Structurally distributed surface sites tune allosteric regulation

  1. James W McCormick
  2. Marielle AX Russo
  3. Samuel Thompson
  4. Aubrie Blevins
  5. Kimberly A Reynolds  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Stanford University, United States

Abstract

Our ability to rationally optimize allosteric regulation is limited by incomplete knowledge of the mutations that tune allostery. Are these mutations few or abundant, structurally localized or distributed? To examine this, we conducted saturation mutagenesis of a synthetic allosteric switch in which Dihydrofolate reductase (DHFR) is regulated by a blue-light sensitive LOV2 domain. Using a high-throughput assay wherein DHFR catalytic activity is coupled to E. coli growth, we assessed the impact of 1548 viable DHFR single mutations on allostery. Despite most mutations being deleterious to activity, fewer than 5% of mutations had a statistically significant influence on allostery. Most allostery disrupting mutations were proximal to the LOV2 insertion site. In contrast, allostery enhancing mutations were structurally distributed and enriched on the protein surface. Combining several allostery enhancing mutations yielded near-additive improvements to dynamic range. Our results indicate a path towards optimizing allosteric function through variation at surface sites.

Data availability

Sequencing data (resulting from amplicon sequencing) have been deposited in the NCBI SRA under BioProject: PRJNA706683All analysis codes have been made available as a series of python 3 Jupyter Notebooks on github: https://github.com/reynoldsk/allostery-in-dhfr

The following data sets were generated

Article and author information

Author details

  1. James W McCormick

    The Green Center for Systems Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7573-2300
  2. Marielle AX Russo

    The Green Center for Systems Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel Thompson

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Aubrie Blevins

    The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kimberly A Reynolds

    The Green Center for Systems Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    kimberly.reynolds@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4805-0317

Funding

National Science Foundation (CAREER Award,1942354)

  • Kimberly A Reynolds

Gordon and Betty Moore Foundation (Data Driven Discovery Initiative,GBMF4557)

  • Kimberly A Reynolds

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian R Landry, Université Laval, Canada

Version history

  1. Received: March 12, 2021
  2. Accepted: June 15, 2021
  3. Accepted Manuscript published: June 16, 2021 (version 1)
  4. Version of Record published: July 30, 2021 (version 2)

Copyright

© 2021, McCormick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,932
    views
  • 359
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James W McCormick
  2. Marielle AX Russo
  3. Samuel Thompson
  4. Aubrie Blevins
  5. Kimberly A Reynolds
(2021)
Structurally distributed surface sites tune allosteric regulation
eLife 10:e68346.
https://doi.org/10.7554/eLife.68346

Share this article

https://doi.org/10.7554/eLife.68346

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.

    1. Evolutionary Biology
    Deng Wang, Yaqin Qiang ... Jian Han
    Research Article

    Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.