLife. 68285  20 of 24

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Peter J, De Chiara M, 
Friedrich A, Yue JX, 
Pflieger D, Bergstrom 
A, Sigwalt A, Barre 
B, Freeloads K, 
Llored A, Cruaud C, 
Labadie K, Aury JM, 
Istace B, Lebrigand 
K, Babry P, Engelen 
S, Lemainque A, 
Wincker P, Liti G, 
Schacherer J

2018 Genome evolution across 
1,011 Saccharomyces 
cerevisiae isolates

http:// 1002genomes. 
u- strasbg. fr/ files/

Yeast Genomes Website, 
1002

References
Acosta S, Carela M, Garcia- Gonzalez A, Gines M, Vicens L, Cruet R, Massey SE. 2015. DNA Repair Is Associated 

with Information Content in Bacteria, Archaea, and DNA Viruses. The Journal of Heredity 106: 644–659. DOI: 
https:// doi. org/ 10. 1093/ jhered/ esv055, PMID: 26320243

Adams WT, Skopek TR. 1987. Statistical Test for the Comparison of Samples from Mutational Spectra. Journal of 
Molecular Biology 194: 391–396. DOI: https:// doi. org/ 10. 1016/ 0022- 2836( 87) 90669- 3, PMID: 3305960

Agier N, Fischer G. 2012. The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular 
Biology and Evolution 29: 905–913. DOI: https:// doi. org/ 10. 1093/ molbev/ msr280, PMID: 22114361

Alexandrov LB, Nik- Zainal S, Wedge DC, Campbell PJ, Stratton MR. 2013. Deciphering Signatures of Mutational 
Processes Operative in Human Cancer. Cell Reports 3: 246–259. DOI: https:// doi. org/ 10. 1016/ j. celrep. 2012. 12. 
008, PMID: 23318258

Alistair M. 2021. Pysamstats. 1.1.2. Github. https:// github. com/ alimanfoo/ pysamstats
André J- B, Godelle B. 2006. The Evolution of Mutation Rate in Finite Asexual Populations. Genetics 172: 

611–626. DOI: https:// doi. org/ 10. 1534/ genetics. 105. 046680, PMID: 16157667
Andrews BJ, Gilliland RB. 1952. Super- attenuation of beer: a study of three organisms capable of causing 

abnormal attenuations. Journal of the Institute of Brewing. Institute of Brewing 58: 189–196. DOI: https:// doi. 
org/ 10. 1002/ j. 2050- 0416. 1952. tb02675.x

Antonarakis SE, Beckmann JS. 2006. Mendelian Disorders Deserve More Attention. Nature Reviews. Genetics 7: 
277–282. DOI: https:// doi. org/ 10. 1038/ nrg1826, PMID: 16534515

Argueso JL, Kijas AW, Sarin S, Heck J, Waase M, Alani E. 2003. Systematic Mutagenesis of the Saccharomyces 
cerevisiae MLH1 Gene Reveals Distinct Roles for Mlh1p in Meiotic Crossing over and in Vegetative and Meiotic 
Mismatch Repair. Molecular and Cellular Biology 23: 873–886. DOI: https:// doi. org/ 10. 1128/ MCB. 23. 3. 873- 
886. 2003, PMID: 12529393

Arthur L, Pavlovic- Djuranovic S, Smith- Koutmou K, Green R, Szczesny P, Djuranovic S. 2015. Translational control 
by lysine- encoding a- rich sequences. Science Advances 1: e1500154. DOI: https:// doi. org/ 10. 1126/ sciadv. 
1500154, PMID: 26322332

Averof M, Rokas A, Wolfe KH, Sharp PM. 2000. Evidence for a High Frequency of Simultaneous Double- 
Nucleotide Substitutions. Science 287: 1283–1286. DOI: https:// doi. org/ 10. 1126/ science. 287. 5456. 1283, 
PMID: 10678838

Beckman RA, Loeb LA. 1993. Multi- Stage Proofreading in DNA Replication. Quarterly Reviews of Biophysics 26: 
225–331. DOI: https:// doi. org/ 10. 1017/ s0033583500002869, PMID: 8022969

Belfield EJ, Brown C, Ding ZJ, Chapman L, Luo M, Hinde E. 2021. Thermal Stress Accelerates Arabidopsis 
thaliana Mutation Rate. Genome Research 31: 40–50. DOI: https:// doi. org/ 10. 1101/ gr. 259853. 119, PMID: 
33334733

Boiteux S, Jinks- Robertson S. 2013. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces 
cerevisiae. Genetics 193: 1025–1064. DOI: https:// doi. org/ 10. 1534/ genetics. 112. 145219, PMID: 23547164

Boone C. 2007. 16 high- throughput strain construction and systematic synthetic lethal screening in 
Saccharomyces cerevisiae. Methods in Microbiology 36: 369–707. DOI: https:// doi. org/ 10. 1016/ S0580- 9517( 
06) 36016-3

Bui DT, Friedrich A, Al- Sweel N, Liti G, Schacherer J, Aquadro CF, Alani E. 2017. Mismatch Repair 
Incompatibilities in Diverse Yeast Populations. Genetics 205: 1459–1471. DOI: https:// doi. org/ 10. 1534/ 
genetics. 116. 199513, PMID: 28193730

Chao L, Cox EC. 1983. Competition between High and Low Mutating Strains of Escherichia coli. Evolution; 
International Journal of Organic Evolution 37: 125–134. DOI: https:// doi. org/ 10. 1111/ j. 1558- 5646. 1983. 
tb05521. x, PMID: 28568016

Chee MK, Haase SB. 2012. New and redesigned PRS plasmid shuttle vectors for genetic manipulation of 
Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics 2: 515–526. DOI: https:// doi. org/ 10. 1534/ g3. 111. 
001917, PMID: 22670222

https://doi.org/10.7554/eLife.68285
http://1002genomes.u-strasbg.fr/files/
http://1002genomes.u-strasbg.fr/files/
https://doi.org/10.1093/jhered/esv055
http://www.ncbi.nlm.nih.gov/pubmed/26320243
https://doi.org/10.1016/0022-2836(87)90669-3
http://www.ncbi.nlm.nih.gov/pubmed/3305960
https://doi.org/10.1093/molbev/msr280
http://www.ncbi.nlm.nih.gov/pubmed/22114361
https://doi.org/10.1016/j.celrep.2012.12.008
https://doi.org/10.1016/j.celrep.2012.12.008
http://www.ncbi.nlm.nih.gov/pubmed/23318258
https://github.com/alimanfoo/pysamstats
https://doi.org/10.1534/genetics.105.046680
http://www.ncbi.nlm.nih.gov/pubmed/16157667
https://doi.org/10.1002/j.2050-0416.1952.tb02675.x
https://doi.org/10.1002/j.2050-0416.1952.tb02675.x
https://doi.org/10.1038/nrg1826
http://www.ncbi.nlm.nih.gov/pubmed/16534515
https://doi.org/10.1128/MCB.23.3.873-886.2003
https://doi.org/10.1128/MCB.23.3.873-886.2003
http://www.ncbi.nlm.nih.gov/pubmed/12529393
https://doi.org/10.1126/sciadv.1500154
https://doi.org/10.1126/sciadv.1500154
http://www.ncbi.nlm.nih.gov/pubmed/26322332
https://doi.org/10.1126/science.287.5456.1283
http://www.ncbi.nlm.nih.gov/pubmed/10678838
https://doi.org/10.1017/s0033583500002869
http://www.ncbi.nlm.nih.gov/pubmed/8022969
https://doi.org/10.1101/gr.259853.119
http://www.ncbi.nlm.nih.gov/pubmed/33334733
https://doi.org/10.1534/genetics.112.145219
http://www.ncbi.nlm.nih.gov/pubmed/23547164
https://doi.org/10.1016/S0580-9517(06)36016-3
https://doi.org/10.1016/S0580-9517(06)36016-3
https://doi.org/10.1534/genetics.116.199513
https://doi.org/10.1534/genetics.116.199513
http://www.ncbi.nlm.nih.gov/pubmed/28193730
https://doi.org/10.1111/j.1558-5646.1983.tb05521.x
https://doi.org/10.1111/j.1558-5646.1983.tb05521.x
http://www.ncbi.nlm.nih.gov/pubmed/28568016
https://doi.org/10.1534/g3.111.001917
https://doi.org/10.1534/g3.111.001917
http://www.ncbi.nlm.nih.gov/pubmed/22670222


 Research article      Evolutionary Biology | Genetics and Genomics

Jiang et al. eLife 2021;10:e68285. DOI: https:// doi. org/ 10. 7554/ eLife. 68285  21 of 24

Couce A, Caudwell LV, Feinauer C, Hindré T, Feugeas JP, Weigt M, Lenski RE, Schneider D, Tenaillon O. 2017. 
Mutator genomes decay, despite sustained fitness gains, in a long- term experiment with bacteria. PNAS 114: 
E9026–E9035. DOI: https:// doi. org/ 10. 1073/ pnas. 1705887114, PMID: 29073099

Crow JF. 1997. The High Spontaneous Mutation Rate: Is It a Health Risk. PNAS 94: 8380–8386. DOI: https:// doi. 
org/ 10. 1073/ pnas. 94. 16. 8380, PMID: 9237985

Drake JW. 1991. A Constant Rate of Spontaneous Mutation in DNA- Based Microbes. PNAS 88: 7160–7164. 
DOI: https:// doi. org/ 10. 1073/ pnas. 88. 16. 7160, PMID: 1831267

Dumont BL. 2019. Significant Strain Variation in the Mutation Spectra of Inbred Laboratory Mice. Molecular 
Biology and Evolution 36: 865–874. DOI: https:// doi. org/ 10. 1093/ molbev/ msz026, PMID: 30753674

Dutta A, Dutreux F, Schacherer J. 2021. Loss of heterozygosity results in rapid but variable genome 
homogenization across yeast genetic backgrounds. eLife 10: e70339. DOI: https:// doi. org/ 10. 7554/ eLife. 
70339, PMID: 34159898

Eigen M. 1971. Selforganization of Matter and the Evolution of Biological Macromolecules. Die 
Naturwissenschaften 58: 465–523. DOI: https:// doi. org/ 10. 1007/ BF00623322, PMID: 4942363

Eisen JA, Hanawalt PC. 1999. A Phylogenomic Study of DNA Repair Genes, Proteins, and Processes. Mutation 
Research 435: 171–213. DOI: https:// doi. org/ 10. 1016/ s0921- 8777( 99) 00050- 6, PMID: 10606811

Farlow A, Long H, Arnoux S, Sung W, Doak TG, Nordborg M, Lynch M. 2015. The Spontaneous Mutation Rate in 
the Fission Yeast Schizosaccharomyces pombe. Genetics 201: 737–744. DOI: https:// doi. org/ 10. 1534/ genetics. 
115. 177329, PMID: 26265703

Freeland SJ, Hurst LD. 1998. The Genetic Code Is One in a Million. Journal of Molecular Evolution 47: 238–248. 
DOI: https:// doi. org/ 10. 1007/ pl00006381, PMID: 9732450

Goldberg ME, Harris K. 2021. Mutational signatures of replication timing and epigenetic modification persist 
through the global divergence of mutation spectra across the great ape phylogeny. Genome Biology and 
Evolution 10: evab104. DOI: https:// doi. org/ 10. 1093/ gbe/ evab104

Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB. 2005. Chance caught on the wing: cis- 
regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433: 481–487. DOI: https:// doi. 
org/ 10. 1038/ nature03235, PMID: 15690032

Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. 2017. The Dynamics of Molecular Evolution over 
60,000 Generations. Nature 551: 45–50. DOI: https:// doi. org/ 10. 1038/ nature24287, PMID: 29045390

Gou L, Bloom JS, Kruglyak L. 2019. The Genetic Basis of Mutation Rate Variation in Yeast. Genetics 211: 
731–740. DOI: https:// doi. org/ 10. 1534/ genetics. 118. 301609, PMID: 30504363

Harris RS. 2007. Improved Pairwise Alignment of Genomic DNA. Pennsylvania State University.
Harris K, Nielsen R. 2014. Error- Prone Polymerase Activity Causes Multinucleotide Mutations in Humans. 

Genome Research 24: 1445–1454. DOI: https:// doi. org/ 10. 1101/ gr. 170696. 113, PMID: 25079859
Harris K. 2015. Evidence for Recent, Population- Specific Evolution of the Human Mutation Rate. PNAS 112: 

3439–3444. DOI: https:// doi. org/ 10. 1073/ pnas. 1418652112, PMID: 25733855
Harris K, Pritchard JK. 2017. Rapid evolution of the human mutation spectrum. eLife 6: e24284. DOI: https:// doi. 

org/ 10. 7554/ eLife. 24284, PMID: 28440220
Heck JA, Argueso JL, Gemici Z, Reeves RG, Bernard A, Aquadro CF, Alani E. 2006. Negative Epistasis between 

Natural Variants of the Saccharomyces cerevisiae MLH1 and PMS1 Genes Results in a Defect in Mismatch 
Repair. PNAS 103: 3256–3261. DOI: https:// doi. org/ 10. 1073/ pnas. 0510998103, PMID: 16492773

Herr AJ, Ogawa M, Lawrence NA, Williams LN, Eggington JM, Singh M, Smith RA, Preston BD. 2011. Mutator 
suppression and escape from replication error- induced extinction in yeast. PLOS Genetics 7:e1002282. DOI: 
https:// doi. org/ 10. 1371/ journal. pgen. 1002282, PMID: 22022273

Hoffman CS, Winston F. 1987. A Ten- Minute DNA Preparation from Yeast Efficiently Releases Autonomous 
Plasmids for Transformaion of Escherichia coli. Gene 57: 267–272. DOI: https:// doi. org/ 10. 1016/ 0378- 1119( 87) 
90131- 4, PMID: 3319781

Horst JP, Wu TH, Marinus MG. 1999. Escherichia coli Mutator Genes. Trends in Microbiology 7: 29–36. DOI: 
https:// doi. org/ 10. 1016/ s0966- 842x( 98) 01424- 3, PMID: 10068995

Huang M- E, Rio A- G, Nicolas A, Kolodner RD. 2003. A Genomewide Screen in Saccharomyces cerevisiae for 
Genes That Suppress the Accumulation of Mutations. PNAS 100: 11529–11534. DOI: https:// doi. org/ 10. 1073/ 
pnas. 2035018100, PMID: 12972632

Hwang DG, Green P. 2004. Bayesian Markov Chain Monte Carlo Sequence Analysis Reveals Varying Neutral 
Substitution Patterns in Mammalian Evolution. PNAS 101: 13994. DOI: https:// doi. org/ 10. 1073/ pnas. 
0404142101, PMID: 15292512

Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA. 2014. The Contribution of de 
Novo Coding Mutations to Autism Spectrum Disorder. Nature 515: 216–221. DOI: https:// doi. org/ 10. 1038/ 
nature13908, PMID: 25363768

Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. 2014. Environmentally Responsive Genome- Wide 
Accumulation of de Novo Arabidopsis thaliana Mutations and Epimutations. Genome Research 24: 1821–1829. 
DOI: https:// doi. org/ 10. 1101/ gr. 177659. 114, PMID: 25314969

Johnson T. 1999. Beneficial Mutations, Hitchhiking and the Evolution of Mutation Rates in Sexual Populations. 
Genetics 151: 1621–1631. DOI: https:// doi. org/ 10. 1093/ genetics/ 151. 4. 1621, PMID: 10101182

Jubin C, Serero A, Loeillet S, Barillot E, Nicolas A. 2014. Sequence Profiling of the Saccharomyces cerevisiae 
Genome Permits Deconvolution of Unique and Multialigned Reads for Variant Detection. G3: Genes, 
Genomes, Genetics 4: 707–715. DOI: https:// doi. org/ 10. 1534/ g3. 113. 009464, PMID: 24558267

https://doi.org/10.7554/eLife.68285
https://doi.org/10.1073/pnas.1705887114
http://www.ncbi.nlm.nih.gov/pubmed/29073099
https://doi.org/10.1073/pnas.94.16.8380
https://doi.org/10.1073/pnas.94.16.8380
http://www.ncbi.nlm.nih.gov/pubmed/9237985
https://doi.org/10.1073/pnas.88.16.7160
http://www.ncbi.nlm.nih.gov/pubmed/1831267
https://doi.org/10.1093/molbev/msz026
http://www.ncbi.nlm.nih.gov/pubmed/30753674
https://doi.org/10.7554/eLife.70339
https://doi.org/10.7554/eLife.70339
http://www.ncbi.nlm.nih.gov/pubmed/34159898
https://doi.org/10.1007/BF00623322
http://www.ncbi.nlm.nih.gov/pubmed/4942363
https://doi.org/10.1016/s0921-8777(99)00050-6
http://www.ncbi.nlm.nih.gov/pubmed/10606811
https://doi.org/10.1534/genetics.115.177329
https://doi.org/10.1534/genetics.115.177329
http://www.ncbi.nlm.nih.gov/pubmed/26265703
https://doi.org/10.1007/pl00006381
http://www.ncbi.nlm.nih.gov/pubmed/9732450
https://doi.org/10.1093/gbe/evab104
https://doi.org/10.1038/nature03235
https://doi.org/10.1038/nature03235
http://www.ncbi.nlm.nih.gov/pubmed/15690032
https://doi.org/10.1038/nature24287
http://www.ncbi.nlm.nih.gov/pubmed/29045390
https://doi.org/10.1534/genetics.118.301609
http://www.ncbi.nlm.nih.gov/pubmed/30504363
https://doi.org/10.1101/gr.170696.113
http://www.ncbi.nlm.nih.gov/pubmed/25079859
https://doi.org/10.1073/pnas.1418652112
http://www.ncbi.nlm.nih.gov/pubmed/25733855
https://doi.org/10.7554/eLife.24284
https://doi.org/10.7554/eLife.24284
http://www.ncbi.nlm.nih.gov/pubmed/28440220
https://doi.org/10.1073/pnas.0510998103
http://www.ncbi.nlm.nih.gov/pubmed/16492773
https://doi.org/10.1371/journal.pgen.1002282
http://www.ncbi.nlm.nih.gov/pubmed/22022273
https://doi.org/10.1016/0378-1119(87)90131-4
https://doi.org/10.1016/0378-1119(87)90131-4
http://www.ncbi.nlm.nih.gov/pubmed/3319781
https://doi.org/10.1016/s0966-842x(98)01424-3
http://www.ncbi.nlm.nih.gov/pubmed/10068995
https://doi.org/10.1073/pnas.2035018100
https://doi.org/10.1073/pnas.2035018100
http://www.ncbi.nlm.nih.gov/pubmed/12972632
https://doi.org/10.1073/pnas.0404142101
https://doi.org/10.1073/pnas.0404142101
http://www.ncbi.nlm.nih.gov/pubmed/15292512
https://doi.org/10.1038/nature13908
https://doi.org/10.1038/nature13908
http://www.ncbi.nlm.nih.gov/pubmed/25363768
https://doi.org/10.1101/gr.177659.114
http://www.ncbi.nlm.nih.gov/pubmed/25314969
https://doi.org/10.1093/genetics/151.4.1621
http://www.ncbi.nlm.nih.gov/pubmed/10101182
https://doi.org/10.1534/g3.113.009464
http://www.ncbi.nlm.nih.gov/pubmed/24558267


 Research article      Evolutionary Biology | Genetics and Genomics

Jiang et al. eLife 2021;10:e68285. DOI: https:// doi. org/ 10. 7554/ eLife. 68285  22 of 24

Keightley PD, Trivedi U, Thomson M, Oliver F, Kumar S, Blaxter ML. 2009. Analysis of the Genome Sequences of 
Three Drosophila melanogaster Spontaneous Mutation Accumulation Lines. Genome Research 19: 1195–1201. 
DOI: https:// doi. org/ 10. 1101/ gr. 091231. 109, PMID: 19439516

Kessler MD, Loesch DP, Perry JA, Heard- Costa NL, Taliun D, Cade BE, Wang H. 2020. De Novo Mutations across 
1,465 Diverse Genomes Reveal Mutational Insights and Reductions in the Amish Founder Population. PNAS 
117: 2560–2569. DOI: https:// doi. org/ 10. 1073/ pnas. 1902766117, PMID: 31964835

Kimura M. 1967. On the Evolutionary Adjustment of Spontaneous Mutation Rates*. Genetics Research 9: 23–34. 
DOI: https:// doi. org/ 10. 1017/ S0016672300010284

Krueger F. 2021. TrimGalore. fc059b5. Github. https:// github. com/ FelixKrueger/ TrimGalore
Laluce C, Bertolini MC, Ernandes JR, Martini AV, Martini A. 1988. New Amylolytic Yeast Strains for Starch and 

Dextrin Fermentation. Applied and Environmental Microbiology 54: 2447–2451. DOI: https:// doi. org/ 10. 1128/ 
aem. 54. 10. 2447- 2451. 1988, PMID: 16347755

Lang G, Murray AW. 2008. Estimating the Per- Base- Pair Mutation Rate in the Yeast Saccharomyces cerevisiae. 
Genetics 178: 67–82. DOI: https:// doi. org/ 10. 1534/ genetics. 107. 071506, PMID: 18202359

Lang GI, Murray AW. 2011. Mutation rates across budding yeast chromosome vi are correlated with replication 
timing. Genome Biology and Evolution 3: 799–811. DOI: https:// doi. org/ 10. 1093/ gbe/ evr054, PMID: 21666225

Lang G, Parsons L, Gammie AE. 2013. Mutation Rates, Spectra, and Genome- Wide Distribution of Spontaneous 
Mutations in Mismatch Repair Deficient Yeast. G3: Genes, Genomes, Genetics 3: 1453–1465. DOI: https:// doi. 
org/ 10. 1534/ g3. 113. 006429, PMID: 23821616

Lang G. 2018. Measuring mutation rates using the Luria- delbrück fluctuation assay. Muzi- Falconi M, Brown G 
(Eds). Genome Instability. Springer. p. 21–31. DOI: https:// doi. org/ 10. 1007/ 978- 1- 4939- 7306- 4_3

Langmead B, Salzberg SL. 2012. Fast Gapped- Read Alignment with Bowtie 2. Nature Methods 9: 357–359. DOI: 
https:// doi. org/ 10. 1038/ nmeth. 1923, PMID: 22388286

Lea DE, Coulson CA. 1949. The Distribution of the Numbers of Mutants in Bacterial Populations. Journal of 
Genetics 49: 264–285. DOI: https:// doi. org/ 10. 1007/ BF02986080, PMID: 24536673

Leigh, EG Jr. 1970. Natural selection and mutability. The American Naturalist 104: 301–305. DOI: https:// doi. 
org/ 10. 1086/ 282663

Li H, Durbin R. 2009. Fast and Accurate Short Read Alignment with Burrows- Wheeler Transform. Bioinformatics 
25: 1754–1760. DOI: https:// doi. org/ 10. 1093/ bioinformatics/ btp324, PMID: 19451168

Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP. 2009. Population Genomics of Domestic 
and Wild Yeasts. Nature 458: 337–341. DOI: https:// doi. org/ 10. 1038/ nature07743, PMID: 19212322

Liu H, Zhang J. 2019. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. Current Biology 
29: 1584–1591. DOI: https:// doi. org/ 10. 1016/ j. cub. 2019. 03. 054, PMID: 31056389

Liu H, Zhang J. 2021. The rate and molecular spectrum of mutation are selectively maintained in yeast. Nature 
Communications 12: 4044. DOI: https:// doi. org/ 10. 1038/ s41467- 021- 24364- 6, PMID: 34193872

Loeb LA. 2001. A Mutator Phenotype in Cancer. Cancer Research 61: 3230–3239 PMID: 11309271., 
Loeb LA. 2016. Human cancers express a mutator phenotype: Hypothesis, origin, and consequences. Cancer 

Research 76: 2057–2059. DOI: https:// doi. org/ 10. 1158/ 0008- 5472. CAN- 16- 0794, PMID: 27197248
Luria SE, Delbrück M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511. 

DOI: https:// doi. org/ 10. 1093/ genetics/ 28. 6. 491, PMID: 17247100
Lynch M, Sung W, Morris K, Coffey N, Landry CR, Dopman EB, Joseph Dickinson W. 2008. A Genome- Wide View 

of the Spectrum of Spontaneous Mutations in Yeast. PNAS 105: 9272–9277. DOI: https:// doi. org/ 10. 1073/ 
pnas. 0803466105, PMID: 18583475

Lynch M, Ackerman MS, Gout J- F, Long H, Sung W, Thomas WK, Foster PL. 2016. Genetic drift, selection and 
the evolution of the mutation rate. Nature Reviews. Genetics 17: 704–714. DOI: https:// doi. org/ 10. 1038/ nrg. 
2016. 104, PMID: 27739533

Ma WT, G. V, Sarkar S. 1992. Analysis of the Luria- delbrück distribution using discrete convolution powers. 
Journal of Applied Probability 29: 255–267. DOI: https:// doi. org/ 10. 2307/ 3214564

McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre F, Stern DL. 2007. Morphological evolution 
through multiple cis- regulatory mutations at a single gene. Nature 448: 587–590. DOI: https:// doi. org/ 10. 1038/ 
nature05988, PMID: 17632547

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. 2016. The Ensembl 
variant effect predictor. Genome Biology 17: 122. DOI: https:// doi. org/ 10. 1186/ s13059- 016- 0974- 4, PMID: 
27268795

Nei M. 1983. Genetic Polymorphism and the Role of Mutation in Evolution. Evolution of Genes and Proteins 71: 
165–190.

Ni TT, Marsischky GT, Kolodner RD. 1999. MSH2 and MSH6 are required for removal of adenine misincorporated 
opposite 8- oxo- guanine in S. cerevisiae. Molecular Cell 4: 439–444. DOI: https:// doi. org/ 10. 1016/ s1097- 2765( 
00) 80346- 9, PMID: 10518225

Peter J, Chiara MD, Friedrich A, Yue J- X, Pflieger D, Bergström A, Sigwalt A. 2018. Genome Evolution across 
1,011 Saccharomyces cerevisiae Isolates. Nature 556: 339–344. DOI: https:// doi. org/ 10. 1038/ s41586- 018- 
0030- 5, PMID: 29643504

Poplin R. 2018. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. bioRxiv. DOI: 
https:// doi. org/ 10. 1101/ 201178

Prindle MJ, Fox EJ, Loeb LA. 2010. The Mutator Phenotype in Cancer: Molecular Mechanisms and Targeting 
Strategies. Current Drug Targets 11: 1296–1303. DOI: https:// doi. org/ 10. 2174/ 1389450111007011296, PMID: 
20840072

https://doi.org/10.7554/eLife.68285
https://doi.org/10.1101/gr.091231.109
http://www.ncbi.nlm.nih.gov/pubmed/19439516
https://doi.org/10.1073/pnas.1902766117
http://www.ncbi.nlm.nih.gov/pubmed/31964835
https://doi.org/10.1017/S0016672300010284
https://github.com/FelixKrueger/TrimGalore
https://doi.org/10.1128/aem.54.10.2447-2451.1988
https://doi.org/10.1128/aem.54.10.2447-2451.1988
http://www.ncbi.nlm.nih.gov/pubmed/16347755
https://doi.org/10.1534/genetics.107.071506
http://www.ncbi.nlm.nih.gov/pubmed/18202359
https://doi.org/10.1093/gbe/evr054
http://www.ncbi.nlm.nih.gov/pubmed/21666225
https://doi.org/10.1534/g3.113.006429
https://doi.org/10.1534/g3.113.006429
http://www.ncbi.nlm.nih.gov/pubmed/23821616
https://doi.org/10.1007/978-1-4939-7306-4_3
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1007/BF02986080
http://www.ncbi.nlm.nih.gov/pubmed/24536673
https://doi.org/10.1086/282663
https://doi.org/10.1086/282663
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1038/nature07743
http://www.ncbi.nlm.nih.gov/pubmed/19212322
https://doi.org/10.1016/j.cub.2019.03.054
http://www.ncbi.nlm.nih.gov/pubmed/31056389
https://doi.org/10.1038/s41467-021-24364-6
http://www.ncbi.nlm.nih.gov/pubmed/34193872
http://www.ncbi.nlm.nih.gov/pubmed/11309271
https://doi.org/10.1158/0008-5472.CAN-16-0794
http://www.ncbi.nlm.nih.gov/pubmed/27197248
https://doi.org/10.1093/genetics/28.6.491
http://www.ncbi.nlm.nih.gov/pubmed/17247100
https://doi.org/10.1073/pnas.0803466105
https://doi.org/10.1073/pnas.0803466105
http://www.ncbi.nlm.nih.gov/pubmed/18583475
https://doi.org/10.1038/nrg.2016.104
https://doi.org/10.1038/nrg.2016.104
http://www.ncbi.nlm.nih.gov/pubmed/27739533
https://doi.org/10.2307/3214564
https://doi.org/10.1038/nature05988
https://doi.org/10.1038/nature05988
http://www.ncbi.nlm.nih.gov/pubmed/17632547
https://doi.org/10.1186/s13059-016-0974-4
http://www.ncbi.nlm.nih.gov/pubmed/27268795
https://doi.org/10.1016/s1097-2765(00)80346-9
https://doi.org/10.1016/s1097-2765(00)80346-9
http://www.ncbi.nlm.nih.gov/pubmed/10518225
https://doi.org/10.1038/s41586-018-0030-5
https://doi.org/10.1038/s41586-018-0030-5
http://www.ncbi.nlm.nih.gov/pubmed/29643504
https://doi.org/10.1101/201178
https://doi.org/10.2174/1389450111007011296
http://www.ncbi.nlm.nih.gov/pubmed/20840072


 Research article      Evolutionary Biology | Genetics and Genomics

Jiang et al. eLife 2021;10:e68285. DOI: https:// doi. org/ 10. 7554/ eLife. 68285  23 of 24

Raghavan V, Bui DT, Al- Sweel N, Friedrich A, Schacherer J, Aquadro CF, Alani E. 2018. Incompatibilities in 
Mismatch Repair Genes MLH1- PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of 
Baker’s Yeast. Genetics 210: 1253–1266. DOI: https:// doi. org/ 10. 1534/ genetics. 118. 301550, PMID: 30348651

Risques RA, Kennedy SR. 2018. Aging and the rise of somatic cancer- associated mutations in normal tissues. 
PLOS Genetics 14: e1007108. DOI: https:// doi. org/ 10. 1371/ journal. pgen. 1007108, PMID: 29300727

Sasani TA, Ashbrook DG, Lu L, Palmer AA, Williams RW, Pritchard JK, Harris K. 2021. A Wild- Derived 
Antimutator Drives Germline Mutation Spectrum Differences in a Genetically Diverse Murine Family. bioRxiv. 
DOI: https:// doi. org/ 10. 1101/ 2021. 03. 12. 435196

Scally A, Durbin R. 2012. Revising the human mutation rate: Implications for understanding human evolution. 
Nature Reviews. Genetics 13: 745–753. DOI: https:// doi. org/ 10. 1038/ nrg3295, PMID: 22965354

Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. 2009. Comprehensive polymorphism survey elucidates 
population structure of Saccharomyces cerevisiae. Nature 458: 342–345. DOI: https:// doi. org/ 10. 1038/ 
nature07670, PMID: 19212320

Schrider DR, Hourmozdi JN, Hahn MW. 2011. Pervasive multinucleotide mutational events in eukaryotes. 
Current Biology 21: 1051–1054. DOI: https:// doi. org/ 10. 1016/ j. cub. 2011. 05. 013, PMID: 21636278

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese- Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, 
Leotta A, Pai D, Zhang R, Lee Y- H, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, et al. 2007. 
Strong association of de novo copy number mutations with autism. Science 316: 445–449. DOI: https:// doi. 
org/ 10. 1126/ science. 1138659, PMID: 17363630

Ségurel L, Wyman MJ, Przeworski M. 2014. Determinants of mutation rate variation in the human germline. 
Annual Review of Genomics and Human Genetics 15: 47–70. DOI: https:// doi. org/ 10. 1146/ annurev- genom- 
031714- 125740, PMID: 25000986

Serero A, Jubin C, Loeillet S, Legoix- Né P, Nicolas AG. 2014. Mutational Landscape of Yeast Mutator Strains. 
PNAS 111: 1897–1902. DOI: https:// doi. org/ 10. 1073/ pnas. 1314423111, PMID: 24449905

Sharp NP, Sandell L, James CG, Otto SP. 2018. The genome- wide rate and spectrum of spontaneous mutations 
differ between haploid and diploid yeast. PNAS 115: E5046–E5055. DOI: https:// doi. org/ 10. 1073/ pnas. 
1801040115, PMID: 29760081

Shockley AH, Doo DW, Rodriguez GP, Crouse GF. 2013. Oxidative Damage and Mutagenesis in Saccharomyces 
cerevisiae: Genetic Studies of Pathways Affecting Replication Fidelity of 8- Oxoguanine. Genetics 195: 
359–367. DOI: https:// doi. org/ 10. 1534/ genetics. 113. 153874, PMID: 23893481

Shor E, Fox CA, Broach JR. 2013. The yeast environmental stress response regulates mutagenesis induced by 
proteotoxic stress. PLOS Genetics 9: e1003680. DOI: https:// doi. org/ 10. 1371/ journal. pgen. 1003680, PMID: 
23935537

Steenwyk JL, Opulente DA, Kominek J, Shen X- X, Zhou X, Labella AL, Bradley NP, Eichman BF, Čadež N, 
Libkind D, DeVirgilio J, Hulfachor AB, Kurtzman CP, Hittinger CT, Rokas A. 2019. Extensive loss of cell- cycle 
and dna repair genes in an ancient lineage of bipolar budding yeasts. PLOS Biology 17: e3000255. DOI: 
https:// doi. org/ 10. 1371/ journal. pbio. 3000255, PMID: 31112549

Stirling PC, Shen Y, Corbett R, Jones SJM, Hieter P. 2014. Genome Destabilizing Mutator Alleles Drive Specific 
Mutational Trajectories in Saccharomyces cerevisiae. Genetics 196: 403–412. DOI: https:// doi. org/ 10. 1534/ 
genetics. 113. 159806, PMID: 24336748

Stone JE, Lujan SA, Kunkel TA, Kunkel TA. 2012. DNA Polymerase Zeta Generates Clustered Mutations during 
Bypass of Endogenous DNA Lesions in Saccharomyces cerevisiae. Environmental and Molecular Mutagenesis 
53: 777–786. DOI: https:// doi. org/ 10. 1002/ em. 21728, PMID: 22965922

Sturtevant AH. 1937. Essays on Evolution I On the Effects of Selection on Mutation Rate. The Quarterly Review 
of Biology 12: 464–467. DOI: https:// doi. org/ 10. 1086/ 394543

Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012a. Drift- Barrier Hypothesis and Mutation- Rate 
Evolution. PNAS 109: 18488–18492. DOI: https:// doi. org/ 10. 1073/ pnas. 1216223109, PMID: 23077252

Sung W, Tucker AE, Doak TG, Choi E, Lynch M. 2012b. Extraordinary Genome Stability in the Ciliate Paramecium 
Tetraurelia. PNAS 109: 19339–19344. DOI: https:// doi. org/ 10. 1073/ pnas. 1210663109, PMID: 23129619

Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, Wu GC. 2016. Tempo and Mode of 
Genome Evolution in a 50,000- Generation Experiment. Nature 536: 165–170. DOI: https:// doi. org/ 10. 1038/ 
nature18959, PMID: 27479321

Tracy MA, Lee MB, Hearn BL, Dowsett IT, Thurber LC, Loo J, Loeb AM. 2020. Spontaneous Polyploids and 
Antimutators Compete During the Evolution of Saccharomyces cerevisiae Mutator Cells. Genetics 215: 
959–974. DOI: https:// doi. org/ 10. 1534/ genetics. 120. 303333, PMID: 32513814

Viel A, Bruselles A, Meccia E, Fornasarig M, Quaia M, Canzonieri V, Policicchio E. 2017. A specific mutational 
signature associated with DNA 8- oxoguanine persistence in MUTYH- defective colorectal cancer. EBioMedicine 
20: 39–49. DOI: https:// doi. org/ 10. 1016/ j. ebiom. 2017. 04. 022, PMID: 28551381

Voordeckers K, Colding C, Grasso L, Pardo B, Hoes L, Kominek J, Gielens K, Dekoster K, Gordon J, 
Van der Zande E, Bircham P, Swings T, Michiels J, Van Loo P, Nuyts S, Pasero P, Lisby M, Verstrepen KJ. 2020. 
Ethanol exposure increases mutation rate through error- prone polymerases. Nature Communications 11: 3664. 
DOI: https:// doi. org/ 10. 1038/ s41467- 020- 17447- 3, PMID: 32694532

Wang L, Ji Y, Hu Y, Hu H, Jia X, Jiang M, Zhang X, Zhao L, Zhang Y, Jia Y, Qin C, Yu L, Huang J, Yang S, Hurst LD, 
Tian D. 2019. The architecture of intra- organism mutation rate variation in plants. PLOS Biology 17: e3000191. 
DOI: https:// doi. org/ 10. 1371/ journal. pbio. 3000191, PMID: 30964866

https://doi.org/10.7554/eLife.68285
https://doi.org/10.1534/genetics.118.301550
http://www.ncbi.nlm.nih.gov/pubmed/30348651
https://doi.org/10.1371/journal.pgen.1007108
http://www.ncbi.nlm.nih.gov/pubmed/29300727
https://doi.org/10.1101/2021.03.12.435196
https://doi.org/10.1038/nrg3295
http://www.ncbi.nlm.nih.gov/pubmed/22965354
https://doi.org/10.1038/nature07670
https://doi.org/10.1038/nature07670
http://www.ncbi.nlm.nih.gov/pubmed/19212320
https://doi.org/10.1016/j.cub.2011.05.013
http://www.ncbi.nlm.nih.gov/pubmed/21636278
https://doi.org/10.1126/science.1138659
https://doi.org/10.1126/science.1138659
http://www.ncbi.nlm.nih.gov/pubmed/17363630
https://doi.org/10.1146/annurev-genom-031714-125740
https://doi.org/10.1146/annurev-genom-031714-125740
http://www.ncbi.nlm.nih.gov/pubmed/25000986
https://doi.org/10.1073/pnas.1314423111
http://www.ncbi.nlm.nih.gov/pubmed/24449905
https://doi.org/10.1073/pnas.1801040115
https://doi.org/10.1073/pnas.1801040115
http://www.ncbi.nlm.nih.gov/pubmed/29760081
https://doi.org/10.1534/genetics.113.153874
http://www.ncbi.nlm.nih.gov/pubmed/23893481
https://doi.org/10.1371/journal.pgen.1003680
http://www.ncbi.nlm.nih.gov/pubmed/23935537
https://doi.org/10.1371/journal.pbio.3000255
http://www.ncbi.nlm.nih.gov/pubmed/31112549
https://doi.org/10.1534/genetics.113.159806
https://doi.org/10.1534/genetics.113.159806
http://www.ncbi.nlm.nih.gov/pubmed/24336748
https://doi.org/10.1002/em.21728
http://www.ncbi.nlm.nih.gov/pubmed/22965922
https://doi.org/10.1086/394543
https://doi.org/10.1073/pnas.1216223109
http://www.ncbi.nlm.nih.gov/pubmed/23077252
https://doi.org/10.1073/pnas.1210663109
http://www.ncbi.nlm.nih.gov/pubmed/23129619
https://doi.org/10.1038/nature18959
https://doi.org/10.1038/nature18959
http://www.ncbi.nlm.nih.gov/pubmed/27479321
https://doi.org/10.1534/genetics.120.303333
http://www.ncbi.nlm.nih.gov/pubmed/32513814
https://doi.org/10.1016/j.ebiom.2017.04.022
http://www.ncbi.nlm.nih.gov/pubmed/28551381
https://doi.org/10.1038/s41467-020-17447-3
http://www.ncbi.nlm.nih.gov/pubmed/32694532
https://doi.org/10.1371/journal.pbio.3000191
http://www.ncbi.nlm.nih.gov/pubmed/30964866


 Research article      Evolutionary Biology | Genetics and Genomics

Jiang et al. eLife 2021;10:e68285. DOI: https:// doi. org/ 10. 7554/ eLife. 68285  24 of 24

Weng M- L, Becker C, Hildebrandt J, Neumann M, Rutter MT, Shaw RG, Weigel D, Fenster CB. 2019. Fine- 
grained analysis of spontaneous mutation spectrum and frequency in Arabidopsis thaliana. Genetics 211: 
703–714. DOI: https:// doi. org/ 10. 1534/ genetics. 118. 301721, PMID: 30514707

Whelan WL, Gocke E, Manney TR. 1979. The CAN1 locus of Saccharomyces cerevisiae: fine- structure analysis 
and forward mutation rates. Genetics 91: 35–51. DOI: https:// doi. org/ 10. 1093/ genetics/ 91. 1. 35, PMID: 372045

Yue J- X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A, Coupland P, Warringer J, Lagomarsino MC, 
Fischer G, Durbin R, Liti G. 2017. Contrasting evolutionary genome dynamics between domesticated and wild 
yeasts. Nature Genetics 49: 913–924. DOI: https:// doi. org/ 10. 1038/ ng. 3847, PMID: 28416820

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: A fast and accurate Illumina paired- end read merger. 
Bioinformatics 30: 614–620. DOI: https:// doi. org/ 10. 1093/ bioinformatics/ btt593, PMID: 24142950

Zheng Q. 2017. rSalvador: An R package for the fluctuation experiment. G3: Genes, Genomes, Genetics 7: 
3849–3856. DOI: https:// doi. org/ 10. 1534/ g3. 117. 300120, PMID: 29084818

Zhu YO, Siegal ML, Hall DW, Petrov DA. 2014. Precise estimates of mutation rate and spectrum in yeast. PNAS 
111: E2310-E2318. DOI: https:// doi. org/ 10. 1073/ pnas. 1323011111, PMID: 24847077

Zhu YO, Sherlock G, Petrov DA. 2017. Extremely rare polymorphisms in Saccharomyces cerevisiae allow 
inference of the mutational spectrum. PLOS Genetics 13: e1006455. DOI: https:// doi. org/ 10. 1371/ journal. 
pgen. 1006455, PMID: 28046117

Zou X. 2020. Dissecting Mutational Mechanisms Underpinning Signatures Caused by Replication Errors and 
Endogenous DNA Damage. bioRxiv. DOI: https:// doi. org/ 10. 1101/ 2020. 08. 04. 234245

https://doi.org/10.7554/eLife.68285
https://doi.org/10.1534/genetics.118.301721
http://www.ncbi.nlm.nih.gov/pubmed/30514707
https://doi.org/10.1093/genetics/91.1.35
http://www.ncbi.nlm.nih.gov/pubmed/372045
https://doi.org/10.1038/ng.3847
http://www.ncbi.nlm.nih.gov/pubmed/28416820
https://doi.org/10.1093/bioinformatics/btt593
http://www.ncbi.nlm.nih.gov/pubmed/24142950
https://doi.org/10.1534/g3.117.300120
http://www.ncbi.nlm.nih.gov/pubmed/29084818
https://doi.org/10.1073/pnas.1323011111
http://www.ncbi.nlm.nih.gov/pubmed/24847077
https://doi.org/10.1371/journal.pgen.1006455
https://doi.org/10.1371/journal.pgen.1006455
http://www.ncbi.nlm.nih.gov/pubmed/28046117
https://doi.org/10.1101/2020.08.04.234245

	A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae
	Introduction
	Results
	The mutation spectrum of natural variation in S. cerevisiae
	A scalable experimental pipeline for measuring de novo mutation rates and spectra
	Mutation rate variation among haploid natural isolates
	CAN1 sequencing reveals de novo mutation spectrum differences
	A natural mutator phenotype with a distinctive mutation spectrum
	A scan for candidate mutator alleles
	Experimental evidence that OGG1AEQ/AAR is a mutator allele

	Discussion
	Materials and methods
	Variant filtering and mutation PCA analysis
	Fluctuation assays and sequencing
	Calculation of mutation rates
	Mutation calling
	Statistically quantifying mutation spectrum differentiation
	Whole-genome sequencing and variant calling of CBS 1782
	Constructing OGG1 plasmids

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


