A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma

  1. Dayana C Farhat
  2. Matthew W Bowler
  3. Guillaume Communie
  4. Dominique Pontier
  5. Lucid Belmudes
  6. Caroline Mas
  7. Charlotte Corrao
  8. Yohann Couté
  9. Alexandre Bougdour
  10. Thierry Lagrange
  11. Mohamed-ali Hakimi  Is a corresponding author
  12. Christopher Swale  Is a corresponding author
  1. Université Grenoble Alpes, France
  2. European Molecular Biology Laboratory, France
  3. Institut Laue-Langevin, France
  4. CNRS, France

Abstract

Correct 3'end processing of mRNAs is one of the regulatory cornerstones of gene expression. In a parasite that must adapt to the regulatory requirements of its multi-host life style, there is a need to adopt additional means to partition the distinct transcriptional signatures of the closely and tandemly-arranged stage specific genes. In this study, we report our findings in T. gondii of an m6A-dependent 3'end polyadenylation serving as a transcriptional barrier at these loci. We identify the core polyadenylation complex within T. gondii and establish CPSF4 as a reader for m6A-modified mRNAs, via a YTH domain within its C-terminus, a feature which is shared with plants. We bring evidence of the specificity of this interaction both biochemically, and by determining the crystal structure at high resolution of the T. gondii CPSF4-YTH in complex with an m6A modified RNA. We show that the loss of m6A, both at the level of its deposition or its recognition was associated with an increase in aberrantly elongated chimeric mRNAs emanating from impaired transcriptional termination, a phenotype previously noticed in the plant model Arabidopsis thaliana. Nanopore direct RNA sequencing shows the occurrence of transcriptional read-through breaching into downstream repressed stage-specific genes, in the absence of either CPSF4 or the m6A RNA methylase components in both T. gondii and A. thaliana. Taken together, our results shed light on an essential regulatory mechanism coupling the pathways of m6A metabolism directly to the cleavage and polyadenylation processes, one that interestingly seem to serve, in both T. gondii and A. thaliana, as a guardian against aberrant transcriptional read-throughs.

Data availability

The Nanopore RNAseq data have been deposited in NCBI's SRA data PRJNA705300. The MS proteomics data have been deposited to the ProteomeXchange Consortium through the PRIDE partner repository with the dataset identifier PXD024326. Sequencing data have been deposited in GEO under accession code GSE168155:

The following data sets were generated

Article and author information

Author details

  1. Dayana C Farhat

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew W Bowler

    European Molecular Biology Laboratory, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0465-3351
  3. Guillaume Communie

    Institut Laue-Langevin, Institut Laue-Langevin, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dominique Pontier

    UMR5096, CNRS, Perpignan, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucid Belmudes

    BIG-BGE, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline Mas

    Integrated Structural Biology Grenoble (ISBG), Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Charlotte Corrao

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Yohann Couté

    Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-6196
  9. Alexandre Bougdour

    Institut de Biosciences et Biotechnologies de Grenoble, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5895-0020
  10. Thierry Lagrange

    UMR5096, CNRS, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Mohamed-ali Hakimi

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    For correspondence
    mohamed-ali.hakimi@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2547-8233
  12. Christopher Swale

    Team Host-pathogen interactions and Immunity to Infection, Université Grenoble Alpes, Grenoble, France
    For correspondence
    christopher.swale@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9739-7774

Funding

Agence Nationale de la Recherche (Laboratoire d'Excellence (LabEx) ParaFrap [ANR-11-LABX-0024])

  • Dayana C Farhat
  • Mohamed-ali Hakimi
  • Christopher Swale

Agence Nationale de la Recherche (Project HostQuest,ANR-18-CE15-0023)

  • Charlotte Corrao
  • Alexandre Bougdour
  • Mohamed-ali Hakimi
  • Christopher Swale

European Research Council (ERC Consolidator Grant N{degree sign}614880 Hosting TOXO)

  • Mohamed-ali Hakimi

Fondation pour la Recherche Médicale (FRM FDT201904008364)

  • Dayana C Farhat
  • Mohamed-ali Hakimi

Agence Nationale de la Recherche (Proteomics French Infrastructure,Infrastructure Nationale en Biologie et Santé,ANR-10-INBS-08)

  • Lucid Belmudes
  • Yohann Couté

Agence Nationale de la Recherche (Laboratoires d'Excellences (LABEX) TULIP (ANR-10-LABX-41)")

  • Dominique Pontier
  • Thierry Lagrange

Agence Nationale de la Recherche (École Universitaire de Recherche (EUR)" TULIP-GS (ANR-18-EURE-0019)")

  • Dominique Pontier
  • Thierry Lagrange

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Farhat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,309
    views
  • 328
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dayana C Farhat
  2. Matthew W Bowler
  3. Guillaume Communie
  4. Dominique Pontier
  5. Lucid Belmudes
  6. Caroline Mas
  7. Charlotte Corrao
  8. Yohann Couté
  9. Alexandre Bougdour
  10. Thierry Lagrange
  11. Mohamed-ali Hakimi
  12. Christopher Swale
(2021)
A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma
eLife 10:e68312.
https://doi.org/10.7554/eLife.68312

Share this article

https://doi.org/10.7554/eLife.68312

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.