
Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 1 of 25

Ripples reflect a spectrum of synchronous 
spiking activity in human anterior 
temporal lobe
Ai Phuong S Tong1, Alex P Vaz2, John H Wittig1, Sara K Inati3, 
Kareem A Zaghloul1*

1Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, 
National Institutes of Health, Bethesda, United States; 2Medical Scientist Training 
Program, Duke University School of Medicine, Durham, United States; 3Office of the 
Clinical Director, National Institute of Neurological Disorders and Stroke, National 
Institutes of Health, Bethesda, United States

Abstract Direct brain recordings have provided important insights into how high-frequency 
activity captured through intracranial EEG (iEEG) supports human memory retrieval. The extent 
to which such activity is comprised of transient fluctuations that reflect the dynamic coordination 
of underlying neurons, however, remains unclear. Here, we simultaneously record iEEG, local field 
potential (LFP), and single unit activity in the human temporal cortex. We demonstrate that fast 
oscillations within the previously identified 80–120 Hz ripple band contribute to broadband high-
frequency activity in the human cortex. These ripple oscillations exhibit a spectrum of amplitudes 
and durations related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG 
are related to the number and synchrony of ripples in the micro-scale LFP, which in turn are related 
to the synchrony of neuronal spiking. Our data suggest that neural activity in the human temporal 
lobe is organized into transient bouts of ripple oscillations that reflect underlying bursts of spiking 
activity.

Introduction
A fundamental premise in interpreting the various fluctuations and temporal dynamics observed 
in direct recordings from the human brain is that these signals must be related to the underlying 
synaptic currents and spiking activity of individual neurons (Buzsáki et al., 2012; Parvizi and Kastner, 
2018). Arguably, the most robust link between intracranial EEG (iEEG) signals and neuronal activity 
has been that increases in broadband high-frequency activity are associated with overall increases 
in underlying neuronal spiking (Manning et al., 2009; Burke et al., 2015). This relation has shaped 
the insights we have gained regarding the neural substrates of human memory (Jacobs and Kahana, 
2010). Successful episodic memory formation, for example, is accompanied by increases in broad-
band activity that progress anteriorly along the temporal cortex, which has consequently suggested 
that successful memory involves increases in neuronal spiking in these regions (Burke et al., 2014; 
Long et al., 2014; Greenberg et al., 2015).

The relation between widespread and prolonged increases in broadband high-frequency activity 
and successful memory formation has largely rested upon averaging neural data over multiple similar 
trials or events. This approach, however, obscures the moment to moment fluctuations that can arise 
as individuals try to encode or retrieve individual memories. Individual trials often exhibit increases in 
oscillatory and broadband activity that can be quite transient, as has been observed in recent studies 
of working memory (Jones, 2016; Lundqvist et al., 2016). Given the relation between broadband 
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power and neuronal spiking, these short bouts of broadband activity may reflect brief bursts of popu-
lation spiking activity. Bursts of spiking are in fact common in cortical recordings in animals and may 
represent packets of information that are used as the building blocks for neural coding in the brain 
(Luczak et al., 2009; Luczak et al., 2015). The possibility that punctate events observed in the cortical 
iEEG signal may reflect underlying packets of spiking, however, has not been well explored in the 
human brain.

A parallel and extensive line of research, however, has explicitly demonstrated the presence of 
discrete bouts of fast oscillations known as ripples that have been identified using smaller scale local 
field potential (LFP) recordings in the rodent medial temporal lobe (MTL) in studies of spatial navi-
gation (Colgin, 2016). These ripples are strongly associated with underlying bursts of spiking activity 
(Buzsáki, 2015). Ripples have been implicated in memory formation, consolidation, and retrieval 
(Buzsáki, 2015; Joo and Frank, 2018) and the bursts of spiking activity that accompany ripples 
are often organized into specific temporal sequences that have been hypothesized to represent the 
content of memory (Carr et al., 2011; Vaz et al., 2020; Pfeiffer, 2020). Recent reports have identified 
similar fast oscillations in the human brain even at larger spatial scales, and have suggested that these 
may be analogous to the ripples identified in rodents (Axmacher et al., 2008; Zhang et al., 2018; Vaz 
et al., 2019; Norman et al., 2019). Moreover, fast oscillations that appear similar to MTL ripples can 
also be identified in the cortex both in animals and in humans (Khodagholy et al., 2017; Vaz et al., 
2019). Whether these cortical ripples should be considered the same as ripples in the MTL is still a 
matter of debate, although recent evidence has demonstrated that such cortical ripples observed in 
the human cortex are similarly accompanied by underlying bursts of spiking (Vaz et al., 2020).

One of the challenges in resolving the nature of these fast oscillations that are observed in the 
human cortex and that appear similar to ripples observed in the MTL, however, is that ripple char-
acteristics themselves can vary significantly across brain areas, behavioral states, and arousal levels 
(Buzsáki, 2015). Ripples likely do not exist as static entities, and behaviorally relevant changes in 
ripple characteristics have already been observed in humans (Ngo et al., 2020). This ambiguity of 
ripple morphology, especially during the awake state, is reflected in the variety of approaches used to 
identify ripples in both rodents and humans, in both the hippocampus and cortex (Axmacher et al., 
2008; Staresina et al., 2015; Buzsáki, 2015; Vaz et al., 2019; Jiang et al., 2020). The variability in 
the amplitude and duration of ripples often makes it unclear whether any one event should be classi-
fied as a ripple, how to systematically identify thresholds for detecting them, and how to distinguish 
these discrete events from background activity.

Instead, the morphological features of ripples more likely exist on a continuum that reflects the 
activity and interactions among underlying neurons. Ripples depend on the extent of oscillatory 
coupling between pyramidal neurons and interneurons (Csicsvari et al., 1999; Stark et al., 2014), 
which can also change based on brain state and can differ between species and across brain regions 
(Klausberger et al., 2003). Cortical ripples in rodents exist on a spectrum of amplitudes that are highly 
correlated with underlying spiking activity (Khodagholy et al., 2017). Hence, a more direct approach 
for determining whether ripple oscillations identified in human cortical iEEG recordings might be 
functionally meaningful is to explicitly link the presence and characteristics of these observed cortical 
ripples with underlying spiking activity.

Here, we recorded macro-scale iEEG, micro-scale LFP, and single unit spiking activity in the human 
temporal lobe in order to examine the relation between cortical ripples and underlying neuronal 
spiking. We find that a major contributor to the changes in high-frequency power observed with 
successful memory retrieval are temporally punctate ripple events. These ripples exist on a spectrum 
of amplitudes and durations that are related to the extent of underlying spiking activity. The ampli-
tude of ripples in the larger scale iEEG is related to the extent of synchronization across the underlying 
micro-scale LFP ripple oscillations, and neuronal spiking is locked to the trough of each ripple at the 
micro-scale. Together, our data suggest that many of the changes in broadband high-frequency power 
observed in direct recordings of the human brain during cognition may reflect ripple events.

https://doi.org/10.7554/eLife.68401
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Results
High-frequency activity reflects discrete 80-120 Hz ripples
We examined intracranial EEG (iEEG) recordings in 21 participants with intracranial electrodes placed 
for seizure monitoring as they performed a verbal episodic memory task (Figure 1A; see Materials 
and methods). In an example electrode in the medial temporal lobe, we observed transient increases 
in high-frequency activity (70–200 Hz; HFA) in individual trials immediately before participants vocalize 
their response during the retrieval period (Figure 1C). When averaging across all trials, the increases 
in HFA prior to vocalization appear sustained, consistent with previous studies of episodic memory 
retrieval (Burke et al., 2014; Yaffe et al., 2014).

We hypothesized that the transient increases in HFA observed in individual trials may be related to 
discrete 80–120 Hz ripples that have been previously associated with human memory retrieval (Vaz 
et al., 2019). We therefore identified ripples in each iEEG electrode in each participant (ripple rate 
.35 ± .04 Hz (mean ± SEM) across electrodes across all participants; Figure 1B; Figure 1—figure 
supplement 1 to Figure 1—figure supplement 5; see Materials and methods). In the same example 
electrode, the transient increases in HFA observed in each trial correspond to the detection of indi-
vidual ripples (Figure 1C). Across all trials, ripple rates demonstrate a clear increase that coincides 
with the sustained increase in HFA. We examined whether the changes in HFA and ripple rate were 
similarly modulated by successful memory retrieval in this examplar electrode (Figure 1D). Both HFA 
and ripple rates increase prior to vocalization during successful memory retrieval trials compared to 
trials in which the participant failed to successfully retrieve the correct word.

Since ripple characteristics can vary significantly across brain regions, we examined whether the 
differences in HFA and ripple rate between correct and incorrect retrieval trials exhibit a similar spatial 
pattern across the brain. Across participants, HFA increases during the one second prior to vocaliza-
tion are greater during correct memory retrieval compared to incorrect memory retrieval in several 
anatomic regions (Figure 1E; see Materials and methods). When examining ripple rates, we also found 
significant increases during correct compared to incorrect trials in similar anatomic regions during this 
same time period (Figure 1E; Figure 1—figure supplement 6B). Across ROIs from the entire cortex, 
the participant average difference in HFA between correct and incorrect trials is positively correlated 
with the difference in ripple rate (r = .13, p = 6.1 × 10-4; Figure 1F). Within two specific brain regions, 
the medial temporal lobe and the anterior temporal lobe, this positive correlation between the partic-
ipant average difference in HFA between correct and incorrect trials and the average difference in the 
ripple rate is greater (medial temporal lobe, MTL: r = .60, p = .00072; anterior temporal lobe, ATL: r 
= .23, p = .026; Figure 1G; Figure 1—figure supplement 6C,D). Together, these data suggest that 
the changes in HFA and ripple rate observed with successful memory retrieval obey a similar anatomic 
distribution.

We then examined this relation between HFA and 80–120 Hz ripples within retrieval trials in all 
individual electrodes in all participants. In each electrode, we computed the Pearson correlation 
between the average HFA and ripple rate across all retrieval trials, performed a Fisher’s ‍z‍-transform 
to normalize the correlation coefficients across participants, and then computed an average across 
all electrodes in each participant. We similarly computed this correlation across random three second 
epochs throughout the experimental session, which we designated as baseline. In both cases, the 
distribution of correlations across participants was consistent and significantly greater than zero (base-
line r = .085 ± .018; retrieval r = .093 ± .020; t(20) = 4.6, p < 1 × 10-6, one-tailed t-test; Figure 1H). 
The relation between HFA and ripple rate was similar during memory retrieval and baseline (retrieval-
baseline .0079 ± .0016, t(20) = 1.44, p = 0.083, paired t-test). However, the relation was stronger 
during correct retrieval as compared to incorrect retrieval (correct r = .316 ± .0339, incorrect r = .259 
± .0296; t(20) = 8.7, p < 2 × 10-8; correct-incorrect .057 ± .004, t(20) = 2.40, p = .013, paired t-test; 
Figure 1I).

To explicitly examine the extent to which 80–120 Hz ripples contribute to 70–200 Hz power, we 
conducted a control analysis by removing the time indices in which ripples were detected from the 
iEEG trace and recomputed HFA power. While the distribution of 70–200 Hz power averaged across 
electrodes in each participant is significantly greater during correct compared to incorrect memory 
retrieval (correct-incorrect .0051 ± .0049, t(20) = 2.39, p = .013), removing the discrete 80–120 Hz 
ripples eliminates this difference (correct-incorrect: .0075 ± .0053, t(20) = 1.42, p = .086; Figure 1J; 
Figure 1—figure supplement 6E). HFA power during correct retrieval is significantly reduced when 

https://doi.org/10.7554/eLife.68401
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Figure 1. High-frequency activity reflects discrete ripples. (A) Paired-associates verbal episodic memory task. (B) Average iEEG signal locked to 
detected ripples in an anterior temporal lobe electrode in two participants. (C) Time-frequency power spectrograms for two clips of iEEG data from 
one electrode in medial temporal lobe (MTL) with corresponding iEEG voltage signal (black), 80–120 Hz band signal (blue), and detected ripple events 
(shaded). Location of the representative channel is shown. Trial-averaged power spectrogram of the single channel in medial temporal lobe during 
retrieval (top right) and corresponding spike raster of iEEG ripples across trials prior to vocalization (bottom right). Black contour indicates significant 
clusters (cluster-based permutation, p < .01). (D) Trial-averaged power spectrograms and corresponding ripple raster plots for correct and incorrect 
retrieval. Average 70–200 Hz power time series (top right) and average ripple rate time series (bottom right) for correct and incorrect retrieval. Black 
contour indicates significant clusters (cluster-based permutation, p < .01). (E) Cortical topographic plots of difference in 70-200 Hz power and 80-120 
Hz ripple rate between correct and incorrect memory retrieval. Each data point reflects the across-participant t-statistic for a region of interest (ROI). (F) 
Pearson correlation between 70-200 Hz power and 80-120 Hz ripple rate across all ROIs. Each data point represents the average across participants for 
each ROI. Line represents the least-squares regression. (G) Pearson correlation between 70–200 Hz power and 80–120 Hz ripple rate across all ROIs in 
the medial temporal lobe (MTL) and anterior temporal lobe (ATL). Lines represent least-squares regression. (H) Fisher z-transformed Pearson correlation 
between 70–200 Hz power and 80–120 Hz ripple rate across all electrodes at baseline and during memory retrieval. Each participant is represented by 
a data point (*** p < .001). (I) Fisher z-transformed Pearson correlation between 70–200 Hz power and 80–120 Hz ripple rate across all electrodes during 
correct and incorrect memory retrieval (* p < .05). (J) Average 70–200 Hz power across all electrodes during correct compared to incorrect memory 
retrieval in true data (Orig) and after removal of the temporal indices of detected ripples (Control); (*** p< .001; * p < .05). Code and data is provided 
inFigure 1—source code 1 and at https://doi.org/10.5061/dryad.5qfttdz6t.

The online version of this article includes the following source code and figure supplement(s) for figure 1:

Source code 1. Matlab code of ripple events in the iEEG signal.

Figure supplement 1. Ripple-triggered average iEEG and LFP signals.

Figure supplement 2. iEEG and LFP ripple characteristics with different detection thresholds.

Figure supplement 3. Multiple oscillations detection algorithm detected narrowband oscillations.

Figure supplement 4. MTL-ATL cross-correlograms with different detection thresholds.

Figure supplement 5. Interictal epileptiform discharge detection and overlap with ripples.

Figure supplement 6. High-frequency activity reflects discrete ripples.

https://doi.org/10.7554/eLife.68401
https://doi.org/10.5061/dryad.5qfttdz6t
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removing the 80–120 Hz ripples (original correct-control correct: .0096 ± .0023, t(20) = 4.21, p = 2.2 × 
10-4). We also examined the correlation across all ROIs between the participant average difference in 
ripple rate between correct and incorrect trials and the difference in HFA after removal of the discrete 
ripples and found that this relation is no longer significant (r = -.042, p = .270; Figure 1—figure 
supplement 6F,G). Finally, to confirm that much of the 70–200 Hz power is driven by relatively band 
limited 80–120 Hz ripples, we repeated our analysis after detecting discrete ripple events in a higher 
120–200 Hz frequency band. Across ROIs from the entire cortex, we did not find a significant correla-
tion between the participant average difference in HFA between correct and incorrect trials and the 
difference in 120–200 Hz ripple rate (Figure 1—figure supplement 6H).

Ripple band amplitudes reflect a spectrum of underlying local spiking 
activity
In a subset of six participants, we had the opportunity to record micro-scale local field potentials 
(LFPs) and single unit spiking activity from a micro-electrode array (MEA) implanted in the anterior 
lateral temporal lobe underneath the iEEG electrodes (Figure 2A; Figure 2—figure supplement 1; 
see Materials and methods). In an example participant, ripples present in a single iEEG recording elec-
trode overlying the MEA clearly occur simultaneously with ripples in the LFP across multiple micro-
electrodes within the MEA (Figure 2B; Figure 2—figure supplement 2). These discrete events are 
accompanied by increases in spiking activity across multiple units, and therefore transient increases in 
the overall population spiking rate across the MEA (Figure 2—figure supplement 3 and Figure 2—
figure supplement 4).

The continuous time data of iEEG, LFP, and spiking activity suggest that 80–120  Hz ripples at 
both the macro- and micro- spatial scale and single unit spiking activity are related. To examine this 
relation, we computed ‍z‍-scored 80–120 Hz ripple band amplitude in both the overlaying iEEG elec-
trode and the average ‍z‍-scored ripple band amplitude and spike rate in each of the MEA electrodes 
during 100 ms non-overlapping windows over all retrieval trials (ripple rate .84 ± .43 Hz across micro-
electrodes across all participants). Across all time windows in this participant, the average spike rate 
across MEA electrodes is significantly correlated with iEEG and LFP ripple band amplitude (spike 
rate v LFP amplitude r = .61, p < 1 × 10-18; spike rate v iEEG amplitude r = .12, Pearson correla-
tion; Figure 2C). We found that the relation between spiking activity and ripple band amplitude at 
both spatial scales is consistent and significant across participants (spike rate v LFP amplitude, Fisher 
z-transform: r = .751 ± .188; t(5) = 4.00, one-tailed t-test; spike rate v iEEG amplitude: r = .118 ± .049; 
t(5) = 2.39, p = .031; Figure 2D).

These data demonstrate that the continuous time measure of 80–120 Hz ripple band amplitude is 
related to spiking activity. However, we were interested in understanding whether the amplitude and 
duration of discrete ripples may exist on a continuum reflecting underlying neuronal activity. We there-
fore relaxed our criteria for identifying discrete ripple events in order to detect ripples that are smaller 
and shorter duration, which are often assumed to be noise (see Materials and methods). We found 
ripples at both the macro- and micro-scale with a range of amplitudes and durations (Figure 1—figure 
supplement 2). During every ripple detected in each LFP trace, we collected the average spike rate of 
units recorded in the respective MEA electrode and computed the Pearson correlation between LFP 
ripple amplitude and spike rate across all ripples. Across participants, LFP ripple amplitude is consis-
tently and significantly correlated with spike rate (Fisher ‍z‍-transform, r = .10 ± .02; t(5) = 3.62, p = 
.008, one-tailed ‍t‍-test; Figure 2E; Figure 2—figure supplement 5A). Even when ripples have ampli-
tudes or durations below previously used thresholds, spiking activity is present in the microelectrode 
recording (Figure 2—figure supplement 5B).

While we found a strong relation between spiking activity and ripple amplitude, this observa-
tion could be confounded by a correlation between ripple amplitude and duration (Figure 1—figure 
supplement 2E). Larger amplitude are larger in duration and therefore may have more opportunity to 
co-occur with spikes by chance. To account for this, we shuffled the time indices of the detected spike 
times and computed the correlation between LFP ripple amplitude and the spike rate. The true rela-
tion between LFP ripple band amplitude and the spike rate is significantly greater than the shuffled 
distribution (true-shuffled r = .096 ± .020; t(5) = 3.312, p = .011, paired one-tailed t-test; Figure 2F).

In a similar manner, during every iEEG ripple we determined how many individual units spike as 
a proportion of the total number of units identified in each experimental session (Figure 2—figure 

https://doi.org/10.7554/eLife.68401
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Figure 2. Ripple amplitudes reflect a spectrum of underlying local spiking activity. (A) Locations of the 
microelectrode arrays (MEA) in six participants (top left). Location of the MEA with respect to four nearby iEEG 
channels in one participant (bottom left). Intraoperative photo of implanted MEA in the ATL (top right) and after 
placement of an iEEG grid over the MEA (bottom right). Schematic of scalp, skull and cortex with respect to one 
iEEG channel on the cortical surface and one MEA that extends into cortex (bottom). (B) Brief 1500 ms window 
of 1-200 Hz iEEG signal (black), 80-120 Hz band iEEG signal (blue), 80-120 Hz band LFP signals across all MEA 
electrodes (purple), and spike raster for sorted units (red). (C) Pearson correlation between average spike rate and 
average LFP ripple amplitude across all MEA electrodes in one participant (blue). Pearson correlation between 
average spike rate and iEEG ripple band amplitude for one nearby iEEG electrode in one participant (purple). 
Each data point represents a 100 ms non-overlapping window. (D) Fisher ‍z‍-transformed Pearson correlation 
between continuous spike rate and LFP and iEEG ripple amplitude. Group level statistics are shown as mean ± 
SEM across six participants. Each data point represents a participant (** p < .01, * p < .05). (E) Average duration 
and amplitude of ripples in the LFP signal related to the number of spikes during the ripple. Each data point 
represents a participant. (F) Fisher z-transformed Pearson correlation between spike rate and amplitude of 
coincident LFP ripple. Group level results are shown as mean ± SEM across six participants. Each data point 
represents a participant. True data (orig) compared to correlations when shuffling the spike time indices (shuffled; 
* p < .05). Forest plot of the r equivalent effect size and 95% CI for each participant and random-effect (RE) mean 
estimate across all participants (right). (G) Average duration and amplitude of ripples in the iEEG signal related to 
the number of spikes during the ripple. Each data point represents a participant. (H) Fisher ‍z‍-transformed Pearson 
correlation between percentage of spiking units and amplitude of coincident iEEG ripple. Group level results are 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.68401


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 7 of 25

supplement 5C). We computed the Pearson correlation between the percentage of actively firing 
units and the iEEG ripple band amplitude and duration across all detected iEEG ripples in every 
participant (Figure  2H; Figure  2—figure supplement 5D). Across participants, this correlation is 
significant (Fisher ‍z‍-transform, r = .15 ± .03; t(5) = 4.679, p = .003, one-tailed ‍t‍-test). We performed 
the same shuffling procedure to account for ripple duration, and found that the true correlations 
across participants are significantly larger than the shuffled data (true-shuffled r = .069 ± .027; t(5) 
= 2.517, p = .027, paired one-tailed t-test; Figure 2H). Together, these data demonstrate a strong 
relation between underlying unit spiking activity and ripples observed at the micro- and macro-scale 
in the human temporal cortex.

Macro-scale ripples reflect number and alignment of micro-scale ripples
Our data suggest that ripples observed at both spatial scales may be related to one another. We 
hypothesized that the amplitude of the ripple observed in the iEEG signal is related to both the total 
number of LFP ripples and the extent to which the LFP ripples observed across the underlying MEA 
electrodes are aligned (Figure 3A).

We first examined the relation between the amplitude of the iEEG ripple and the number of LFP 
ripples simultaneously present in the MEA electrodes. In every participant, we detected ripples in 
each of the four iEEG electrodes closest to the MEA. For every detected ripple, we computed the 
mean 80–120 Hz ripple band amplitude across the iEEG electrodes and the number of LFP ripples 
simultaneously observed across the MEA (Figure  3—figure supplement 1A). In each participant, 
the iEEG ripple amplitude is positively correlated with the percent of MEA electrodes exhibiting LFP 
ripples across all detected iEEG ripples (% MEA electrodes with ripples, Fisher z-transform; r = .11 
± .02, p = .005; Figure 3B; Figure 3—figure supplement 1B,C). We accounted for the possibility 
that the longer durations observed in higher amplitude iEEG ripples may result in a larger number 
of detected LFP ripples by using a similar shuffling procedure. In this case, during each shuffle we 
performed a random circular shift of the time indices of the detected LFP ripples. After accounting for 
these longer durations, we still found that the true relation between iEEG ripple amplitude and the 
number of simultaneously detected LFP ripples is significantly greater than the shuffled distribution 
(true-shuffled r = .05 ± .02; t(5) = 2.543, p = .026, paired one-tailed t-test; Figure 3B).

We then examined the relation between the amplitude of the iEEG ripple and the extent to which 
the LFP ripples in the underlying MEA are synchronized. For every detected iEEG ripple, we extracted 
the LFP 80–120 Hz ripple band instantaneous phase for all 96 MEA electrodes and computed the 
maximum pairwise phase consistency (PPC) over all time points within the duration of that iEEG ripple 
(Figure 3C and D; see Materials and methods). Across participants, the PPC is significantly correlated 
with the maximum amplitude of the observed iEEG ripples (Fisher z-transform; r = 1.06 ± .43; t(5) 
= 2.34, p = .033, one-tail t-test; Figure 3E–F; Figure 3—figure supplement 1D). In addition, the 
correlations across participants are significantly greater than those that would be observed by chance 
(true-shuffled r = .03 ± .01; t(5) = 2.28, p = .036, paired one-tail t-test; Figure 3E; see Materials and 
methods). We repeated this analysis using only microelectrodes with detected ripples and found 
that, across participants, the PPC is still significantly correlated with the maximum amplitude of the 
observed iEEG ripples (Fisher z-transform; r = .066 ± .02; t(5) = 3.71, p = .014, one-tail t-test). These 

reported as mean ± SEM across participants. True data (orig) compared to correlations when shuffling the spike 
time indices (shuffled; * p < .05). Forest plot of the r equivalent effect size and 95% CI for each participant and 
random-effect (RE) mean estimate across all participants (right). Code and data is provided inFigure 2—source 
code 1 and at https://doi.org/10.5061/dryad.5qfttdz6t.

The online version of this article includes the following source code and figure supplement(s) for figure 2:

Source code 1. Matlab code of correlations between continuous spiking, LFP and iEEG.

Figure supplement 1. MEA position with respect to iEEG channels.

Figure supplement 2. Raw iEEG and LFP Trace.

Figure supplement 3. Spiking auto-correlograms within and outside ripples.

Figure supplement 4. Ripple power and spike rate distributions.

Figure supplement 5. Ripples reflect underlying neuronal spiking.

Figure 2 continued
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data together suggest that the iEEG ripple reflects both the aggregate sum and alignment of the 
underlying LFP ripples.

To further examine the relation between ripples detected in the LFP signal and ripples detected 
in the iEEG explicitly, we measured the coincidence of ripples detected at the two spatial scales by 
computing the cross-correlogram of ripples detected in the LFP and iEEG traces. We found that 
ripples are coincident above chance for all detection parameters tested (Figure 3—figure supple-
ment 2; see Materials and methods). Moreover, the extent to which ripples are coincident between 
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Figure 3. Macro-scale ripple amplitude reflects number and alignment of micro-scale ripples. (A) Brief window around one iEEG ripple showing 
unfiltered iEEG signal (black), ripple band iEEG signal (blue) and ripple LFPs for one nearby iEEG channel and six microelectrode array (MEA) electrodes 
with coincident LFP ripples. (B) Fisher ‍z‍-transformed Pearson correlations for percentage of MEA electrodes containing LFP ripples and amplitude of 
coincident iEEG ripple. Group level results reported as mean ± SEM persists when duration of the iEEG ripple is accounted for by shuffling (* p < .05). 
Each data point represents a participant. (C) Schematic of calculation of pairwise phase differences across all microelectrodes to compute pairwise 
phase consistency. (D) Brief window around one iEEG ripple showing ripple band iEEG signal (blue), instantaneous phase of a pair of MEA electrodes 
(purple; out of many pairs, not shown) and instantaneous phase difference of the ch 1 and ch 2 pair (black). Maximum of iEEG ripple indicated with small 
black square in the shaded window above the ripple band iEEG signal. Polar histogram of all pairwise phase differences during a detected iEEG ripple 
is centered around 0 (blue). Polar histogram all pairwise phase differences outside of a iEEG ripple is more uniform (black). (E) Fisher ‍z‍-transformed 
Pearson correlations between maximum pairwise phase consistency across all MEA electrode pairs and maximum amplitude of iEEG ripples. Group 
level results, reported as mean ± SEM, persists when duration of the iEEG ripple is accounted for by shuffling (* p < .05). Each data point represents a 
participant. (F) Forest plot of the r equivalent effect size and 95% CI for each participant and random-effect (RE) mean estimate across all participants. 
(G) Relation between distance between MEA and iEEG electrode and LFP-iEEG ripple synchrony. Each data point represents the relation between a 
MEA and iEEG electrode in the MTL or ATL, and each color represents a different patient. Code and data is provided in Figure 3—source code 1 and 
at https://doi.org/10.5061/dryad.5qfttdz6t.

The online version of this article includes the following source code and figure supplement(s) for figure 3:

Source code 1. Matlab code of pairwise phase consistency between LFP ripple signal and iEEG ripple amplitude.

Figure supplement 1. Macro-scale ripple amplitude reflects number and alignment of micro-scale ripples.

Figure supplement 2. LFP-iEEG ripple cross-correlations for different detection thresholds.

Figure supplement 3. LFP-iEEG ripple cross-correlations with respect to distance.

https://doi.org/10.7554/eLife.68401
https://doi.org/10.5061/dryad.5qfttdz6t


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 9 of 25

π 2π0

0.02

0

Fr
ac

tio
n 

of
 S

pi
ke

s 

80-120 Hz iEEG

π 2π0

0.02

0

Phase (radians)

B π/2

± π

- π/2

0

80-120 Hz LFP
π/2

0± π

- π/2
Sp

ik
e-

LF
P 

PP
C 

(Z
)

Frequency (Hz)

D

C

Fr
ac

tio
n 

of
 S

pi
ke

s 

80-120 Hz iEEG

4-12 Hz iEEG

spikes

80-120 Hz LFP

A

2-10 Hz LFP 2-10 Hz iEEG

π 2π0π 2π
0

0.02

00
0

0.02 0

π/2

0

π/2

2 - 10 Hz LFP

± π

- π/2

± π

- π/2
Fr

ac
tio

n 
of

 S
pi

ke
s 

Fr
ac

tio
n 

of
 S

pi
ke

s 

Phase (radians)

Phase (radians)

Phase (radians)

Pe
ar

so
n 

co
rr

el
at

io
n

(z
-t

ra
ns

fo
rm

ed
) *

E F LFP Ripple Amplitude
v Spike-Ripple LFP PPC

G

Ri
pp

le
 v

s 
N

o 
Ri

pp
le

Sp
ik

e-
LF

P 
PP

C

Frequency (Hz)

3.4 86.9 Hz
104.0 Hz

Orig Shu�ed

p < 0.05p < 0.05

3.1

10 μV

200 ms

STA

Figure 4. Spiking activity is phase-locked to ripples and low frequencies. (A) Brief window around one iEEG 
ripple and underlying LFP ripple and spiking activity. Dashed black lines indicate trough of iEEG ripple cycles 
compared to concurrent LFP ripple cycles and spiking. (B) Distribution of phases of LFP ripple (left) and iEEG ripple 
(right) across spike times for all units. (inset) Complex mean of the distribution of phases for each participant is 
depicted in a polar plot. Circles filled with a star if the distribution within a participant shows significant phase-
locking (Rayleigh test, p < .001). Black line shows the average of six distributions across participants. (C) Spike 
triggered average (STA) for spikes detected within LFP ripples, in pink, with the 2-10 Hz bandpass filtered signal, 
in black. Bandpass filtered STA during correct (green) and incorrect (orange) trials are also shown. (right), Brief 
500 ms window of 2-10 Hz filtered LFP (green) across MEA electrodes with neuronal activity. Red dots mark spikes 
occurring preferentially at trough of local LFP. (D) Distribution of phases of LFP low-frequency (left) and iEEG 
low-frequency (right) signals across spike times for all units. (inset) Complex mean of the distribution of phases 
for each participant is depicted in a polar plot. Circles filled with a star if the distribution within a participant 
shows significant phase-locking (Rayleigh test, p < .001). Black line shows the average of six distributions across 
participants. (E) Mean ± SEM spike-LFP PPC across participants for all spikes to LFP for every frequency between 
2 and 300 Hz. Peak frequencies of significant clusters are shown. (F) Mean ± SEM difference in spike-LFP PPC 
between spikes that co-occur with LFP ripples and spikes that do not across participants. Peak frequencies of 
significant clusters are shown. (G) Fisher ‍z‍-transformed Pearson correlations between spike-LFP ripple PPC and 
LFP ripple amplitude. Each data point represents a participant. True data (orig) compared to correlations when 
shuffling the spike time indices (shuffled; * p < .05). Code and data is provided inFigure 4—source code 1 and at 
https://doi.org/10.5061/dryad.5qfttdz6t.

The online version of this article includes the following source code and figure supplement(s) for figure 4:

Source code 1. Matlab code of pairwise phase consistency between spiking and LFP.

Figure supplement 1. Spiking activity is phase-locked to ripples and low frequencies.

Figure supplement 2. Spike-LFP PPC for different ripple detection thresholds.
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electrodes at the two spatial scales is significantly related to the distance between them (all partici-
pants: r = -.572, p = .0035; across each participant, n = 6: r = -.595 ± .271, mean ± SEM, t(5) = -2.40, 
p = .0615; Figure 3G; Figure 3—figure supplement 3).

Spiking activity is phase-locked to ripples
Given that synchronization of LFP ripples was associated with increased ripple amplitudes, we also 
hypothesized that spike timing during ripples would be phase locked (Le Van Quyen et al., 2008). 
In individual participants, we often observed that unit firing preferentially occurs at the trough of the 
corresponding LFP ripples (Figure 4A). When the LFP ripples are aligned, spiking activity also appears 
to preferentially occur at the trough of the overlying iEEG ripple. In all participants, spikes from all 
units are locked to the trough of the 80–120 Hz ripple band in the LFP signal (p < 10-4, Rayleigh test 
across all units in each participant; p = 4.8 × 10-4, Rayleigh test across six complex means, one from 
each participant; Figure 4B). We did not observe such phase consistency when examining the extent 
to which spiking activity is locked to the phase of 80–120 Hz ripple band activity in the macro-scale 
iEEG signal (p = .12, Rayleigh test across all units and across participants; Figure 4B).

When we visualized the spike triggered average of the LFP signal in individual participants, we often 
observed that spiking activity also appeared locked to negative deflections in the LFP (Figure 4C). 
These negative deflections contain spectral power within low frequencies. We therefore also exam-
ined the distribution of 2–10 Hz low-frequency phases present in the LFP signal around each spike 
and found significant locking to the trough in all participants (p < 10-4, Rayleigh test; p = 5.4 × 10-4, 
Rayleigh test across six complex means, one from each participant; Figure 4D). Spikes from all units 
appear locked around the trough of the 2–10  Hz low-frequency iEEG signal when pooled, which 
reflects the negative deflection in the iEEG signal, but when examined separately for each participant, 
the apparent spike locking to the 2–10 Hz iEEG signal is not consistently at the same phase across 
participants (p < 10-4, Rayleigh test across all units in each participant; p = .70, Rayleigh test across six 
complex means, one from each participant; Figure 4D).

To examine the relation between spiking activity and individual frequencies within the LFP signal, 
we computed PPC across all spikes within each MEA electrode for each frequency between 2 Hz and 
400 Hz (see Materials and methods) (Vinck et al., 2010). Across participants, spiking activity is signifi-
cantly locked to specific high-frequency bands in the LFP (peak 86.9 Hz, p < .05, permutation test; see 
Materials and methods Figure 4E). We confirmed that spiking activity is locked to this high-frequency 
band across participants by also computing the phase-locking value (Figure 4—figure supplement 
1A). This observed locking between spikes and this high-frequency band in the LFP signal was robust 
to different detection thresholds (Figure 4—figure supplement 2). Spikes also appear locked to a 
low-frequency band, but this likely represents the sharp negative deflections observed in the iEEG 
and LFP traces that accompany burst of spiking activity. Spikes are significantly more locked to high 
frequencies when they arise during ripples as compared to between ripples (p < .05, permutation test; 
Figure 4, Figure 4—figure supplement 1B).

We next examined the relation between the extent to which spiking activity locks to the 80–120 Hz 
frequency within each ripple and the amplitude of the ripple. Across participants, mean spike-LFP PPC 
within the 80–120 Hz ripple band is significantly correlated with 80–120 Hz ripple amplitude across all 
MEA electrodes (Fisher ‍z‍-transform, r = .084 ± .026, t(5) = 3.27, p = .011; Figure 4G). To account for 
any possible effects of ripple duration on the calculation of PPC, we compared this true distribution 
to a chance distribution and found that across participants LFP ripple amplitude exhibits a signifi-
cantly stronger correlation with spike locking to the 80–120 Hz band in the true data as compared 
to the chance distribution (t(5) = 2.64, p = .023; see Materials and methods). Together with our data 
examining the relation between spiking activity and ripple amplitude, these data suggest that the 
amplitude of ripples in the LFP signal may reflect both the sum and alignment of underlying spiking.

Finally, given the observed relation between spiking activity and ripples, we then examined whether 
ripples themselves also exhibit a phase preference. As with the individual spikes, we considered 
each LFP ripple as an event and visualized the ripple-triggered average of the iEEG and LFP signal 
(Figure 4—figure supplement 1C). Ripples appear to exhibit a clear relation with negative deflec-
tions in the iEEG and LFP trace. We therefore examined the distribution of 2–10 Hz low frequency 
phases present in the LFP signal during each LFP ripple and found significant locking to the trough in 
all participants (p < 10-4, Rayleigh test across all ripples in each participant; p = .0099, Rayleigh test 

https://doi.org/10.7554/eLife.68401
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across complex means, one from each participant; Figure 4—figure supplement 1E). Micro-scale 
ripples are also locked to the 2–10 Hz low-frequency band in the iEEG signal within individual partic-
ipants but at variable phases (p < 10-4, Rayleigh test across all ripples in each participant; p = .72, 
Rayleigh test across six complex means, one from each participant).

Discussion
Despite significant advances over the past several decades, how to accurately interpret the various 
fluctuations and dynamics observed through direct recordings of the human brain has remained chal-
lenging. Our results demonstrate that many of the changes in broadband high-frequency activity 
captured through iEEG reflect transient 80–120 Hz oscillations. These short bouts of neuronal activity 
exist on a continuum of amplitudes and durations, and reflect underlying bursts of neuronal spiking.

We consider the possibility that these brief neuronal events are ripple oscillations that may be 
contributing to human cognition. One of the challenges, however, in examining the role of ripple oscil-
lations in cognition, especially in the human brain, has been determining whether any particular event 
does or does not qualify as a ripple. Many of the criteria used for defining ripples in human record-
ings have been drawn from the more developed literature examining ripple oscillations in the rodent 
MTL (Buzsáki, 2015; Joo and Frank, 2018). Researchers interested in studying ripples, whether in 
the cortex or in the MTL, often choose fixed parameters based on these previous studies. However, 
fixed criteria may not accommodate the reality that ripples are dynamic entities with morphologies 
that can vary based on brain region or behavior (Buzsáki, 2015; Ngo et al., 2020). Moreover, it is 
not clear how these parameters that have been well established in rodents translate across different 
species, as ripples in human brain recordings for example have only been relatively recently described 
(Axmacher et al., 2008; Staresina et al., 2015; Vaz et al., 2019; Norman et al., 2019; Jiang et al., 
2020; Norman et al., 2021).

Our data demonstrate that cortical ripples captured through human brain recordings exist on a 
continuum of amplitudes and durations. Our results do not prescribe a fixed set of criteria for iden-
tifying ripples, but instead highlight the point that strictly adhering to predefined criteria for what 
constitutes a ripple may run the risk of overlooking functionally meaningful events. Indeed, we explic-
itly explore this point here by using more liberal thresholds for ripple detection. By recording neural 
activity across spatial scales, we find that even ripples with smaller amplitudes or shorter durations are 
associated with discrete bursts of spiking activity. The amplitude and duration of each ripple in the 
micro-scale LFP signal is related to the amount of neuronal spiking activity and the extent to which 
such spiking is synchronous. In turn, the amplitude and duration of each ripple in the macro-scale 
iEEG recording is related to the number and synchrony of ripples at the micro-scale. These results 
are consistent with previous studies of ripples conducted through both in vivo and slice recordings 
of rodent MTL structures which have suggested that ripples reflect the synchronous interactions and 
overall activity of underlying neurons (Csicsvari et al., 1999; Stark et al., 2014; Khodagholy et al., 
2017; Nitzan et al., 2020). Although the durations of ripples we observe in our human recordings are 
shorter than those observed in the rodent MTL, this could be related to differences in the neural archi-
tecture, and therefore differences in the latencies of activation among individual neurons, between 
species or between brain regions.

The discovery that such transient bouts of narrow band oscillatory activity may be functionally 
relevant, both in the human MTL but also in the human cortex, has raised the possibility that these 
events are similar to MTL ripples that have been extensively described in rodents (Axmacher et al., 
2008; Staresina et al., 2015; Buzsáki, 2015; Vaz et al., 2019; Jiang et al., 2020; Norman et al., 
2021). Whether ripples are specific to the MTL or whether they are a more general feature of neural 
processing is still a matter of debate. Our data demonstrate similar events in the human cortex, fast 
oscillations within a narrow 80–120 Hz band of activity that we identify using multiple complementary 
analyses. We excluded the possibility that these events are related to epilepsy and interictal epilep-
tiform discharges, and we find that these events are associated with ripples in the MTL. Importantly, 
these events are related to bursts of underlying spiking activity. We consequently label them as ripples 
given their similarity and relation with MTL ripples. Regardless of their exact label, however, these 
events appear to reflect transient bouts of spiking activity that are related to information processing 
in the brain.

https://doi.org/10.7554/eLife.68401
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Our work is also consistent with several prior studies demonstrating a strong association between 
gamma power, broadband high frequency power, and spiking activity (Berens et al., 2008; Manning 
et al., 2009; Panagiotaropoulos et al., 2012; Burke et al., 2014). We similarly find a strong rela-
tion between spiking activity and ripples, which in our analyses occupy a narrow band of frequen-
cies between 80–120 Hz. It is possible that these phenomena are related, and that the previously 
described gamma band or broadband activity simply includes this narrow ripple band. We find that 
this narrow band activity accounts for many of the changes observed in the broadband power, and, of 
note, the cortical spiking activity in our data is locked to this narrow band.

By examining both iEEG and LFP recordings in the human brain for the presence of discrete ripples, 
our data therefore support the hypothesis that many of the dynamics observed in broadband high 
frequency activity captured from the human brain are driven by well-defined and brief bouts of neural 
oscillatory activity that reflect bursts of synchronized spiking. A common approach for investigating 
the neural correlates of human cognition has been to average neural activity over multiple trials and 
over broad frequency ranges (Burke et al., 2014; Burke et al., 2015; Long et al., 2014; Greenberg 
et al., 2015; Wittig et al., 2018). This approach has guided our understanding of human episodic 
memory formation, for example, but fails to account for the possibility that the neural mechanisms of 
memory may be more punctate (Jones, 2016; Lundqvist et al., 2016). The relation between band 
limited 80–120 Hz ripples and broadband high-frequency activity that we observe in our data suggests 
that many of the interpretations regarding the neural substrates of human memory may be better 
served by considering these transient events. It is important to recognize, however, that this relation is 
not absolute and appears less robust outside of the MTL and ATL. Even within these brain regions, this 
relation is clearer only during correct compared to incorrect memory retrieval. Hence, while 80–120 Hz 
ripples may underlie many of the phenomena observed through broadband high-frequency activity, 
there are likely other neural mechanisms that contribute to the dynamics observed in the iEEG signal.

The possibility that information is neurally encoded through packets of activity has been rela-
tively under-explored in human brain recordings. Recent evidence captured through animal record-
ings related to both memory and perception, however, supports this possibility (Lundqvist et al., 
2016; Luczak et al., 2009; Luczak et al., 2015). These advances are partly due to the more sophisti-
cated tools that are available for in vivo recordings of large populations of spiking neurons in animals. 
By recording spiking activity from a population of neurons in the human temporal cortex through 
microelectrode arrays, we find direct evidence that 80–120 Hz ripples that we observe in our data 
are accompanied by bursts of neuronal spiking. Hence, our data demonstrate that neural activity in 
the human temporal cortex may be temporally organized into discrete bursts of spiking. Our data 
focus on these bursts of spiking activity as participants form and retrieve memories since the informa-
tion contained within these bursts has been recently linked with memory retrieval (Vaz et al., 2020; 
Pfeiffer, 2020). However, our data cannot address whether the relation between ripples and under-
lying bursts of synchronized spiking is unique to just the temporal lobe or just to memory. Ripples have 
been most studied in the MTL in both animals and humans, but appear to jointly occur in brain regions 
that either process or receive the same information (Lisman and Jensen, 2013; Khodagholy et al., 
2017; Vaz et al., 2019; Swanson et al., 2020). It is possible that this relation between ripples and 
spiking activity is unique to brain regions that communicate directly with the MTL or that are directly 
involved in memory. Our results, however, raise the possibility that such packets may be a general 
feature of neural coding in the human brain.

Given previous evidence demonstrating that spiking activity within ripples appears locked to the 
trough of each cycle, it is not surprising that we observe similar locking in our data (Le Van Quyen 
et  al., 2008; Nitzan et  al., 2020). We find more consistent locking of spiking activity to higher 
frequencies in the micro- compared to macro-scale. This may be because synchronous spiking can 
occur within local neuronal ensembles while varying across ensembles. However, we also find that 
spikes, and consequently ripples themselves, appear to coincide with large deflections in the iEEG 
and LFP trace that appear to have spectral power within a low-frequency band. Such locking of both 
spiking activity and ripples to the trough of these deflections can account for several phenomena that 
have been previously described in human brain recordings. For example, phase amplitude coupling 
between low frequency oscillations and high-frequency activity is ubiquitous in human recordings and 
has been linked to behavior (Canolty et al., 2006; He et al., 2010; Vaz et al., 2017). If many of the 
increases in broadband high-frequency activity are related to ripples, then phase amplitude coupling 
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may emerge simply because ripples, and therefore spiking activity, coincide with large deflections, or 
sharp waves, in human brain recordings that reflect periods of concentrated synaptic inputs Buzsáki, 
2015.

It is also possible that some of the locking we observe between low-frequency power and spiking, 
bursts of spiking, and therefore ripples, also reflects locking to true low-frequency oscillations. If 
so, then this could also suggest a possible mechanism by which bursts of spiking activity may be 
conveyed from one brain region to another. Oscillations observed in the iEEG have been hypothe-
sized to facilitate communication between brain regions and modulate the excitability or timing of 
neuronal spiking (Fries, 2015; Chapeton et  al., 2019). Indeed, low-frequency coherence may be 
related to successful memory formation (Shirvalkar et al., 2010; Fell et al., 2011; Lega et al., 2012). 
In this framework, these oscillations could open gates of communication, allowing the brain to convey 
a volley of neuronal spiking from one region to another. Recent evidence has also suggested that 
higher frequency oscillations that are synchronous across brain regions may also facilitate communica-
tion, although the evidence for this still remains unclear (Bosman et al., 2012; Fries, 2015; Buzsáki, 
2015; Ray and Maunsell, 2015). Our data has implications for interpreting such higher frequency 
coherence, as two brain regions that each exhibit bursts of spiking activity, either conveyed from one 
to the other directly or driven by a third region, can each generate high frequency ripple oscillations. If 
the underlying neuronal interactions in each brain region are similar, the ripples may appear coherent 
and at the same high frequency. Conversely, if the underlying architecture of each region is different, 
then any resulting higher frequency oscillations may differ in morphology and frequency, and there-
fore appear desynchronized.

Together, our data offer insights into the dynamic fluctuations observed in direct recordings from 
the human brain and suggest that neural activity may be organized into discrete 80–120 Hz ripple 
events that reflect underlying bursts of neuronal spiking. Our data argue against using fixed criteria 
to identify these ripples, and instead demonstrate that these ripples exist on a continuum of activity. 
As each of these 80–120 Hz ripples reflects bursts of neuronal spiking with varying degrees of activity, 
our data more broadly suggest these ripple oscillations may constitute one of the primary substrates 
of human cognition.

Materials and methods
Participants
Twenty-one participants with drug resistant epilepsy underwent a surgical procedure in which plat-
inum recording contacts were implanted on the cortical surface as well as within the brain parenchyma. 
In each case, the clinical team determined the placement of the contacts to localize epileptogenic 
regions. In all the participants investigated here, the clinical region of investigation was the temporal 
lobes.

For research purposes, in six of these participants (4 female; 34.8 ± 4.7 years old) we placed one or 
two 96-channel microelectrode arrays (MEA; 4 × 4 mm, Cereplex I; Blackrock Microsystems, Inc, Salt 
Lake City, UT) in the anterior temporal lobe (ATL) in addition to the subdural contacts. We implanted 
MEAs only in participants with a presurgical evaluation indicating clear seizure localization in the 
temporal lobe and the implant site in the ATL was chosen to fall within the expected resection area. 
Each MEA was placed in an area of cortex that appeared normal both on the pre-operative MRI and 
on visual inspection. Across participants, MEAs were implanted 14.6 ± 3.7 mm away from the closest 
subdural electrode with any ictal or interictal activity identified by the clinical team. Four out of the six 
participants received a surgical resection which includes the tissue where the MEAs were implanted. 
One participant had evidence of focal cortical seizure activity and received a localized resection poste-
rior to the MEA site. One participant did not have a sufficient number of seizures during the moni-
toring period to justify a subsequent resection. Neither participant experienced a change in seizure 
type or frequency following the procedure, or experienced any noted change in cognitive function. 
The data captured from these MEAs in these participants were included in a previous study (Vaz et al., 
2020).

Data were collected at the Clinical Center at the National Institutes of Health (NIH; Bethesda, 
MD). The Institutional Review Board (IRB) approved the research protocol (11 N-0051), and informed 
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consent was obtained from the participants and their guardians. All analyses were performed using 
custom built Matlab code (Natick, MA). Data are reported as mean ± SEM unless otherwise specified.

Paired-associates memory task
Each participant performed a paired associates verbal memory task (Yaffe et al., 2014; Jang et al., 
2017; Vaz et al., 2020). Previous studies have demonstrated that correct memory retrieval in this task 
is associated with increases in high-frequency activity (Yaffe et al., 2014; Jang et al., 2017; Vaz et al., 
2020). Here, we replicate these previous findings using a subset of participants that were included 
in these previous studies as well as additional new participants. During the study period, partici-
pants were sequentially shown a list of word pairs and instructed to remember the novel associations 
between each pair of words (encoding). Later during testing, they were cued with one word from each 
pair selected at random and were instructed to say the associated word into a microphone (retrieval).

A single experimental session for each participant consisted of 25 lists, where each list contained 
six pairs of common nouns shown on the center of a laptop screen. The number of pairs in a list was 
kept constant for each participant. Words were chosen at random and without replacement from a 
pool of high-frequency nouns and were presented sequentially and appearing in capital letters at the 
center of the screen. We separated the study and test of each word pair by a minimum lag of two 
study or test items. During the study period, each word pair was preceded by an orientation stim-
ulus (’+’) that appeared on the screen for 250–300 ms followed by a blank interstimulus interval (ISI) 
between 500–750 ms. Word pairs were then presented stacked in the center of the screen for 4000 ms 
followed by a blank ISI of 1000 ms. Following the presentation of the list of word pairs, participants 
completed an arithmetic distractor task of the form A + B +  C = ? for 20 seconds.

During the test period, one word was randomly chosen from each of the presented pairs and 
presented in random order, and the participant was asked to recall the other word from the pair by 
vocalizing a response. Each cue word was preceded by an orientation stimulus (a row of question 
marks) that appeared on the screen for 4000 ms followed by a blank ISI of 1000 ms. Participants 
could vocalize their response any time during the recall period after cue presentation. We manually 
designated each recorded response as correct, intrusion, or pass. A response was designated as 
pass when no vocalization was made, when the participants made an unintelligible vocalization like 
’umm’, or when the participant vocalized the word ’pass’. During pass trials where no vocalization was 
present, we assigned a response time by randomly drawing from the distribution of correct response 
time during that experimental session. We did not include such pass trials where no vocalization 
was present in our analysis of incorrect trials. We defined all intrusion and other pass trials as incor-
rect trials. A single experimental session contained 150 total word pairs. Each participant completed 
between 1 and 3 sessions (2.2 ± .3 per participant). Participants studied 93 ± 8  word pairs, and 
successfully recalled 30.1% ± 4.1% of words. While patients were presented with 150 words pairs in 
each experimental session, the number of word pairs they actually studied was reduced if they did not 
complete the session due to interruptions or participant fatigue.

Intracranial EEG recordings
We collected intracranial EEG (iEEG) data from a total of 1660 subdural and depth recording contacts 
(79 ± 4 per participant; Figure 1—figure supplement 6). Subdural contacts were arranged in both grid 
and strip configurations with an inter-contact spacing of 10 mm. We captured iEEG signals sampled at 
1000 Hz. For clinical visual inspection of the recording, signals were referenced to a common contact 
placed subcutaneously, on the scalp, or on the mastoid process. The recorded raw iEEG signals used 
for analyses were referenced to the system hardware reference, which was set by the recording ampli-
fier (Nihon Kohden, Irvine CA) as the average of two intracranial electrode channels. We used the 
Chronux toolbox to apply a local detrending procedure to remove slow fluctuations (≤ 2 Hz) from 
the time series of each electrode and a regression-based approach to remove line noise at 60 Hz and 
120 Hz (Mitra and Bokil, 2009). We did not see a noticeable peak at the 180 Hz harmonic when we 
surveyed the power spectral density of several electrodes for noise and therefore did not remove 
line noise at that harmonic to avoid introducing artifacts. We implemented additional thresholds to 
remove movement artifacts and pathological activity related to the patient’s epilepsy.

We quantified spectral power and phase in the iEEG signals by convolving the voltage time series 
with 200 linearly spaced complex valued Morlet wavelets between 2 and 200 Hz (wavelet number 6). 
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We extracted data from all retrieval periods, beginning 4 s preceding vocalization to 1 s following 
vocalization and included a 1000 ms buffer on both sides of the clipped data. We squared and log-
transformed the continuous-time wavelet transform to generate a continuous measure of instanta-
neous power for each frequency. To account for changes in power across experimental sessions, 
we ‍z‍-scored power values separately for each frequency and for each session using the mean and 
standard deviation of all respective values for that session. When examining the average changes in 
high frequency activity (70–200 Hz) during memory retrieval across trials, we temporally smoothed the 
‍z‍-scored spectrogram for each iEEG channel using a sliding 600 ms window (90 % overlap) as a point 
of comparison with previous studies of human memory retrieval (Greenberg et al., 2015).

Anatomic localization
We localized electrodes in each participant by identifying high-intensity voxels in a post-operative 
CT image, which was co-registered to a pre-operative T1-weighted MRI. Electrode locations were 
adjusted to account for routine post-operative parenchymal shift by applying a standardized algorithm 
combining intraoperative photography, electrode spatial arrangement, and dural and pial surface 
reconstructions (Trotta et al., 2018). Pial surfaces were reconstructed using FreeSurfer (http://surfer.​
nmr.mgh.harvard.edu) (Fischl, 2012) and were resampled and standardized using the AFNI SUMA 
package (Cox, 1996). The resulting surfaces each contained 198812 vertices per hemisphere, with 
vertices indexed in a standardized fashion, such that for any vertex i, the i th vertex is located in an 
anatomically analogous location across participants. We identified the location of each MEA on each 
participant’s surface reconstruction. We co-registered the individual participant reconstructions with a 
standard template brain, and visualized the locations of each participant’s MEA on the template brain.

We aggregated vertices from the surface reconstruction into a standard set of surface-based 
regions of interest (ROIs) as previously described (Figure  1—figure supplement 6; Trotta et  al., 
2018). Briefly, we sampled 2400 equally spaced vertices per hemisphere to use as ROI centers. ROI 
centers were uniformly distributed across the surface at an average geodesic distance of approxi-
mately 5 mm. We assigned all vertices within a 10 mm geodesic radius of an ROI center to that ROI, 
which achieves a coverage of 99.9% coverage or greater of the pial surface in each participant (Trotta 
et al., 2018). Because ROIs overlap, vertices may be assigned to multiple ROIs. On average, there 
were 669.44 ± 74.30 vertices per ROI and each vertex mapped to 8.08 ± .90 ROIs. We modeled each 
electrode as a cylinder with radius 1.5 mm, found the pial vertices closest to it, and then assigned 
each electrode to the same ROIs as its nearest pial vertices. Due to the overlap between ROIs, each 
electrode is assigned to multiple ROIs and each ROI may contain more than one electrode. For anal-
yses within ROIs across participants, we only included ROIs that contained electrodes from at least 
five participants.

iEEG artifact removal
We implemented several measures to provide the most conservative sampling of non-pathological 
signals possible. We implemented a previously reported automated trial and electrode rejection 
procedure based on excessive kurtosis or variance of iEEG signals to exclude high-frequency activity 
associated with epileptiform activity (Jang et al., 2017; Wittig et al., 2018; Vaz et al., 2019). We 
calculated and sorted the mean iEEG voltage across all trials, and divided the distribution into quar-
tiles. We identified trial outliers by setting a threshold, Q3 + w*(Q3-Q1), where Q1 and Q3 are the 
mean voltage boundaries of the first and third quartiles, respectively. We empirically determined 
the weight w to be 2.3. We excluded all trials with mean voltage that exceeded this threshold. The 
average percent removed across all sessions in each participant due to either system-level noise or 
transient epileptiform activity was 5.17% ± .86% of all electrodes and 2.89% ± .34% of all trials.

In addition, system level line noise, eye-blink artifacts, sharp transients, and inter-ictal epileptic 
discharges (IEDs) can confound the interpretation of our results. We therefore implemented a previ-
ously reported automated event-level artifact rejection (Staresina et al., 2015; Vaz et al., 2019). We 
calculated a z-score for every iEEG time point based on the gradient (first derivative) and amplitude 
after applying a 250 Hz high pass filter (for identification of IEDs). All time points within 100 ms of any 
time point that exceeded a z-score of 5 with either gradient or high-frequency amplitude were marked 
as artifactual. We visually inspected the resulting iEEG traces and found that the automated proce-
dure reliably removed IEDs and other artifacts. In total, following exclusion of electrodes because 
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of artifact, we retained 1577 electrodes (75 ± 4 per participant) for analysis. We approximated a 
reference-free montage within each participant by subtracting the common average reference of all 
retained electrodes from the voltage trace of each individual electrode for that participant.

Microelectrode recordings
In six participants, we additionally captured spiking activity and micro-scale local field potentials (LFP) 
from the MEAs implanted in the anterior temporal lobe. Microelectrodes were arranged in a 10 × 
10 grid with each electrode spaced 400 μm apart and extending 1.5 mm into the cortical surface 
(1.0  mm for one participant). Post-operative paraffin blocks of the resected tissue demonstrated 
that the electrodes extended approximately halfway into the 3-mm-thick gray matter. We digitally 
recorded microelectrode signals at 30 kHz using the Cereplex I and a Cerebus acquisition system 
(Blackrock Microsystems), with 16-bit precision and a range of ± 8 mV.

To extract unit spiking activity, we re-referenced each electrode’s signal offline by subtracting the 
mean signal of all the electrodes in the MEA, and then used a second order Butterworth filter to 
bandpass the signal between 0.3 and 3 kHz. Using a spike-sorting software package (Plexon Offline 
Sorter, Dallas, TX, USA), we identified spike waveforms by manually setting a negative or positive 
voltage threshold depending on the direction of putative action potentials. The voltage threshold was 
set to include noise signals used in calculating unit isolation quality (see below). Waveforms (dura-
tion, 1.067 ms; 32 samples per waveform) that crossed the voltage threshold were stored for spike 
sorting. Spike clusters were manually identified by viewing the first two principal components, and 
the difference in peak-to-trough voltage (voltage versus time) of the waveforms. We manually drew 
a boundary around clusters of waveforms that were differentiable from noise throughout the exper-
imental session. In this manner, we identified a total of 989 putative single units across all sessions 
(average of 72 ± 21 units per participant). The average spike rate across all units was 2.82 ± .01 Hz. 
In addition to the spiking data, we also used a 500 Hz low pass filter to extract the LFP signals from 
each microelectrode, down-sampled to 1000 Hz, and then performed a similar line noise removal and 
channel selection procedure to that used for the iEEG channels to exclude artifacts related to epilep-
tiform activity or other system level noise. Across the six participants, after pre-processing we retained 
recordings from 78 ± 27 MEA electrodes for further analysis.

Single-unit recording quality measures
Due to variability in the signal quality across recordings and the subjective nature of spike sorting, 
we quantified the quality of each unit by calculating an isolation score and signal to noise ratio (SNR) 
(Joshua et al., 2007). The isolation score quantifies the distance between the spike and noise clusters 
in a 32-dimensional space, where each dimension corresponds to a sample in the spike waveform. The 
spike cluster consisted of all waveforms that were classified as belonging to that unit, and the noise 
cluster consisted of all waveforms that crossed the threshold that were not classified as belonging to 
any unit. The isolation score is normalized to be between 0 and 1, and serves as a measure to compare 
the isolation quality of all units across all experimental sessions and participants. Across participants, 
the mean isolation score for all units was .93 ± .1.

In addition to isolation quality, we computed the SNR for each unit:

	﻿‍ SNR = Vpeak−Vtrough
Noise∗C ‍�

where Vpeak and Vtrough are the maximum and minimum voltage values of the mean waveform, and ‍C‍ 
is a scaling factor (set as 5). To obtain ‍Noise‍, we subtracted the mean waveform from each individual 
waveform for each identified unit, concatenated these waveform residuals, and then computed the 
standard deviation of this long vector. Therefore, the noise term quantifies the within-unit variability in 
waveform shape. Across participants, the mean SNR for all units was 1.71 ± .12.

We estimated the instantaneous spike rate for each unit by convolving the spike rasters with a 
Gaussian kernel (σ = 25 ms). We used the mean and standard deviation of the spike rate over an entire 
experimental session to generate a z-scored spike rate for each unit.

Ripple detection
We detected ripples in both the iEEG and LFP signals as previously reported (Vaz et al., 2019). We 
first bandpass filtered the voltage time series in the ripple band (80–120 Hz) using a second order 
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Butterworth filter, and then applied a Hilbert transform to extract the instantaneous amplitude and 
phase within that band. We selected events where the Hilbert envelope exceeded two standard devi-
ations above the mean amplitude of the filtered traces. We only retained events that were at least 
25 ms in duration and had a maximum amplitude greater than three standard deviations as ripples for 
analysis. We did not specify an upper limit for ripple duration. We joined adjacent ripples that were 
separated by less than 15 ms. We identified every ripple that satisfied these criteria in every electrode 
contact, and assigned each such identified ripple a start time index and an end time index. The differ-
ence between them defined the duration of each ripple.

To assess the overlap between detected ripples and inter-ictal epileptic discharge (IED) artifacts, 
we computed the joint probability of iEEG and LFP ripples and the identified IEDs for each participant. 
We found that IEDs overlapped with .79 ± .11% of iEEG ripples and with 1.38 ± .11% of LFP ripples 
across the six participants with MEAs (Figure 1—figure supplement 5A,B). We excluded all IEDs 
and high-frequency oscillations associated with IEDs (ripple on spike waveforms, pathologic ripples) 
and any detected ripple that overlapped with an IED from our analyses. The remaining ripples that 
we retained for our analyses therefore occurred without an associated IED and are more likely to be 
physiologic.

To examine the relation between ripple amplitude and spiking activity, as well as to examine 
the relation between ripples across spatial scales, we used the Hilbert phase and amplitude of the 
80–120 Hz ripple band signal extracted from both the iEEG and LFP signals. To assess for a spectrum 
of ripple amplitudes and durations, we relaxed the detection thresholds to include all events during 
which the Hilbert amplitude of the LFP signal exceeded only one standard deviation above the mean 
amplitude of the filtered traces. We designated all such events with a minimum duration of 10 ms and 
with a maximum amplitude at least two standard deviations above the mean as putative ripples for 
these analyses.

To account for the possibility that ripples with higher amplitudes and therefore longer durations 
may be associated with more spiking activity by chance, we compared the true correlation between 
ripple amplitude and spiking activity to the correlations we would observe by chance. In each of 1000 
permutations, we performed a random circular shift of the spike indices in each trial and computed 
the correlation between LFP ripple amplitude and spike rate across units and MEA electrodes. We 
compared the true correlation to the mean of the distribution of 1000 shuffled correlations in each 
participant. We determined that 1000 permutations was sufficient by initially examining the mean 
correlation as a function of the number of permutations in a single participant, and found that the 
mean value for the correlation observed by chance converged after only 500 permutations. We 
performed a similar permutation procedure when examining the relation between iEEG ripple ampli-
tude and the proportion of active units, and between iEEG ripple amplitude and the number of 
underlying LFP ripples.

Pairwise phase consistency
To examine the extent to which individual events such as spikes or ripples are aligned to consistent 
phases in the LFP or iEEG oscillations, we computed the pairwise phase consistency (PPC) (Vinck 
et al., 2010). Briefly, for each spike or ripple, we extracted the instantaneous phase of the LFP or iEEG 
signal either of individual frequencies or within low (2–10 Hz) or ripple band (80–120 Hz) frequency 
bands. For individual frequencies, we used the instantaneous phase extracted by convolving the LFP 
or iEEG time series with complex valued Morlet wavelets (wavelet number 6) for 60 frequencies loga-
rithmically spaced between 2 and 400 Hz. To extract the instantaneous phase of the two frequency 
bands, 2–10 Hz and 80–120 Hz, we filtered the LFP and iEEG signal into each frequency band and then 
extracted the instantaneous phase from the complex time series generated by the Hilbert transform 
of the filtered time series. Across multiple spikes or ripples, we therefore generate a distribution of 
phases. To calculate the PPC, we computed the average angular distance, or vector dot product, for 
all pairs of phases in each distribution. We defined the preferred phase for each distribution as the 
phase angle of the complex mean of the distributions of these phases. In addition to PPC, we also 
assessed phase consistency by testing whether each distribution of phases significantly deviated from 
a uniform distribution using a Rayleigh test of uniformity.

We used PPC to examine the extent to which 80–120 Hz ripple band phases are aligned across 
all microelectrodes in each MEA during each ripple detected in the larger scale iEEG signal. In this 
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case, during every time point within each iEEG ripple, we collected a distribution of 80–120 Hz ripple 
band phases from all 96 microelectrodes, and computed the PPC on that distribution. We assigned 
the maximum PPC computed over the duration of each iEEG ripple as the microelectrode 80–120 Hz 
PPC for that iEEG ripple. In each participant, we then computed the correlation between iEEG ripple 
amplitude and 80–120 Hz PPC in the underlying LFP across all iEEG ripples identified from all retrieval 
trials. We compared these true correlations to chance using a shuffling procedure. In each of 100 
permutations, we circularly shifted the time series of LFP phase by a random amount within each 
detected iEEG ripple and then computed the correlation between iEEG ripple amplitude and LFP 
PPC. We calculated the average correlation across permutations in each participant as the chance 
level. We performed an identical procedure when examining the extent to which the alignment of 
spiking activity to the 80–120 Hz ripple band signal in the LFP is correlated with the 80–120 Hz ripple 
band amplitude.

To examine the extent to which spiking activity is locked to individual frequencies in the LFP and 
iEEG signal, we computed PPC using the instantaneous phases of each spike from each unit. In each 
participant, we computed the average spike PPC across all units in each trial, and then computed the 
average across trials to generate a spike PPC value for each participant. In order to compare PPC 
values across participants, we converted the raw PPC to a z-score in each participant by using the 
mean and standard deviation of a null distribution of 100 spike PPC values generated by randomly 
shuffling the trial labels associated with the spike indices.

We then assessed whether the distribution of spike PPC values is significant across participants 
using a non-parametric cluster-based procedure. For each frequency, we compared the distribution of 
z-scored spike PPC values to zero using a t-test, thus generating a true ‍t‍-statistic and p-value for each 
frequency. We then randomly permuted the participant-specific values by randomly reversing the 
sign of z-scored PPC within each participant and recomputing the average value of the distribution of 
permuted PPC values across participants. For n participants, this results in an empiric distribution of 
‍2n‍ possible values that are all equally probable under the null hypothesis. We generated an empiric 
distribution from 1000 permutations for each frequency and calculated ‍t‍-statistics for each of the 
permuted frequencies.

To correct for multiple comparisons across frequencies, we identified clusters of adjacent frequen-
cies that exhibited a significant difference between the average PPC across participants and zero 
(where in each frequency cluster, p < .05). For each cluster of significant frequencies identified in 
the true and permuted cases, we defined a cluster statistic as the sum of the ‍t‍-statistics within that 
frequency cluster. We retained the maximum cluster statistic during each of the 1000 permutations to 
create a distribution of maximum cluster statistics. We assigned p-values to each identified cluster of 
the true data by comparing its cluster statistic to the distribution of maximum cluster statistics from 
the permuted cases. We determined clusters to be significant and corrected for multiple frequency 
comparisons if their p-value calculated in this manner was less than .05.

We also compared spike PPC between two sets of conditions - PPC for spikes that occurred during 
an identified LFP ripple as compared to PPC for spikes that occurred outside an LFP ripple, and PPC 
for spikes that occurred during correct versus incorrect memory retrieval. We only included units 
for this analysis that exhibited a minimum of 10 spikes in each condition during an experimental 
session. In addition, because each condition tends to have a low total number of spikes in each trial, 
we computed PPC in these analyses by aggregating spiking events across trials rather than initially 
computing PPC within individual trials. Because we are making a direct comparison between PPC 
values within individual participants, we used the raw PPC rather than the z-scored value for these 
tests. In all cases, we computed the average PPC across all units separately for each condition in each 
participant. We then compared the average PPC between conditions by using a similar permutation 
procedure that corrects for multiple comparisons described above. In this case, in each permutation 
we randomly switched the label for each condition in each participant. To ensure that lower spike 
counts in one condition would not bias our results, we identified which condition had the lower total 
number of spikes, and randomly subsampled the spikes from the other condition. We performed this 
subsampling 200 times, computed PPC for each iteration, and assigned the average of the PPC from 
the 200 iterations of subsampling to the condition with the larger number of spikes. We repeated all 
of these analyses when examining the extent to which ripples are locked to individual frequencies, and 
to compare the extent of locking between conditions.
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Pairwise phase consistency of spiking
In order to obtain a measure of phase locking that does not depend on number of observations, 
we look at pairs of phases. Phases that are consistently clustered around a mean phase have a small 
angular distance to each other. The absolute angular distance is expressed as

	﻿‍ df(φf,ωf) = |φf − ωf|modπ,‍� (1)

where ‍φ‍ represents the phase of spike to a frequency bin and ‍ω‍ represents the phase of another 
spike from the same neuron to the same frequency bin. For each neuron, we can compute this for all 
frequency bins.

We compute the average pairwise circular distance (APCD), or the absolute angular distance 
between relative phases, which can be expressed as:

	﻿‍ D̂ = 2
N(N−1)

∑N−1
j=1

∑N
k=j+1 d(θj, θk),‍� (2)

The pairwise phase consistency (PPC) is equivalent to the population statistic of the APCD, which is 
equivalent to the population statistic of the square of the phase-locking value.

We compute the sample estimate of the PPC by evaluating:

	﻿‍ γ̂ = 2
N(N−1)

∑N−1
j=1

∑N
k=j+1 f(θj, θk),‍� (3)

where f(φ,ω) = cos(φ)cos(ω) + sin(φ)sin(ω) and N represents the number of spikes.
To efficiently compute the PPC of spikes to one frequency bin of the local field potential, we 

express each spike phase as a unit vector and evaluate the dot product for all pairs of unit vectors. 
We compute the spike-LFP PPC from the resulting symmetric matrix by removing the values along the 
diagonal and then taking the mean.

Pairwise phase consistency of ripple oscillations
To measure the phase consistency of ripple oscillations across MEA electrodes, we compute the abso-
lute angular distance using Equation 3 where ‍θj‍ represent the phase of the ripple band signal for one 
MEA electrode, ‍θk‍ represents the phase of ripple band signal for a different MEA electrode for one 
time point, and N represents the number of MEA electrodes. Each time point within a iEEG ripple 
was treated as an observation for the MEA electrode. In other words, for a 50 ms long iEEG ripple, 
we evaluate the dot product for the pairs of ripple phases across all pairs of MEA electrodes. To 
efficiently compute the PPC of ripple oscillations across MEA electrode pairs, we express each ripple 
oscillation phase as a unit vector and compute the mean dot product for all pairs of unit vectors in a 
similar manner as spike-LFP PPC.

MTL-ATL ripple cross-correlation
To measure the extent to which ripples in the anterior temporal lobe (ATL) are coupled with ripples in 
the medial temporal lobe (MTL), we identified the time index of peak ripple power for each rippled 
detected in both regions. We then generated cross-correlograms between MTL and ATL ripples (Vaz 
et al., 2019). For each electrode in the MTL, we computed a cross-correlogram with each electrode in 
the ATL. We then pooled these cross-correlograms across trials for each electrode pair in each partic-
ipant. This generates a cross-correlogram for each pair of electrodes that we can compare between 
conditions and to a chance distribution (see below). To generate a single cross-correlogram repre-
senting the relation between the ATL and the MTL in each participant, we computed the average 
cross-correlogram across all electrode pairs.

For every pair of electrodes, we calculated a shift predictor for the cross-correlogram that charac-
terizes the cross-correlation that would be expected by chance given the presentation of a stimulus 
(Vaz et al., 2019; Brody, 1999; Steinmetz et al., 2000; Morris et al., 2004). This chance distribu-
tion was generated by cross-correlating the time indices relative to the presentation of the stimulus 
for each ripple in an ATL electrode during an individual trial with the time indices of each ripple in 
an MTL electrode in every other trial. For n trials, we create n - 1 cross-correlations, which are then 
averaged to create a chance cross-correlogram (the shift predictor) for that trial. This procedure was 
repeated for all trials, and the average across all trials represents the average shift predictor for that 
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trial condition. We aggregated these chance cross-correlograms (shift predictors) across all electrode 
pairs that involve each region of interest to generate a shift predictor for each region.

The ratio between the true cross-correlogram and the shift predictor reflects the extent to which 
two signals are synchronized greater than would be expected by chance given the presentation of 
a stimulus. We calculated a normalized synchronization metric by finding the sum of the true cross-
correlation values in a ± 50 ms window and then dividing by the corresponding area of the chance 
distribution. In this manner, our metric directly quantifies how much more synchronized the true case is 
relative to chance, which would result in a value of 1. To test the effect of a range of detection param-
eters on the correlation, we detected ripples using duration thresholds ranging from 10 to 40 ms, 
increasing in increments of 10 ms, and max amplitude thresholds ranging from 2 to 4 SD, increasing 
in increments of 1 SD. We used the same detection threshold for LFP and iEEG ripple detection. We 
used this metric to compare synchronization between detection parameters.

LFP-iEEG ripple cross-correlation
To measure the coincidence of LFP and iEEG ripples, we identified the time index of peak ripple power 
for each rippled detected in each microelectrode (LFP ripple) and iEEG electrode (iEEG ripple). We 
then generated cross-correlograms between LFP and iEEG ripples. For each participant, we included 
four iEEG electrodes nearest to the MEA. To generate a single cross-correlogram representing the 
relation between the LFP and iEEG ripples in each participant, we computed the average across all 
electrode pairs. For every pair, we calculated chance cross-correlograms by randomly shifting in time 
each trial of the ripples detected in the microelectrode. We computed the average across trials for 
each electrode pair. We calculated a normalized synchronization metric by finding the average true 
cross-correlation values in a ± 50 ms window and then dividing by the corresponding area of the 
chance distribution. The ratio between the true and chance cross-correlograms quantifies how much 
more synchronous the LFP and iEEG ripples are relative to chance, with a value of 1 indicating a 
measurement equal to chance.

Population spiking auto-correlation
To measure the extent to which units spike together in bursts within detected iEEG ripples, we 
summed the spiking across all units and computed the auto-correlogram of the population spiking 
within each detected iEEG ripple. We detected ripples using a duration threshold of 10 ms and an 
amplitude threshold of 1 SD with a maximum of at least 2 SD in four iEEG electrodes nearest to the 
MEA. To compare this auto-correlogram within ripples to spiking outside of ripples, we generated 
random duration matched windows between ripples and computed the chance population spiking 
auto-correlograms. We calculated a burst metric by finding the average of the true auto-correlogram 
in a ± 25 ms window centered around zero and then dividing by the corresponding area of the chance 
correlogram.

Hartigan’s test for bimodal distribution
To assess whether distributions of population spike rate, LFP ripple power and iEEG ripple power are 
bimodal, we used Hartigan’s dip test. We postulated that these distributions would be bimodal if there 
were indeed transient bursts of activity and periods of little activity in between. The dip test computes 
the maximum difference between the empirical distribution function and the unimodal distribution 
function that minimizes that maximum difference (Hartigan and Hartigan, 1985). To compute the 
dip statistic, we generated a probability density function (PDF) of samples aggregated across all four 
second trials in 200 bins over the range of the data. We computed a true dip statistic for spike rate and 
for LFP ripple power for each microelectrode and for iEEG ripple power for each iEEG channel. We 
generated a chance distribution of dip statistics for unimodal distributions to quantify the significance 
of the true dip statistic. For this procedure, we randomly generated 10,000 uniform PDFs and z-scored 
the true dip statistic using the mean and standard deviation of the chance distribution. The average 
z-scored dip statistic across all microelectrodes was used for the spike rate and LFP ripple power for 
each participant. The average z-scored dip statistic across four iEEG channels in the anterior temporal 
lobe and iEEG channels in the medial temporal lobe were used to compute the z-scored dip statistic 
for each participant. This analysis was performed on the six participants with a MEA.
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Multiple oscillations detection algorithm detection of narrowband 
oscillations
We used an independent and previously validated method for detecting transient episodes of narrow-
band oscillations to assess whether ripples detected using duration and amplitude thresholds in the 
80–120 Hz frequency range capture similar events detected using other approaches. For this proce-
dure, we used the continuous-time wavelet transform (wavelet number 6) to compute the mean power 
spectrum over the trial, which is then used to generate a background 1/f fit. We generated a 1/f fit to 
the 70–200 Hz range of the power spectrum for each trial and identify narrowband oscillations that 
exceed it. The signal is then bandpass filtered within the identified narrowband frequency ranges 
and a Hilbert transform is used to compute the instantaneous power and phase. The instantaneous 
frequency is estimated using a frequency sliding estimation method previously described (Cohen, 
2014). Periods in which the power is below the 1/f fit is removed. Given we perform this for each trial, 
we identify a unique narrowband oscillation for each trial for each iEEG electrode. For each partici-
pant, we aggregate the oscillations across trials across iEEG electrodes to generate a distribution of 
center frequencies of narrowband oscillations and a distribution of durations of the periods when the 
oscillations exceeds 1/f background signal.

Meta analysis
Given the variability in number of ripples and other characteristics across participants, we quantified 
within and across participant variability and computed an estimate of the total true correlations. We 
assessed whether random variation accounts for the observed correlations by performing a meta-
analysis where we used restricted maximum-likelihood estimation to fit a random effects model 
(Viechtbauer, 2010). For each participant, we computed the true correlation and z-scored it using a 
distribution of correlation values for shuffled data to generate the r equivalent, a measure of effect 
size. We computed the sampling variance for each participant from the number of samples (Rosenthal 
and Rubin, 2003). These measures were used to fit the random effects model.

Acknowledgements
We thank J Chapeton, V Sreekumar, and Z Xie for helpful and insightful comments on the manuscript. 
We are indebted to all patients who have selflessly volunteered their time to participate in this study. 
This work was supported by the Intramural Research Program of the National Institute of Neurological 
Disorders and Stroke. This work was also supported by NINDS grant F31 NS113400 (APV). Conflicts 
of Interest: The authors declare no competing financial interests.

Additional information

Funding

Funder Grant reference number Author

National Institute of 
Neurological Disorders 
and Stroke

F31 NS113400 Alex P Vaz

National Institute of 
Neurological Disorders 
and Stroke

Intramural Research 
Program

Kareem A Zaghloul

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Ai Phuong S Tong, Conceptualization, Data curation, Formal analysis, Methodology, Validation, Visu-
alization, Writing - original draft, Writing – review and editing; Alex P Vaz, Conceptualization, Data 
curation, Formal analysis, Funding acquisition, Methodology, Validation, Writing – review and editing; 
John H Wittig, Data curation, Methodology, Writing – review and editing; Sara K Inati, Data curation, 

https://doi.org/10.7554/eLife.68401


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 22 of 25

Writing – review and editing; Kareem A Zaghloul, Conceptualization, Data curation, Methodology, 
Project administration, Supervision, Writing – review and editing

Author ORCIDs
Ai Phuong S Tong ‍ ‍http://orcid.org/0000-0002-2771-9504
John H Wittig ‍ ‍http://orcid.org/0000-0003-0465-1022
Kareem A Zaghloul ‍ ‍http://orcid.org/0000-0001-8575-3578

Ethics
Human subjects: Data were collected at the Clinical Center at the National Institutes of Health (NIH; 
Bethesda, MD). The Institutional Review Board (IRB) approved the research protocol (11-N-0051), and 
informed consent was obtained from the participants and their guardians.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.68401.sa1
Author response https://doi.org/10.7554/eLife.68401.sa2

Additional files
Supplementary files
•  Transparent reporting form 

•  Source code 1. Matlab scripts to generate main figures.

Data availability
Data and custom code used in this study can be found at https://doi.org/10.5061/dryad.5qfttdz6t. 
Source code and data files have been uploaded for Figures 1-4.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Tong AP, Vaz A, Wiitig 
J, Inati S, Zaghloul K

2021 Ripples reflect a spectrum 
of synchronous spiking 
activity in human anterior 
temporal lobe

https://​doi.​org/​10.​
5061/​dryad.​5qfttdz6t

Dryad Digital Repository, 
10.5061/dryad.5qfttdz6t

References
Axmacher N, Elger CE, Fell J. 2008. Ripples in the medial temporal lobe are relevant for human memory 

consolidation. Brain 131:1806–1817. DOI: https://doi.org/10.1093/brain/awn103, PMID: 18503077
Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS. 2008. Feature selectivity of the gamma-band of the 

local field potential in primate primary visual cortex. Frontiers in Neuroscience 2:199–207. DOI: https://doi.org/​
10.3389/neuro.01.037.2008, PMID: 19225593

Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM, Womelsdorf T, Rubehn B, Stieglitz T, 
De Weerd P, Fries P. 2012. Attentional stimulus selection through selective synchronization between 
monkey visual areas. Neuron 75:875–888. DOI: https://doi.org/10.1016/j.neuron.2012.06.037, PMID: 
22958827

Brody C. 1999. Correlations without synchrony. Neural Computation 11:1537–1551. DOI: https://doi.org/10.​
1162/089976699300016133, PMID: 10490937

Burke JF, Long NM, Zaghloul KA, Sharan AD, Sperling MR, Kahana MJ. 2014. Human intracranial high-frequency 
activity maps episodic memory formation in space and time. NeuroImage 85 Pt 2:834–843. DOI: https://doi.​
org/10.1016/j.neuroimage.2013.06.067, PMID: 23827329

Burke JF, Ramayya AG, Kahana MJ. 2015. Human intracranial high-frequency activity during memory processing: 
neural oscillations or stochastic volatility? Current Opinion in Neurobiology 31:104–110. DOI: https://doi.org/​
10.1016/j.conb.2014.09.003, PMID: 25279772

Buzsáki G, Anastassiou CA, Koch C. 2012. The origin of extracellular fields and currents--EEG, ECoG, LFP and 
spikes. Nature Reviews Neuroscience 13:407–420. DOI: https://doi.org/10.1038/nrn3241, PMID: 22595786

Buzsáki G. 2015. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. 
Hippocampus 25:1073–1188. DOI: https://doi.org/10.1002/hipo.22488, PMID: 26135716

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. 2006. 
High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628. DOI: 
https://doi.org/10.1126/science.1128115, PMID: 16973878

https://doi.org/10.7554/eLife.68401
http://orcid.org/0000-0002-2771-9504
http://orcid.org/0000-0003-0465-1022
http://orcid.org/0000-0001-8575-3578
https://doi.org/10.7554/eLife.68401.sa1
https://doi.org/10.7554/eLife.68401.sa2
https://doi.org/10.5061/dryad.5qfttdz6t
https://doi.org/10.5061/dryad.5qfttdz6t
https://doi.org/10.5061/dryad.5qfttdz6t
https://doi.org/10.1093/brain/awn103
http://www.ncbi.nlm.nih.gov/pubmed/18503077
https://doi.org/10.3389/neuro.01.037.2008
https://doi.org/10.3389/neuro.01.037.2008
http://www.ncbi.nlm.nih.gov/pubmed/19225593
https://doi.org/10.1016/j.neuron.2012.06.037
http://www.ncbi.nlm.nih.gov/pubmed/22958827
https://doi.org/10.1162/089976699300016133
https://doi.org/10.1162/089976699300016133
http://www.ncbi.nlm.nih.gov/pubmed/10490937
https://doi.org/10.1016/j.neuroimage.2013.06.067
https://doi.org/10.1016/j.neuroimage.2013.06.067
http://www.ncbi.nlm.nih.gov/pubmed/23827329
https://doi.org/10.1016/j.conb.2014.09.003
https://doi.org/10.1016/j.conb.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25279772
https://doi.org/10.1038/nrn3241
http://www.ncbi.nlm.nih.gov/pubmed/22595786
https://doi.org/10.1002/hipo.22488
http://www.ncbi.nlm.nih.gov/pubmed/26135716
https://doi.org/10.1126/science.1128115
http://www.ncbi.nlm.nih.gov/pubmed/16973878


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 23 of 25

Carr MF, Jadhav SP, Frank LM. 2011. Hippocampal replay in the awake state: a potential substrate for memory 
consolidation and retrieval. Nature Neuroscience 14:147–153. DOI: https://doi.org/10.1038/nn.2732, PMID: 
21270783

Chapeton JI, Haque R, Wittig JH, Inati SK, Zaghloul KA. 2019. Large-Scale Communication in the Human Brain Is 
Rhythmically Modulated through Alpha Coherence. Current Biology 29:2801–2811. DOI: https://doi.org/10.​
1016/j.cub.2019.07.014, PMID: 31422882

Cohen MX. 2014. Analyzing Neural Time Series Data: Theory and Practice. Cambridge: The MIT Press. DOI: 
https://doi.org/10.7551/mitpress/9609.001.0001

Colgin LL. 2016. Rhythms of the hippocampal network. Nature Reviews. Neuroscience 17:239–249. DOI: https://​
doi.org/10.1038/nrn.2016.21, PMID: 26961163

Cox RW. 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. 
Computers and Biomedical Research, an International Journal 29:162–173. DOI: https://doi.org/10.1006/cbmr.​
1996.0014, PMID: 8812068

Csicsvari T, Hirase H, Czurkó A, Mamiya A, Buzsáki G. 1999. tFast Network Oscillations in the Hippocampal CA1 
Region of the Behaving Rat. The Journal of Neuroscience 19:RC20. DOI: https://doi.org/10.1523/JNEUROSCI.​
19-16-j0001.1999

Fell J, Ludowig E, Staresina BP, Wagner T, Kranz T, Elger CE, Axmacher N. 2011. Medial temporal theta/alpha 
power enhancement precedes successful memory encoding: evidence based on intracranial EEG. The Journal 
of Neuroscience 31:5392–5397. DOI: https://doi.org/10.1523/JNEUROSCI.3668-10.2011, PMID: 21471374

Fischl B. 2012. FreeSurfer. NeuroImage 62:774–781. DOI: https://doi.org/10.1016/j.neuroimage.2012.01.021, 
PMID: 22248573

Fries P. 2015. Rhythms for Cognition: Communication through Coherence. Neuron 88:220–235. DOI: https://doi.​
org/10.1016/j.neuron.2015.09.034, PMID: 26447583

Greenberg JA, Burke JF, Haque R, Kahana MJ, Zaghloul KA. 2015. Decreases in theta and increases in high 
frequency activity underlie associative memory encoding. NeuroImage 114:257–263. DOI: https://doi.org/10.​
1016/j.neuroimage.2015.03.077, PMID: 25862266

Hartigan JA, Hartigan PM. 1985. The Dip Test of Unimodality. The Annals of Statistics 13:70–84. DOI: https://​
doi.org/10.1214/aos/1176346577

He BJ, Zempel JM, Snyder AZ, Raichle ME. 2010. The temporal structures and functional significance of 
scale-free brain activity. Neuron 66:353–369. DOI: https://doi.org/10.1016/j.neuron.2010.04.020, PMID: 
20471349

Jacobs J, Kahana MJ. 2010. Direct brain recordings fuel advances in cognitive electrophysiology. Trends in 
Cognitive Sciences 14:162–171. DOI: https://doi.org/10.1016/j.tics.2010.01.005, PMID: 20189441

Jang AI, Wittig JH, Inati SK, Zaghloul KA. 2017. Human Cortical Neurons in the Anterior Temporal Lobe 
Reinstate Spiking Activity during Verbal Memory Retrieval. Current Biology 27:1700–1705. DOI: https://doi.​
org/10.1016/j.cub.2017.05.014, PMID: 28552361

Jiang X, Gonzalez-Martinez J, Cash SS, Chauvel P, Gale J, Halgren E. 2020. Improved identification and 
differentiation from epileptiform activity of human hippocampal sharp wave ripples during NREM sleep. 
Hippocampus 30:610–622. DOI: https://doi.org/10.1002/hipo.23183, PMID: 31763750

Jones SR. 2016. When brain rhythms aren’t “rhythmic”: implication for their mechanisms and meaning. Current 
Opinion in Neurobiology 40:72–80. DOI: https://doi.org/10.1016/j.conb.2016.06.010, PMID: 27400290

Joo HR, Frank LM. 2018. The hippocampal sharp wave-ripple in memory retrieval for immediate use and 
consolidation. Nature Reviews. Neuroscience 19:744–757. DOI: https://doi.org/10.1038/s41583-018-0077-1, 
PMID: 30356103

Joshua M, Elias S, Levine O, Bergman H. 2007. Quantifying the isolation quality of extracellularly recorded action 
potentials. Journal of Neuroscience Methods 163:267–282. DOI: https://doi.org/10.1016/j.jneumeth.2007.03.​
012, PMID: 17477972

Khodagholy D, Gelinas JN, Buzsáki G. 2017. Learning-enhanced coupling between ripple oscillations in 
association cortices and hippocampus. Science 358:369–372. DOI: https://doi.org/10.1126/science.aan6203, 
PMID: 29051381

Klausberger T, Magill PJ, Márton LF, Roberts JDB, Cobden PM, Buzsáki G, Somogyi P. 2003. Brain-state- and 
cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848. DOI: https://doi.org/10.​
1038/nature01374, PMID: 12594513

Le Van Quyen M, Bragin A, Staba R, Crépon B, Wilson CL, Engel J Jr. 2008. Cell type-specific firing during ripple 
oscillations in the hippocampal formation of humans. The Journal of Neuroscience 28:6104–6110. DOI: https://​
doi.org/10.1523/JNEUROSCI.0437-08.2008, PMID: 18550752

Lega BC, Jacobs J, Kahana M. 2012. Human hippocampal theta oscillations and the formation of episodic 
memories. Hippocampus 22:748–761. DOI: https://doi.org/10.1002/hipo.20937, PMID: 21538660

Lisman JE, Jensen O. 2013. The theta-gamma neural code. Neuron 77:1002–1016. DOI: https://doi.org/10.​
1016/j.neuron.2013.03.007

Long NM, Burke JF, Kahana MJ. 2014. Subsequent memory effect in intracranial and scalp EEG. NeuroImage 
84:488–494. DOI: https://doi.org/10.1016/j.neuroimage.2013.08.052, PMID: 24012858

Luczak A., Barthó P, Harris KD. 2009. Spontaneous events outline the realm of possible sensory responses in 
neocortical populations. Neuron 62:413–425. DOI: https://doi.org/10.1016/j.neuron.2009.03.014, PMID: 
19447096

Luczak A, McNaughton BL, Harris KD. 2015. Packet-based communication in the cortex. Nature Reviews 
Neuroscience 16:745–755. DOI: https://doi.org/10.1038/nrn4026, PMID: 26507295

https://doi.org/10.7554/eLife.68401
https://doi.org/10.1038/nn.2732
http://www.ncbi.nlm.nih.gov/pubmed/21270783
https://doi.org/10.1016/j.cub.2019.07.014
https://doi.org/10.1016/j.cub.2019.07.014
http://www.ncbi.nlm.nih.gov/pubmed/31422882
https://doi.org/10.7551/mitpress/9609.001.0001
https://doi.org/10.1038/nrn.2016.21
https://doi.org/10.1038/nrn.2016.21
http://www.ncbi.nlm.nih.gov/pubmed/26961163
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
http://www.ncbi.nlm.nih.gov/pubmed/8812068
https://doi.org/10.1523/JNEUROSCI.19-16-j0001.1999
https://doi.org/10.1523/JNEUROSCI.19-16-j0001.1999
https://doi.org/10.1523/JNEUROSCI.3668-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21471374
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22248573
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2015.09.034
http://www.ncbi.nlm.nih.gov/pubmed/26447583
https://doi.org/10.1016/j.neuroimage.2015.03.077
https://doi.org/10.1016/j.neuroimage.2015.03.077
http://www.ncbi.nlm.nih.gov/pubmed/25862266
https://doi.org/10.1214/aos/1176346577
https://doi.org/10.1214/aos/1176346577
https://doi.org/10.1016/j.neuron.2010.04.020
http://www.ncbi.nlm.nih.gov/pubmed/20471349
https://doi.org/10.1016/j.tics.2010.01.005
http://www.ncbi.nlm.nih.gov/pubmed/20189441
https://doi.org/10.1016/j.cub.2017.05.014
https://doi.org/10.1016/j.cub.2017.05.014
http://www.ncbi.nlm.nih.gov/pubmed/28552361
https://doi.org/10.1002/hipo.23183
http://www.ncbi.nlm.nih.gov/pubmed/31763750
https://doi.org/10.1016/j.conb.2016.06.010
http://www.ncbi.nlm.nih.gov/pubmed/27400290
https://doi.org/10.1038/s41583-018-0077-1
http://www.ncbi.nlm.nih.gov/pubmed/30356103
https://doi.org/10.1016/j.jneumeth.2007.03.012
https://doi.org/10.1016/j.jneumeth.2007.03.012
http://www.ncbi.nlm.nih.gov/pubmed/17477972
https://doi.org/10.1126/science.aan6203
http://www.ncbi.nlm.nih.gov/pubmed/29051381
https://doi.org/10.1038/nature01374
https://doi.org/10.1038/nature01374
http://www.ncbi.nlm.nih.gov/pubmed/12594513
https://doi.org/10.1523/JNEUROSCI.0437-08.2008
https://doi.org/10.1523/JNEUROSCI.0437-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18550752
https://doi.org/10.1002/hipo.20937
http://www.ncbi.nlm.nih.gov/pubmed/21538660
https://doi.org/10.1016/j.neuron.2013.03.007
https://doi.org/10.1016/j.neuron.2013.03.007
https://doi.org/10.1016/j.neuroimage.2013.08.052
http://www.ncbi.nlm.nih.gov/pubmed/24012858
https://doi.org/10.1016/j.neuron.2009.03.014
http://www.ncbi.nlm.nih.gov/pubmed/19447096
https://doi.org/10.1038/nrn4026
http://www.ncbi.nlm.nih.gov/pubmed/26507295


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 24 of 25

Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK. 2016. Gamma and Beta Bursts Underlie 
Working Memory. Neuron 90:152–164. DOI: https://doi.org/10.1016/j.neuron.2016.02.028, PMID: 26996084

Manning JR, Jacobs J, Fried I, Kahana MJ. 2009. Broadband Shifts in Local Field Potential Power Spectra Are 
Correlated with Single-Neuron Spiking in Humans. Journal of Neuroscience 29:13613–13620. DOI: https://doi.​
org/10.1523/JNEUROSCI.2041-09.2009

Mitra PP, Bokil H. 2009. Observed Brain Dynamics. Oxford: Oxford University Press. DOI: https://doi.org/10.​
1093/acprof:oso/9780195178081.001.0001

Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H. 2004. Coincident but distinct messages of midbrain 
dopamine and striatal tonically active neurons. Neuron 43:133–143. DOI: https://doi.org/10.1016/j.neuron.​
2004.06.012, PMID: 15233923

Ngo HV, Fell J, Staresina B. 2020. Sleep spindles mediate hippocampal-neocortical coupling during long-
duration ripples. eLife 9:e57011. DOI: https://doi.org/10.7554/eLife.57011

Nitzan N, McKenzie S, Beed P, English DF, Oldani S, Tukker JJ, Buzsáki G, Schmitz D. 2020. Publisher 
Correction: Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial 
pathway. Nature Communications 11:3472. DOI: https://doi.org/10.1038/s41467-020-17080-0, PMID: 
32636375

Norman Y, Yeagle EM, Khuvis S, Harel M, Mehta AD, Malach R. 2019. Hippocampal sharp-wave ripples linked to 
visual episodic recollection in humans. Science 365:eaax1030. DOI: https://doi.org/10.1126/science.aax1030, 
PMID: 31416934

Norman Y, Raccah O, Liu S, Parvizi J, Malach R. 2021. Hippocampal ripples and their coordinated dialogue with 
the default mode network during recent and remote recollection. Neuron 109:2767–2780. DOI: https://doi.​
org/10.1016/j.neuron.2021.06.020, PMID: 34297916

Panagiotaropoulos TI, Deco G, Kapoor V, Logothetis NK. 2012. Neuronal discharges and gamma oscillations 
explicitly reflect visual consciousness in the lateral prefrontal cortex. Neuron 74:924–935. DOI: https://doi.org/​
10.1016/j.neuron.2012.04.013, PMID: 22681695

Parvizi J, Kastner S. 2018. Promises and limitations of human intracranial electroencephalography. Nature 
Neuroscience 21:474–483. DOI: https://doi.org/10.1038/s41593-018-0108-2, PMID: 29507407

Pfeiffer BE. 2020. The content of hippocampal “replay”. Hippocampus 30:6–18. DOI: https://doi.org/10.1002/​
hipo.22824, PMID: 29266510

Ray S, Maunsell JHR. 2015. Do gamma oscillations play a role in cerebral cortex? Trends in Cognitive Sciences 
19:78–85. DOI: https://doi.org/10.1016/j.tics.2014.12.002, PMID: 25555444

Rosenthal R, Rubin DB. 2003. r equivalent: A simple effect size indicator. Psychological Methods 8:492–496. 
DOI: https://doi.org/10.1037/1082-989X.8.4.492, PMID: 14664684

Shirvalkar PR, Rapp PR, Shapiro ML. 2010. Bidirectional changes to hippocampal theta-gamma comodulation 
predict memory for recent spatial episodes. PNAS 107:7054–7059. DOI: https://doi.org/10.1073/pnas.​
0911184107

Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, Elger CE, Axmacher N, Fell J. 
2015. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. 
Nature Neuroscience 18:1679–1686. DOI: https://doi.org/10.1038/nn.4119, PMID: 26389842

Stark E, Roux L, Eichler R, Senzai Y, Royer S, Buzsáki G. 2014. Pyramidal cell-interneuron interactions underlie 
hippocampal ripple oscillations. Neuron 83:467–480. DOI: https://doi.org/10.1016/j.neuron.2014.06.023, 
PMID: 25033186

Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E. 2000. Attention modulates synchronized 
neuronal firing in primate somatosensory cortex. Nature 404:187–190. DOI: https://doi.org/10.1038/35004588, 
PMID: 10724171

Swanson LW, Hahn JD, Sporns O. 2020. Structure–function subsystem models of female and male forebrain 
networks integrating cognition, affect, behavior, and bodily functions. PNAS 117:31470–31481. DOI: https://​
doi.org/10.1073/pnas.2017733117

Trotta MS, Cocjin J, Whitehead E, Damera S, Wittig JH, Saad ZS, Inati SK, Zaghloul KA. 2018. Surface based 
electrode localization and standardized regions of interest for intracranial EEG. Human Brain Mapping 
39:709–721. DOI: https://doi.org/10.1002/hbm.23876, PMID: 29094783

Vaz AP, Yaffe RB, Wittig JH Jr, Inati SK, Zaghloul KA. 2017. Dual origins of measured phase-amplitude coupling 
reveal distinct neural mechanisms underlying episodic memory in the human cortex. NeuroImage 148:148–159. 
DOI: https://doi.org/10.1016/j.neuroimage.2017.01.001, PMID: 28065849

Vaz AP, Inati SK, Brunel N, Zaghloul KA. 2019. Coupled ripple oscillations between the medial temporal lobe 
and neocortex retrieve human memory. Science 363:975–978. DOI: https://doi.org/10.1126/science.aau8956, 
PMID: 30819961

Vaz AP, Wittig JH, Inati SK, Zaghloul KA. 2020. Replay of cortical spiking sequences during human memory 
retrieval. Science 367:1131–1134. DOI: https://doi.org/10.1126/science.aba0672, PMID: 32139543

Viechtbauer W. 2010. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software 
36:1–48. DOI: https://doi.org/10.18637/jss.v036.i03

Vinck M, Lima B, Womelsdorf T, Oostenveld R, Singer W, Neuenschwander S, Fries P. 2010. Gamma-phase 
shifting in awake monkey visual cortex. The Journal of Neuroscience 30:1250–1257. DOI: https://doi.org/10.​
1523/JNEUROSCI.1623-09.2010, PMID: 20107053

Watrous AJ, Miller J, Qasim SE, Fried I, Jacobs J. 2018. Phase-tuned neuronal firing encodes human contextual 
representations for navigational goals. eLife 7:e32554. DOI: https://doi.org/10.7554/eLife.32554

https://doi.org/10.7554/eLife.68401
https://doi.org/10.1016/j.neuron.2016.02.028
http://www.ncbi.nlm.nih.gov/pubmed/26996084
https://doi.org/10.1523/JNEUROSCI.2041-09.2009
https://doi.org/10.1523/JNEUROSCI.2041-09.2009
https://doi.org/10.1093/acprof:oso/9780195178081.001.0001
https://doi.org/10.1093/acprof:oso/9780195178081.001.0001
https://doi.org/10.1016/j.neuron.2004.06.012
https://doi.org/10.1016/j.neuron.2004.06.012
http://www.ncbi.nlm.nih.gov/pubmed/15233923
https://doi.org/10.7554/eLife.57011
https://doi.org/10.1038/s41467-020-17080-0
http://www.ncbi.nlm.nih.gov/pubmed/32636375
https://doi.org/10.1126/science.aax1030
http://www.ncbi.nlm.nih.gov/pubmed/31416934
https://doi.org/10.1016/j.neuron.2021.06.020
https://doi.org/10.1016/j.neuron.2021.06.020
http://www.ncbi.nlm.nih.gov/pubmed/34297916
https://doi.org/10.1016/j.neuron.2012.04.013
https://doi.org/10.1016/j.neuron.2012.04.013
http://www.ncbi.nlm.nih.gov/pubmed/22681695
https://doi.org/10.1038/s41593-018-0108-2
http://www.ncbi.nlm.nih.gov/pubmed/29507407
https://doi.org/10.1002/hipo.22824
https://doi.org/10.1002/hipo.22824
http://www.ncbi.nlm.nih.gov/pubmed/29266510
https://doi.org/10.1016/j.tics.2014.12.002
http://www.ncbi.nlm.nih.gov/pubmed/25555444
https://doi.org/10.1037/1082-989X.8.4.492
http://www.ncbi.nlm.nih.gov/pubmed/14664684
https://doi.org/10.1073/pnas.0911184107
https://doi.org/10.1073/pnas.0911184107
https://doi.org/10.1038/nn.4119
http://www.ncbi.nlm.nih.gov/pubmed/26389842
https://doi.org/10.1016/j.neuron.2014.06.023
http://www.ncbi.nlm.nih.gov/pubmed/25033186
https://doi.org/10.1038/35004588
http://www.ncbi.nlm.nih.gov/pubmed/10724171
https://doi.org/10.1073/pnas.2017733117
https://doi.org/10.1073/pnas.2017733117
https://doi.org/10.1002/hbm.23876
http://www.ncbi.nlm.nih.gov/pubmed/29094783
https://doi.org/10.1016/j.neuroimage.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28065849
https://doi.org/10.1126/science.aau8956
http://www.ncbi.nlm.nih.gov/pubmed/30819961
https://doi.org/10.1126/science.aba0672
http://www.ncbi.nlm.nih.gov/pubmed/32139543
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.1523/JNEUROSCI.1623-09.2010
https://doi.org/10.1523/JNEUROSCI.1623-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20107053
https://doi.org/10.7554/eLife.32554


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tong et al. eLife 2021;10:e68401. DOI: https://doi.org/10.7554/eLife.68401 � 25 of 25

Wittig JH, Jang AI, Cocjin JB, Inati SK, Zaghloul KA. 2018. Attention improves memory by suppressing spiking-
neuron activity in the human anterior temporal lobe. Nature Neuroscience 21:808–810. DOI: https://doi.org/​
10.1038/s41593-018-0148-7, PMID: 29786083

Yaffe RB, Kerr MSD, Damera S, Sarma SV, Inati SK, Zaghloul KA. 2014. Reinstatement of distributed cortical 
oscillations occurs with precise spatiotemporal dynamics during successful memory retrieval. PNAS 111:18727–
18732. DOI: https://doi.org/10.1073/pnas.1417017112

Zhang H, Watrous AJ, Patel A, Jacobs J. 2018. Theta and Alpha Oscillations Are Traveling Waves in the Human 
Neocortex. Neuron 98:1269–1281. DOI: https://doi.org/10.1016/j.neuron.2018.05.019, PMID: 29887341

https://doi.org/10.7554/eLife.68401
https://doi.org/10.1038/s41593-018-0148-7
https://doi.org/10.1038/s41593-018-0148-7
http://www.ncbi.nlm.nih.gov/pubmed/29786083
https://doi.org/10.1073/pnas.1417017112
https://doi.org/10.1016/j.neuron.2018.05.019
http://www.ncbi.nlm.nih.gov/pubmed/29887341

	Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe
	Introduction
	Results
	High-frequency activity reflects discrete 80-120 Hz ripples
	Ripple band amplitudes reflect a spectrum of underlying local spiking activity
	Macro-scale ripples reflect number and alignment of micro-scale ripples
	Spiking activity is phase-locked to ripples

	Discussion
	Materials and methods
	Participants
	Paired-associates memory task
	Intracranial EEG recordings
	Anatomic localization
	iEEG artifact removal
	Microelectrode recordings
	Single-unit recording quality measures
	Ripple detection
	Pairwise phase consistency
	Pairwise phase consistency of spiking
	Pairwise phase consistency of ripple oscillations
	MTL-ATL ripple cross-correlation
	LFP-iEEG ripple cross-correlation
	Population spiking auto-correlation
	Hartigan’s test for bimodal distribution
	Multiple oscillations detection algorithm detection of narrowband oscillations
	Meta analysis

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


