A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma

  1. Dayana C Farhat
  2. Matthew W Bowler
  3. Guillaume Communie
  4. Dominique Pontier
  5. Lucid Belmudes
  6. Caroline Mas
  7. Charlotte Corrao
  8. Yohann Couté
  9. Alexandre Bougdour
  10. Thierry Lagrange
  11. Mohamed-ali Hakimi  Is a corresponding author
  12. Christopher Swale  Is a corresponding author
  1. Université Grenoble Alpes, France
  2. European Molecular Biology Laboratory, France
  3. Institut Laue-Langevin, France
  4. CNRS, France

Abstract

Correct 3'end processing of mRNAs is one of the regulatory cornerstones of gene expression. In a parasite that must adapt to the regulatory requirements of its multi-host life style, there is a need to adopt additional means to partition the distinct transcriptional signatures of the closely and tandemly-arranged stage specific genes. In this study, we report our findings in T. gondii of an m6A-dependent 3'end polyadenylation serving as a transcriptional barrier at these loci. We identify the core polyadenylation complex within T. gondii and establish CPSF4 as a reader for m6A-modified mRNAs, via a YTH domain within its C-terminus, a feature which is shared with plants. We bring evidence of the specificity of this interaction both biochemically, and by determining the crystal structure at high resolution of the T. gondii CPSF4-YTH in complex with an m6A modified RNA. We show that the loss of m6A, both at the level of its deposition or its recognition was associated with an increase in aberrantly elongated chimeric mRNAs emanating from impaired transcriptional termination, a phenotype previously noticed in the plant model Arabidopsis thaliana. Nanopore direct RNA sequencing shows the occurrence of transcriptional read-through breaching into downstream repressed stage-specific genes, in the absence of either CPSF4 or the m6A RNA methylase components in both T. gondii and A. thaliana. Taken together, our results shed light on an essential regulatory mechanism coupling the pathways of m6A metabolism directly to the cleavage and polyadenylation processes, one that interestingly seem to serve, in both T. gondii and A. thaliana, as a guardian against aberrant transcriptional read-throughs.

Data availability

The Nanopore RNAseq data have been deposited in NCBI's SRA data PRJNA705300. The MS proteomics data have been deposited to the ProteomeXchange Consortium through the PRIDE partner repository with the dataset identifier PXD024326. Sequencing data have been deposited in GEO under accession code GSE168155:

The following data sets were generated

Article and author information

Author details

  1. Dayana C Farhat

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew W Bowler

    European Molecular Biology Laboratory, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0465-3351
  3. Guillaume Communie

    Institut Laue-Langevin, Institut Laue-Langevin, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dominique Pontier

    UMR5096, CNRS, Perpignan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucid Belmudes

    BIG-BGE, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline Mas

    Integrated Structural Biology Grenoble (ISBG), Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Charlotte Corrao

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Yohann Couté

    Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-6196
  9. Alexandre Bougdour

    Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5895-0020
  10. Thierry Lagrange

    UMR5096, CNRS, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Mohamed-ali Hakimi

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    For correspondence
    mohamed-ali.hakimi@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2547-8233
  12. Christopher Swale

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    For correspondence
    christopher.swale@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9739-7774

Funding

Agence Nationale de la Recherche (Laboratoire d'Excellence (LabEx) ParaFrap [ANR-11-LABX-0024])

  • Dayana C Farhat
  • Mohamed-ali Hakimi
  • Christopher Swale

Agence Nationale de la Recherche (Project HostQuest,ANR-18-CE15-0023)

  • Charlotte Corrao
  • Alexandre Bougdour
  • Mohamed-ali Hakimi
  • Christopher Swale

European Research Council (ERC Consolidator Grant N{degree sign}614880 Hosting TOXO)

  • Mohamed-ali Hakimi

Fondation pour la Recherche Médicale (FRM FDT201904008364)

  • Dayana C Farhat
  • Mohamed-ali Hakimi

Agence Nationale de la Recherche (Proteomics French Infrastructure,Infrastructure Nationale en Biologie et Santé,ANR-10-INBS-08)

  • Lucid Belmudes
  • Yohann Couté

Agence Nationale de la Recherche (Laboratoires d'Excellences (LABEX) TULIP (ANR-10-LABX-41)")

  • Dominique Pontier
  • Thierry Lagrange

Agence Nationale de la Recherche (École Universitaire de Recherche (EUR)" TULIP-GS (ANR-18-EURE-0019)")

  • Dominique Pontier
  • Thierry Lagrange

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Deborah Bourc'his, Institut Curie, France

Publication history

  1. Preprint posted: February 23, 2021 (view preprint)
  2. Received: March 11, 2021
  3. Accepted: July 13, 2021
  4. Accepted Manuscript published: July 15, 2021 (version 1)
  5. Version of Record published: July 26, 2021 (version 2)

Copyright

© 2021, Farhat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,505
    Page views
  • 236
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dayana C Farhat
  2. Matthew W Bowler
  3. Guillaume Communie
  4. Dominique Pontier
  5. Lucid Belmudes
  6. Caroline Mas
  7. Charlotte Corrao
  8. Yohann Couté
  9. Alexandre Bougdour
  10. Thierry Lagrange
  11. Mohamed-ali Hakimi
  12. Christopher Swale
(2021)
A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma
eLife 10:e68312.
https://doi.org/10.7554/eLife.68312
  1. Further reading

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Hadar Cohen, Noam Baram ... Motti Gerlic
    Research Article

    The type VI secretion system (T6SS) is used by bacteria to deliver toxic effectors directly into target cells. Most T6SSs mediate antibacterial activities, whereas the potential anti-eukaryotic role of T6SS remains understudied. Here, we found a Vibrio T6SS that delivers two novel effectors into mammalian host immune cells. We showed that these effectors induce a pyroptotic cell death in a phagocytosis-dependent manner; we identified the NLRP3 inflammasome as being the underlying mechanism leading to the T6SS-induced pyroptosis. Moreover, we identified a compensatory T6SS-induced pathway that is activated upon inhibition of the canonical pyroptosis pathway. Genetic analyses revealed possible horizontal spread of this T6SS and its anti-eukaryotic effectors into emerging pathogens in the marine environment. Our findings reveal novel T6SS effectors that activate the host inflammasome and possibly contribute to virulence and to the emergence of bacterial pathogens.

    1. Microbiology and Infectious Disease
    Sophie R Sichel, Benjamin P Bratton, Nina R Salama
    Research Article Updated

    The helical shape of Helicobacter pylori cells promotes robust stomach colonization; however, how the helical shape of H. pylori cells is determined is unresolved. Previous work identified helical-cell-shape-promoting protein complexes containing a peptidoglycan-hydrolase (Csd1), a peptidoglycan precursor synthesis enzyme (MurF), a non-enzymatic homolog of Csd1 (Csd2), non-enzymatic transmembrane proteins (Csd5 and Csd7), and a bactofilin (CcmA). Bactofilins are highly conserved, spontaneously polymerizing cytoskeletal bacterial proteins. We sought to understand CcmA’s function in generating the helical shape of H. pylori cells. Using CcmA deletion analysis, in vitro polymerization, and in vivo co-immunoprecipitation experiments, we identified that the bactofilin domain and N-terminal region of CcmA are required for helical cell shape and the bactofilin domain of CcmA is sufficient for polymerization and interactions with Csd5 and Csd7. We also found that CcmA’s N-terminal region inhibits interaction with Csd7. Deleting the N-terminal region of CcmA increases CcmA-Csd7 interactions and destabilizes the peptidoglycan-hydrolase Csd1. Using super-resolution microscopy, we found that Csd5 recruits CcmA to the cell envelope and promotes CcmA enrichment at the major helical axis. Thus, CcmA helps organize cell-shape-determining proteins and peptidoglycan synthesis machinery to coordinate cell wall modification and synthesis, promoting the curvature required to build a helical cell.