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Abstract Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive 
pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchi-
tecture is a key determinant of pathogenetic ECM structure- function in human fibrosis (Jones et 
al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that 
hypoxia- inducible factor (HIF) pathway activation is a critical pathway for this process regardless of 
the oxygen status (pseudohypoxia). Whilst TGFβ increased the rate of fibrillar collagen synthesis, HIF 
pathway activation was required to dysregulate post- translational modification of fibrillar collagen, 
promoting pyridinoline cross- linking, altering collagen nanostructure, and increasing tissue stiffness. 
In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress 
caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity 
was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased 
normoxic HIF pathway activation. In human lung fibrosis tissue, HIF- mediated signalling was 
increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal 
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cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative 
stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic 
collagen structure- function in fibrosis.

Editor's evaluation
The reviewers found your manuscript of broad interest to researchers interested in lung biology, as 
the study builds upon the previous original work of the authors, by identifying a pathway that regu-
lates collagen nanostructure and stiffness in lung fibrosis and demonstrating that this pathway it is 
independent of pathways regulating collagen synthesis. They also valued the elegant analysis you 
performed to validate the specificity of experimental finding, and demonstrate that HIF activation is 
required for the increased tissue stiffness associated with fibrosis.

Introduction
We previously identified that in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) 
there is increased pyridinoline collagen cross- linking and altered collagen fibril nano- architecture, with 
individual collagen fibrils being structurally and functionally abnormal (Jones et al., 2018). This was 
associated with increased tissue expression of lysyl hydroxylase 2 (LH2/PLOD2, which catalyses telo-
peptide lysine hydroxylation to determine pyridinoline cross- linking) and the lysyl oxidase- like (LOXL) 
enzymes LOXL2 and LOXL3, which initiate covalent collagen cross- linking (Jones et al., 2018). This 
pyridinoline cross- linking, rather than any change in collagen deposition per se, determined increased 
IPF tissue stiffness. Inhibiting pyridinoline cross- linking normalised mechano- homeostasis and limited 
the self- sustaining effects of ECM on fibrosis progression. Whilst identifying the importance of 
altered collagen nanoarchitecture to human lung fibrosis pathogenesis, the upstream mechanisms 
that dysregulate collagen structure- function to promote progressive fibrosis rather than tissue repair 
were not determined. Here, we investigated possible mechanisms and established their relevance to 
human lung fibrosis.

Results
The pyridinoline collagen fibrillogenesis genes PLOD2 and LOXL2 are 
co-expressed at sites of active fibrogenesis
In our previous work comparing human IPF lung tissue with age- matched control lung tissue, we 
identified that in bulk IPF lung tissue lysates there are significant increases in the relative expression 
levels of the collagen modifying enzymes LOXL2, LOXL3, and LOXL4, as well as PLOD2 (also known as 
lysyl hydroxylase or LH2) (Jones et al., 2018). To further investigate this observation, we first studied 
the transcriptomic profiles of fibroblast foci, the sites of active fibrogenesis in IPF. We analysed a data 
set we recently generated by integrating laser- capture- microdissection and RNA- Seq (LCMD/RNA- 
seq) which enabled profiling of the in situ transcriptome of fibroblast foci as well as alveolar septae 
from control tissue and IPF tissue (Gene Expression Omnibus (GEO) GSE169500). The LOXL enzyme 
with the greatest expression in fibroblast foci was LOXL2 (Figure 1a–e). Whilst LOXL3 and LOXL4 
expression was increased within fibroblast foci, only limited expression was identified (Figure 1d and 
e). Furthermore, PLOD2 expression was significantly increased within fibroblast foci (Figure 1f), and 
PLOD2 expression levels correlated (r = 0.63, P = 0.04) with those of LOXL2 (Figure 1g) but not 
with those of other LOXL enzymes (Figure 1—figure supplement 1a- d), suggesting possible co- ordi-
nated regulation of PLOD2 and LOXL2 gene expression. By contrast, expression of the major collagen 
fibrillogenesis gene COL1A1 did not significantly correlate with their expression (Figure 1—figure 
supplement 1e), suggesting that, in lung fibrosis, distinct pathways might promote pyridinoline 
cross- linking to dysregulate collagen fibril nano- structure independently of pathways regulating major 
fibrillar collagen synthesis. We then performed RNA in situ hybridisation upon IPF lung tissue, with 
semi- quantitative analysis (Supplementary file 1a); the results showed that the greatest expression of 
LOXL2 and PLOD2 in IPF tissue was by mesenchymal cells within fibroblast foci, and that LOXL2 and 
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Figure 1. The collagen cross- linking enzymes PLOD2 and LOXL2 are co- expressed at sites of active fibrogenesis in IPF. (A–F) Expression of LOX, LOXL1, 
LOXL2, LOXL3, LOXL4, and PLOD2 in healthy alveolar septae, IPF alveolar septae and IPF fibroblast foci (n = 10 individual healthy and IPF donors). 
Relative expression levels are calculated as Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Bars represent standard geometric 
means. **p < 0.01; ****p < 0.0001 by Tukey’s multiple comparisons test. (G) Scatterplot of paired fibroblast foci data from (C) and (F) were plotted to 
compare expression of PLOD2 and LOXL2 (Spearman rank correlation coefficient r = 0.63, p = 0.04). (H) Representative image of mRNA expression of 
PLOD2 (red chromagen) and LOXL2 (green chromagen) in IPF lung tissue (n = 7 donors) using RNAscope RNA in- situ hybridisation. A fibroblastic focus 
is identified by * and arrows identify co- expression pattern. Left scale bar 100 μm, right scale bar 20 μm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Correlation of PLOD2 with LOXL family members.

https://doi.org/10.7554/eLife.69348
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PLOD2 are co- expressed within the same cells (Figure 1h) within areas of fibrillar collagen deposition 
(Figure 1—figure supplement 1f- h).

HIF pathway activation is a key inducer of PLOD2 and LOXL2 
expression in lung fibroblasts
To investigate common regulators of PLOD2 and LOXL2 in lung fibrosis, we studied their expression 
in primary human lung fibroblasts over a 72- hr time course following activation (Figure 2—figure 
supplement 1a) of transforming growth factor beta (TGFβ), epidermal growth factor (EGF), hypoxia 
inducible factors (HIF) or Wnt signalling pathways, each of which have been implicated in fibrogen-
esis (Richeldi et al., 2017; Yao et al., 2019; Martin- Medina et al., 2018; Königshoff et al., 2008; 
Yue et al., 2010; Bodempudi et al., 2014; Hill et al., 2019a; Yao et al., 2021; Zhou et al., 2021). 
A prodrug form of the hypoxia mimetic and broad spectrum 2- oxoglutarate oxygenase inhibitor 
N- oxalylglycine (dimethyloxalylglycine, DMOG) (Chowdhury et  al., 2013), which inhibits the HIF 
prolyl hydroxylases with consequent stabilisation of HIF1α and HIF2α, most strongly upregulated 
both PLOD2 and LOXL2 mRNA and protein levels (Figure 2a–c and Figure 2—figure supplement 
1b) but did not induce expression of interstitial collagen genes (COL1A1, COL3A1) (Figure 2d and 
Figure 2—figure supplement 1c). In contrast, TGFβ1 strongly induced COL1A1 and COL3A1 and 
this was associated with smaller up- regulation of PLOD2 at 24 hr and of LOXL2 at 72 hr (Figure 2a–d; 
Figure 2—figure supplement 1c). No induction of PLOD2 or LOXL2 was identified with canonical Wnt 
(Wnt3a), non- canonical Wnt (Wnt5a) or EGF pathway activation (Figure 2a–c). We further extended 
these observations by showing that treatment with the selective HIF prolyl 2 hydroxylase inhibitor, 
N-[[1,2- dihydro- 4- hydroxy- 2- oxo- 1- (phenylmethyl)–3- quinolinyl]carbonyl]-glycine (IOX2) (Chowdhury 
et al., 2013) or culture for 24 hr under hypoxic conditions induced expression of PLOD2 and LOXL2 
(Figure  2—figure supplement 1d, e), with immunofluorescent staining confirming an increase in 
intracellular LOXL2 and PLOD2 expression following DMOG or IOX2 treatment in comparison to 
treatment with TGFβ1 (Figure 2e). Transcriptional activation of HIF pathways requires assembly of a 
heterodimer between HIF1α or HIF2α and their obligate binding partner HIF1β (Schödel and Ratcliffe, 
2019; Schofield and Ratcliffe, 2004). To confirm the dependence of the induction of PLOD2 and 
LOXL2 expression upon HIF levels, siRNA knockdown against HIF1α(HIF1A), HIF2α(EPAS1), and HIF1β 
(ARNT) was performed (Figure 3a). The knockdown of HIF1α, but not HIF2α prevented DMOG induc-
tion of PLOD2 mRNA and protein expression, whilst LOXL2 required silencing of both HIF1α and 
HIF2α or HIF1β (Figure 3b–d). Together, these findings identify that HIF stabilisation is required to 
orchestrate induction of PLOD2 and LOXL2 expression in human lung fibroblasts.

HIF pathway activation and TGFβ1 synergistically increase PLOD2 
expression
Given that TGFβ1 strongly induced major collagen fibrillogenesis genes whilst HIF pathways most 
strongly increased PLOD2 and LOXL2 expression levels, we investigated the effects of activating 
these pathways individually or in combination using lung fibroblasts from patients with IPF. The effect 
of DMOG in the absence or presence of TGFβ1 upon PLOD2 and LOXL2 induction (Figure 4a–c) was 
comparable to that identified using normal control lung fibroblasts. When combined, a synergistic 
effect upon the induction of PLOD2 expression was apparent which was greater than either pathway 
alone (Figure 4a and c). Whilst expression of LOXL2 was also increased with the combination of HIF 
stabilisation and TGFβ1, a corresponding increase in LOXL2 protein levels within cell lysates was not 
apparent. As LOXL2 is processed intracellularly before being extracellularly secreted, we therefore 
investigated whether increased secretion of LOXL2 was occurring; this identified that under condi-
tions with HIF stabilisation LOXL2 secretion was increased in both IPF fibroblasts (Figure 4d) and 
control fibroblasts (Figure 4—figure supplement 1).

Although TGFβ1 alone was sufficient to induce interstitial collagen gene (COL1A1) expression 
(Figure 4—figure supplement 2), HIF stabilisation significantly increased the ratio of PLOD2 and 
LOXL2 gene expression relative to fibrillar collagen (COL1A1) gene expression while TGFβ1 did not 
(Figure 4e and f), suggesting that TGFβ activity alone may be insufficient to promote the altered 
collagen cross- linking that is present in IPF lung tissue. Together these findings demonstrate that 
whilst TGFβ1 has a dominant role in increasing the rate of synthesis of major fibrillar collagens, HIF 

https://doi.org/10.7554/eLife.69348
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Figure 2. Hypoxia mimetics strongly promote PLOD2 and LOXL2 expression in lung fibroblasts. (A–B, D) Relative gene expression using the ΔΔCt 
method of PLOD2, LOXL2, and COL1A1 in healthy lung fibroblasts over a 72- hr time course in the presence of EGF, TGFβ1, the hypoxia mimetic 
DMOG, Wnt3a, Wnt5a, or vehicle control. n = 3 independent experiments. Bars indicate geometric means. *p < 0.05; ***p < 0.001; ****p < 0.0001 by 
Dunnett’s multiple comparisons test. (C) PLOD2 and LOXL2 protein levels at 72 hr. β-actin loading control. The full blots are shown in Figure 2—source 

Figure 2 continued on next page
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pathways may have a key role in regulating pathological post- translational modifications and collagen 
structure in lung fibrosis.

HIF pathway activation alters collagen structure-function and increases 
tissue stiffness
To investigate whether HIF pathway activation acts as a mechanism that drives pathologic collagen 
crosslinking by disproportionate induction of collagen- modifying enzymes relative to TGFβ-induced 
collagen fibril synthesis, we employed our long- term (6  weeks) 3D in vitro model of lung fibrosis 
using primary human lung fibroblasts from patients with IPF, which we have previously described 
(Jones et al., 2018) and which allows direct evaluation of pyridinoline cross- linking, collagen nano-
structure, and tissue biomechanics. We employed the selective HIF- prolyl hydroxylase inhibitor IOX2 
to test within the in vitro fibrosis model, confirming HIF stabilisation by IOX2 following 2- week culture, 
and that in combination with TGFβ1 this promoted PLOD2 and LOXL2 expression (Figure 5—figure 
supplement 1a and b). Following 6 weeks of culture with TGFβ1 in the absence (control) or presence 
of IOX2 to drive HIF pathway activation, mature pyridinoline cross links (DPD/PYD) were significantly 
increased by the addition of IOX2 (Figure 5a) and these achieved a level comparable to our previous 
findings in IPF tissue (Jones et al., 2018). The biomechanical consequence of HIF stabilisation by 
IOX2 treatment was then investigated with parallel plate compression testing, identifying a greater 
than threefold increase in tissue stiffness by the addition of IOX2 (Figure 5b), with the mean (± SEM) 
compressive modulus measurement following IOX2 treatment of (107.1 ± 10.7) kPa comparable to 
the maximal stiffness of between 50 and 150 kPa we and others have previously identified in highly 
fibrotic areas in IPF tissue (Booth et al., 2012).

We next assessed collagen morphology. When visualised by polarised light Picrosirius red micros-
copy (Figure  5c), highly organised collagen fibrils were evident in vehicle- treated fibrotic control 
cultures as well as in those treated with IOX2 with no apparent morphological differences (Figure 5—
figure supplement 1c). By contrast, ultrastructural analysis of the collagen fibrils using electron 
microscopy identified a change in collagen nanostructure with a significant decrease in fibril diameter 
(Figure 5d and e) when pyridinoline cross- linking was increased by IOX2, consistent with our previous 
observation that fibril diameter is increased by inhibition of pyridinoline cross- linking (Jones et al., 
2018). In support of the disease relevance of our in vitro findings, non- hydrated collagen fibrils from 
patients with IPF have reduced diameters when measured by atomic force microscopy (Figure 5f), 
consistent with our previous findings that hydrated collagen fibrils extracted from IPF lung tissue have 
a reduced diameter compared to control samples (Jones et al., 2018). Together, these data identify 
HIF pathway activation to be a key regulator of pyridinoline cross- link density, collagen fibril nano- 
architecture, and tissue stiffness.

Pseudohypoxia and loss of FIH activity promotes HIF pathway 
activation in lung fibroblasts
Whilst canonical HIF pathway activation was observed in lung fibroblasts under hypoxic conditions, 
elevated levels of HIF1α and HIF2α in IPF fibroblasts under normoxic conditions have recently been 
reported (Aquino- Gálvez et al., 2019), suggesting a pseudohypoxic state that is a state in which 
cells express, at least some, hypoxia- associated genes and proteins, regardless of the oxygen status 
(Russell et al., 2017). To further investigate this possibility, we employed gene set variation anal-
ysis (GSVA) using a validated 15- gene HIF/hypoxia gene expression signature (Buffa et al., 2010) to 
published datasets, identifying that fibroblasts cultured under normoxic conditions from patients with 
a usual interstitial pneumonia pattern of fibrosis or systemic sclerosis associated lung fibrosis have a 

data 1. (E) Representative immunofluorescence images of healthy lung fibroblasts with indicated treatment stained for LOXL2 (red), PLOD2 (green), and 
DAPI (blue). Scale bar 50 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Full membrane scans for western blot images for Figure 2c.

Figure supplement 1. Pro- fibrotic signalling pathways in human lung fibroblasts.

Figure supplement 1—source data 1. Full membrane scans for western blot images for Figure 2—figure supplement 1a, b, d.

Figure 2 continued

https://doi.org/10.7554/eLife.69348
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significantly increased HIF score (i.e. manifest evidence for HIF upregulation) compared to cultured 
control fibroblasts (Figure 6a), consistent with an oxygen independent increase in HIF activity. Further-
more, there was a significant increase in the HIF score in lung mesenchymal stromal cells of patients 
with progressive lung fibrosis compared to those with stable fibrosis (Figure 6b), suggesting that HIF 
pathway activation may be required for fibrosis progression.

To further investigate the mechanism underlying pseudohypoxic HIF activity in lung fibrosis, we 
investigated the role of Factor Inhibiting HIF (FIH), a Fe (II)- and 2- oxoglutarate (2- OG)- dependent 
dioxygenase, which regulates HIF activity and likely the set of HIF target genes upregulated via 
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Figure 3. HIF pathway activation regulates PLOD2 and LOXL2 expression in lung fibroblasts from patients with IPF. (A) Fold changes in mRNA levels of 
HIF1α (HIF1A), HIF2α (EPAS1), and HIF1β (ARNT) in primary human lung fibroblasts from patients with IPF transfected with indicated siRNA followed by 
treatment with DMOG. β-actin- normalised mRNA levels in control cells were used to set the baseline value at unity. Data are mean  ±  s.d. n  =  3 samples 
per group. (B, C) Fold change in mRNA levels of LOXL2 (B) and PLOD2 (C) in IPF fibroblasts transfected with indicated siRNA followed by treatment 
with DMOG or vehicle control. β-actin- normalised mRNA levels in control cells were used to set the baseline value at unity. Data are mean  ±  s.d. n  =  
3 samples per group. ns (not significant, p > 0.05); *p < 0.05; ****p < 0.0001 by Dunnett’s multiple comparisons test. (D) PLOD2, LOXL2 and HIF1α and 
β-tubulin protein levels in IPF fibroblasts transfected with indicated siRNA followed by treatment of DMSO or DMOG. β-tubulin was used as a loading 
control. The full blots are shown in Figure 3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Full membrane scans for western blot images for Figure 3d.

https://doi.org/10.7554/eLife.69348
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Figure 4. HIF pathway activation promotes PLOD2 and LOXL2 gene expression relative to fibrillar collagen 
expression. Lung fibroblasts from IPF donors (n = 3 across two independent experiments) were cultured in the 
presence or absence TGFβ1, DMOG, combined TGFβ1 and DMOG, or vehicle control for 48 hr. (A, B) Relative 
gene expression of PLOD2 (A) and LOXL2 (B) using the ΔΔCt method. Bars indicate geometric means. Data are 

Figure 4 continued on next page
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hydroxylating a conserved asparagine (Asn) residue within the HIFα C- terminal activation domain 
(CAD), a post- translational modification that blocks interactions between the HIFα-CAD and the 
histone acetyl transferases CBP/p300 (Elkins et al., 2003; Hewitson et al., 2002; Lando et al., 2002; 
Mahon et al., 2001; McNeill et  al., 2002; Chan et al., 2016). Whilst oxygen tension is the clas-
sical regulator of FIH activity, oxidative stress can also inactivate FIH so promoting HIF activity under 
normoxic conditions (Masson et al., 2012).

Initially, to investigate the potential role of reduced FIH activity in regulating collagen post- 
translational modifications, we silenced FIH under normoxic conditions; the results show that loss 
of FIH was sufficient to induce both PLOD2 and LOXL2 expression, and that this effect required HIF 
promoted transcription, since HIF1β knockdown prevented their induction (Figure 6c). Whilst FIH is 
stably constitutively expressed across tissues (Bracken et al., 2006; Stolze et al., 2004), the activity 
levels of FIH can vary (Wang et al., 2018; Tan et al., 2007; Kroeze et al., 2010); thus, we compared 
FIH activity in control or IPF fibroblasts using a UAS- luc/GAL4DBD- HIF1αCAD binary reporter system 
(HIF1α CAD reporter) (Coleman et al., 2007). In this assay, the activity of FIH is monitored by a Gal4- 
driven luciferase reporter that registers the activity of the heterologous Gal4‐HIF‐CAD fusion protein. 
Inhibition of FIH leads to a reduction in hydroxylation at Asn‐803 of the HIF‐CAD (C- terminal trans-
activation domain) fusion, which permits increased recruitment of the transcriptional co‐activators 
p300/CBP and enhanced reporter gene activity (Figure 6d). Consistent with a loss of function of FIH 
in lung fibrosis, we found FIH activity was significantly reduced in fibroblasts from patients with IPF 
compared to control fibroblasts (Figure 6e). We further confirmed that a reduction in FIH activity in 
normal lung fibroblasts could be caused under normoxia by oxidative stress, achieving a level of HIF 
CAD activity comparable to treatment with the hypoxia mimetic DMOG (Figure 6f). Thus, in lung 
fibroblasts a reduction in FIH activity may promote HIF pathway activation to dysregulate collagen 
structure- function.

We next employed the FIH- selective inhibitor DM- NOFD (McDonough et al., 2005) within our 
3D model of fibrosis. We confirmed that FIH inhibition by DM- NOFD was sufficient to induce the HIF 
pathway activation marker gene carbonic anhydrase IX (CA9), PLOD2, and LOXL2 gene expression 
following 2- week culture (Figure 6—figure supplement 1), and in combination with HIF stabilisa-
tion (IOX2) this expression was further increased. Following 6 weeks of culture, DM- NOFD increased 
mature pyridinoline cross- links (Figure 6g) as well as tissue stiffness (Figure 6h), whilst the combina-
tion of DM- NOFD and IOX2 was additive. Thus, FIH inhibition can promote collagen post- translational 
modification and increase tissue stiffness.

HIF pathway activation localises in areas of active fibrogenesis to cells 
co-expressing LOXL2 and PLOD2
To support our in vitro studies, we investigated for evidence that HIF regulates PLOD2 and LOXL2 
expression within the fibroblast foci of human IPF lung tissue. To assess for HIF activity, we applied GSVA 
using the 15- gene HIF/hypoxia gene expression signature (Buffa et al., 2010) to the transcriptome 

mean  ±  s.d. **p < 0.01; ***p < 0.001; ****p < 0.0001 by Dunnett’s multiple comparisons test. (C) PLOD2 and 
LOXL2 protein levels. β-actin was used as a loading control. (D) Protein expression of LOXL2 in conditioned media. 
Ponceau S staining showing total protein levels. The full blots are shown in Figure 4—source data 1. Bars in graph 
indicate geometric means. Data are mean  ±  s.d. **p < 0.01; ***p < 0.001; ****p < 0.0001 by Dunnett’s multiple 
comparisons test. (E, F) Expression of PLOD2 and LOXL2 from (A and B) was divided by COL1A1 expression 
(shown in Figure 4—figure supplement 2) to calculate proportionate expression changes of cross- linking 
enzymes relative to collagen fibrillogenesis gene expression. Bars indicate geometric mean. Grouped analysis was 
performed using Dunnett’s multiple comparison test. * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Full membrane scans for western blot images for Figure 4a and b.

Figure supplement 1. HIF stabilisation increases LOXL2 secretion in control fibroblasts.

Figure supplement 1—source data 1. Full membrane scans for western blot images for Figure 4—figure 
supplement 1.

Figure supplement 2. TGFβ1 promotes interstitial collagen gene expression in lung fibroblasts.

Figure 4 continued
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Figure 5. HIF pathway activation promotes pyridinoline cross- linking, alters collagen nano- architecture, and 
increases tissue stiffness. Lung fibroblasts from IPF patients (n = 3 donors, two experiments per donor) were 
used in the 3D model of fibrosis in the presence of IOX2 or vehicle control. Bars indicate geometric mean + 
s.e.m. Analysis was performed using a Mann- Whitney t- test (two- tailed) **p < 0.01; ***p < 0.001; ****p < 0.0001. 

Figure 5 continued on next page
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of each fibroblast focus, identifying that the HIF signature score, but not TGFβ score, significantly 
correlated with LOXL2/PLOD2 expression (Figure 7a and b). Furthermore, analysis of serial tissue 
sections using immunohistochemistry identified that HIF1α and the HIF pathway activation marker 
gene carbonic anhydrase IX (CA- IX) were expressed within fibroblast foci (Bodempudi et al., 2014; 
Loncaster et al., 2001), and that this expression localised to cells co- expressing LOXL2 and PLOD2 
mRNA (Figure 7c; Figure 7—figure supplement 1). Finally, as FIH is more sensitive to inhibition by 
oxidative stress (Masson et al., 2012) compared to the PHDs, which are more sensitive to hypoxia 
than FIH (Masson et al., 2012), we investigated whether HIF activation occurs in lung mesenchymal 
cells in the context of oxidative stress. We applied GSVA to a published single cell RNAseq dataset 
(114,396 cells) from 10 control and 20 fibrotic lungs which identified 31 cell types including four fibro-
blast types (fibroblasts, myofibroblasts, Hyaluronan Synthase 1 (HAS1) high and Perilipin 2 (PLIN2)+ 
fibroblasts) (Figure 8—figure supplement 1; Habermann et al., 2020). Applying HIF signature or 
upregulated oxidative stress gene expression signatures to this dataset, we identified that, compared 
to fibroblasts and myofibroblasts, the HAS1 high and PLIN2+ cells, whose presence was almost exclu-
sively derived from the IPF lung tissue, had significantly increased HIF and upregulated oxidative 
stress scores (Figure 8a–d) and that these two scores were significantly correlated (Figure 8e), consis-
tent with an increase in pseudohypoxic HIF activity in these disease- specific mesenchymal cell types.

Discussion
We previously reported that altered collagen fibril nanoarchitecture is a core determinant of dysreg-
ulated ECM structure- function in human lung fibrosis (Jones et  al., 2018). Here, through ex vivo 
models, bioinformatics and human lung fibrosis tissue studies, we extend these observations leading 
to the discovery that HIF pathway activation promotes pathologic pyridinlone collagen crosslinking 
and tissue stiffness by disproportionate induction of collagen- modifying enzymes relative to TGFβ-in-
duced collagen fibril synthesis. Furthermore, this may occur via pseudohypoxic oxygen- independent 
mechanisms, including the involvement of a decrease in FIH activity that can occur due to oxidative 
stress, which is thought to play a significant role in IPF pathogenesis (Cheresh et al., 2013). Consis-
tent with this, oxidative stress is increased in subpopulations of IPF fibroblasts whilst FIH activity is 
significantly reduced in fibroblasts from patients with lung fibrosis resulting in HIF activation under 
normoxic conditions. Thus, we provide evidence that dysregulated HIF activity is a core regulator of 
ECM structure- function in human lung fibrosis, and that this may be a key determinant of pathologic 
tissue stiffness and progressive human lung fibrosis.

TGFβ is a multifunctional growth factor with key roles in normal development and wound healing. It 
is also considered the prototypic profibrogenic cytokine that promotes increased ECM deposition and 
has been associated with fibrosis across multiple organs (Yue et al., 2010). We identified that in lung 
fibroblasts, TGFβ1 increased fibrillar collagen mRNA transcription but its relative effects on PLOD2 
or LOXL2 were more limited, suggesting that TGFβ pathway activation alone may be insufficient 

(A) Total mature trivalent (PYD+ DPD) collagen cross- links determined by ELISA. n = 6 samples from three IPF 
donors. (B) Tissue stiffness measured from parallel- plate compression testing (n = 12 samples from three IPF 
donors) determined by Young’s modulus and represented as proportion of control. (C) Representative images of 
histological sections of samples stained with picrosirius red and imaged under polarised light. Scale bar 20 μm. 
(D) Representative electron microscopy images of collagen fibrils within the 3D model of fibrosis. Scale bar 50 nm. 
(E) Collagen fibril diameter within the 3D model of fibrosis measured in transverse section (300 fibrils for each 
condition from two IPF donors, measured by a blinded investigator). (F) Atomic force microscopy indentation 
modulus of collagen fibrils (3–7 fibrils per donor) from control (n = 42 fibrils from eight donors) or IPF lung tissue (n 
= 57 fibrils from 10 donors) under non- hydrated conditions; each data point represents the mean of 30–50 force- 
displacement curves per fibril.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Figure supplement 1. IOX2- mediated HIF pathway activation promotes PLOD2 and LOXL2 expression in the 3D 
in vitro model of fibrosis.

Figure supplement 1—source data 1. Full membrane scans for western blot images for Figure 5—figure 
supplement 1a, b.

Figure 5 continued
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Figure 6. Pseudohypoxia and loss of FIH activity promotes HIF pathway signalling in IPF fibroblasts and increases tissue stiffness. (A) HIF GSVA scores 
calculated in human lung fibroblasts derived from control or patients with interstitial lung disease (scleroderma lung or a usual interstitial pneumonia 
/ IPF pattern) (GSE40839). Data are mean  ±  s.d. ***p < 0.001; ****p < 0.0001 by Dunnett’s multiple comparisons test. (B) HIF GSVA scores calculated 
in human bronchoalveolar lavage derived mesenchymal stromal cells from patients with stable and progressive IPF (GSE73854). Data are mean  ±  s.d. 

Figure 6 continued on next page
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to cause a substantial increase in pathologic pyridinoline collagen crosslinking. HIF- mediated tran-
scription appears to be relatively more important in inducing PLOD2/LOXL2 relative to interstitial 
collagen fibril synthesis, so promoting pyridinoline collagen cross- linking, altering collagen fibril nano-
structure, and increasing tissue stiffness. While TGFβ has been reported to cause HIF stabilisation 
(Basu et al., 2011), our findings suggest that this effect is modest and that further HIF- mediated 
activation is likely required to drive matrix stiffening. This proposal is consistent with a recent result 
implying a hierarchical relationship in which HIF proteins play a relatively important role in the induc-
tion of PLOD2 expression, that is in this regard the effect of the HIF transcription factors appears to 
be more important relative to that of TGFβ stimulated SMAD proteins (Rosell- García et al., 2019). 
Thus, we propose that HIF pathway activation acts as a key pathologic ‘second hit’ which disrupts 
the normal wound healing role of TGFβ by altering collagen fibril nanoarchitecture so dysregulating 
ECM structure- function and promoting progressive lung fibrosis. In keeping with this concept, GSVA 
using a validated HIF score (Buffa et al., 2010) applied to microarray data for lung mesenchymal 
stromal cells showed that HIF activity was increased in cells from patients with progressive lung fibrosis 
compared with those with stable disease.

We investigated the functional consequences of our findings by employing our long- term 3D in 
vitro model of lung fibrosis. The results show that HIF pathway activation using a HIF stabilising PHD 
inhibitor and/or an FIH inhibitor increased pyridinoline cross- links to a level comparable to that iden-
tified in IPF tissue, and that the increase in cross- links is associated with an increase in tissue stiffness 
comparable to the extremes of stiffness identified in IPF tissue together with a reduction in fibril 
diameter similar to those present in IPF lung tissue. Together these observations support the human 
disease relevance of HIF pathway activation to IPF and define conditions for future mechanistic studies 
whereby the 3D in vitro model recapitulates key features of dysregulated collagen structure- function 
in IPF.

The LOX and LOXL enzymes play key roles in the process of fibrillar collagen production and are 
tightly regulated in normal development and under physiological conditions (Trackman, 2016). In 
our LCMD RNA- Seq analyses, LOXL2 was the most highly expressed LOX/LOXL family member as 
well as the only LOX/LOXL member which correlated with PLOD2 expression, whilst in our previous 
work investigating collagen structure- function dysregulation in human lung fibrosis, we identified that 
gene expression of LOXL2 was significantly increased in IPF tissue when compared to age- matched 
control lung tissue (Jones et al., 2018). Furthermore, using a small molecule LOXL inhibitor in our 3D 
model of fibrosis, we identified a greater than 50% reduction in mature pyridinoline cross- links using 
a concentration which completely inhibits LOXL2 but has minimal effects on LOX and LOXL1 (Jones 
et al., 2018). This is consistent with previous reports that LOXL2 has key pathologic roles in cancer 
and fibrosis (Barker et al., 2012; Barry- Hamilton et al., 2010). As our studies do not unequivocally 
exclude a potential role for other LOX/LOXL family members in human lung fibrosis an area of future 
study could be the systematic silencing of each LOX/LOXL family member using CRISPR gene editing.

*p < 0.05 by the unpaired t test. (C) PLOD2, LOXL2, HIF1β, FIH, and β-tubulin protein levels in lung fibroblasts from patients with IPF transfected with 
indicated siRNA. β-tubulin was used as a loading control. The full blots are shown in Figure 6—source data 1. (D) Diagram explaining the HIF1α 
CAD reporter assay in E and F. In brief, the FIH asparaginyl hydroxylase hydroxylates HIF1α CAD, inhibiting its binding with CBP/p300 and decreasing 
luciferase activity. When FIH is inhibited, the non- hydroxylated HIF1α CAD can bind with CBP/p300 increasing luciferase activity. (E) HIF1α CAD reporter 
assays in normal human lung fibroblasts (control fibroblasts) or IPF lung fibroblasts (IPF fibroblasts). Values represent the relative fold increase of firefly 
luciferase in relation to Renilla luciferase, normalised against control (1.0). Data are mean  ±  s.d. n  =  3 samples per group. **p <  0.01 by unpaired t 
test. (F) HIF1α CAD reporter assays in control fibroblasts with indicated treatment (hydrogen peroxide (T- hydro), DMOG, or vehicle control). Values 
represent relative fold of firefly luciferase in relation to Renilla luciferase, normalised against control (1.0). Data are mean  ±  s.d. n  =  3 samples per 
group. (G and H) Control lung fibroblasts (n = 3 donors, two experiments per donor) were used in the 3D model of fibrosis in the presence of IOX2 and/
or DM- NOFD or vehicle control as indicated. (G) Total mature trivalent (PYD+ DPD) collagen cross- links determined by ELISA. n = 6 samples from three 
donors. (H) Tissue stiffness measured from parallel- plate compression testing (n = 6 samples from three donors) determined by Young’s modulus and 
represented as proportion of control. * p < 0.05, ** p < 0.01, *** p < 0.001, ****p < 0.0001 by Dunnett’s multiple comparisons test.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Full membrane scans for western blot images for Figure 6.

Figure supplement 1. Pseudohypoxia and loss of FIH activity promotes HIF pathway signalling and increases LOXL2 and PLOD2 expression.

Figure 6 continued
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Figure 7. HIF pathway activation localises in areas of active fibrogenesis to cells co- expressing LOXL2 and PLOD2. 
(A–B) Scatterplots showing correlations between LOXL2/PLOD2 expression and HIF scores (A) or TGFβ scores 
(B) in IPF fibroblast foci (n = 10) using the Spearman rank correlation coefficient. (C) Representative images of serial 
sections of lung tissue from patients with IPF (n = 3). mRNA expression of PLOD2 (red chromagen) and LOXL2 

Figure 7 continued on next page
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The HIF signalling pathway has been reported to be active in lungs and fibroblasts from IPF patients, 
as determined by the abundance of HIF1α and HIF2α (Aquino- Gálvez et  al., 2019; Bodempudi 
et al., 2014). These findings are consistent with our own observations of increased expression of the 
HIF- responsive gene, CA- IX. Hypoxia has been proposed to have a pathogenetic role in lung fibrosis 
through mechanisms including fibroblast proliferation, augmented ER stress, epithelial- mesenchymal 
transition, and glycolytic reprogramming (Bodempudi et  al., 2014; Higgins et  al., 2007; Senavi-
rathna et al., 2018; Goodwin et al., 2018). Furthermore, a number of reports have proposed that 
cross- talk between TGFβ and hypoxia may promote fibrosis, with hypoxia and TGFβ1 synergistically 
increasing myofibroblast marker expression (Senavirathna et  al., 2020), promoting experimental 
nickel oxide nanoparticle- induced lung fibrosis (Qian et al., 2015), and HIF1α mediating TGF-β-in-
duced PAI- 1 production in alveolar macrophages in the bleomycin model of lung fibrosis (Ueno et al., 
2011). Here, we extended these previous observations by showing that in lung fibrosis, loss of FIH 
activity either by siRNA- mediated knockdown or exposure to oxidative stress induces HIF pathway 
activation independently of oxygen tension, so dysregulating collagen fibrillogenesis under normoxic 
conditions. FIH negatively regulates HIF activity by hydroxylation of N803, preventing the interaction 
of the HIFα CAD with CBP/p300 (Elkins et al., 2003; Hewitson et al., 2002; Lando et al., 2002; 
Mahon et al., 2001; McNeill et al., 2002). Whilst oxygen tension is the classical regulator of FIH 
activity, oxidative stress can inactivate FIH so promoting HIF activity, with FIH more sensitive to oxida-
tive stress than the HIF prolyl hydroxylases (Masson et al., 2012). Oxidative stress has been impli-
cated as an important profibrotic mechanism in the lungs and other organs (Cheresh et al., 2013; 
Purnomo et al., 2013; Sánchez- Valle et al., 2012); it can arise from exposure to environmental toxins 
(e.g. air pollution, tobacco, asbestos, silica, radiation, and drugs such as bleomycin) or from endoge-
nous sources including mitochondria, NADPH oxidase (NOX) activity, and/or inadequate or deficient 
antioxidant defenses (Cheresh et al., 2013). In our bioinformatic studies, we observed subsets of 
disease- specific fibroblasts with elevated scores for oxidative stress and these same populations had 
evidence of HIF pathway activation. Further investigation is merited to understand the consequences 
of this upon the fibrotic microenvironment including possible dysregulation of epithelial- mesenchymal 
cross- talk.

To our knowledge whether perturbations in FIH activity could contribute to fibrosis has not been 
investigated previously. Whilst our studies have focused upon HIF pathways and collagen, functionally 
FIH, via both HIF- dependent and HIF- independent pathways, has been reported to regulate metab-
olism (Zhang et al., 2010; Scholz et al., 2016; Peng et al., 2012a; Sim et al., 2018), keratinocyte 
differentiation (Peng et al., 2012b), vascular endothelial cell survival (Kiriakidis et al., 2015), tumour 
growth (Pelletier et al., 2012; Kuzmanov et al., 2012) and metastasis (Kang et al., 2018) as well as 
Wnt signalling (Rodriguez et al., 2016), suggesting that the loss of FIH activity that we have identified 
could have pleiotropic effects in lung fibrosis, meriting further investigation.

In summary, this study identifies that HIF pathway activation via oxygen dependent and oxygen 
independent mechanisms promotes pyridinoline collagen cross- linking which is a defining feature of 
human lung fibrosis that dysregulates ECM structure- function to promote progressive lung fibrosis. 
Our findings suggest that therapeutically targeting HIF pathway activation might restore ECM homeo-
stasis and so prevent fibrosis progression.

Materials and methods
Lung tissue sampling
Human lung experiments were approved by the Southampton and South West Hampshire and the Mid 
and South Buckinghamshire Local Research Ethics Committees (ref 07 /H0607/73), and all subjects 

(green chromagen) using RNAscope RNA in- situ hybridisation with immunohistochemical staining for Carbonic 
anhydrase IX (CA- IX) and HIF1α using DAB (brown). A fibroblastic focus is identified by *. Scale bar 20 μm.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. HIF pathway activation localises in areas of active fibrogenesis to cells co- expressing LOXL2 
and PLOD2.

Figure 7 continued
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Figure 8. Gene set variance analysis of single- cell RNAseq fibroblast populations identifies co- enrichment of HIF score and oxidative stress genes. 
(A) HIF score GSVA in control and IPF fibroblasts sequenced by single- cell RNAseq (GSE135893). Colours correspond to calculated GSVA score for 
each cell. (B) Plot of mean HIF GSVA scores for each fibroblast type in control and IPF fibroblast cell populations and compared using Dunnett’s 
multiple comparison test, ****p < 0.0001. (C) GSVA scores for genes upregulated in IPF in this dataset associated with the Gene Set: HALLMARK_

Figure 8 continued on next page
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gave written informed consent. Clinically indicated IPF lung biopsy tissue samples deemed surplus 
to clinical diagnostic requirements were formalin fixed and paraffin embedded. All IPF samples were 
from patients subsequently receiving a multidisciplinary diagnosis of IPF according to international 
consensus guidelines.

Transcriptomic analysis of in situ IPF fibroblast foci
We analysed a transcriptomic data set that we have recently established (GSE169500). Briefly, laser 
capture microdissection was performed upon Formalin- Fixed Paraffin- Embedded (FFPE) control 
non- fibrotic lung tissue (alveolar septae, [n = 10]) and usual interstitial pneumonia/idiopathic pulmo-
nary fibrosis FFPE lung tissue (fibroblast foci, [n = 10] and adjacent non- affected alveolar septae, [n 
= 10]). Total RNA was isolated, cDNA libraries were prepared using Ion Ampli‐Seq‐transcriptome 
human gene expression kit (Life Technologies, Paisley, UK) and sequenced using Ion Torrent Proton 
Sequencer. A two- stage mapping strategy was used to map the reads to UCSC hg19 human genome. 
Cufflinks was used to calculate Fragments per Kilobase of exon per Million (FPKM) values.

RNA in-situ hybridisation
Simultaneous in situ detection of the LOXL2 and PLOD2 mRNA on human IPF formalin- fixed paraffin- 
embedded tissue sections from IPF lung tissue biopsy samples from seven patients were performed 
using duplex RNAscope technology (Advanced Cell Diagnostics, Biotechne, Abingdon, UK). LOXL2 
was detected by C1- probe (Probe- Hs- LOXL2- C1, 311341) and PLOD2 was detected by C2- probe 
(Probe- Hs- PLOD2- C2, 547761- C2). Briefly, 5 μm human IPF lung tissue sections were baked at 60 °C, 
deparaffinised in xylene, followed by dehydration in an ethanol series. Target retrieval, hybridisation 
with target probes, amplification, and chromogenic detection were performed according to the manu-
facturer’s recommendations (RNAscope 2.5 Duplex Detection protocol for FFPE tissues). Sections 
were counterstained with Gill’s Hematoxylin, and mounted with Vectamount permanent mounting 
medium prior to imaging. Assays were performed with duplex positive (PPIB and POLR2A) and nega-
tive controls. For co- localisation studies, adjacent serial sections were stained using modified Movat’s 
pentachrome or hematoxylin and eosin stain as previously reported (Jones et  al., 2016). Images 
were acquired using an Olympus Dotslide Scanner VS110 (Olympus UK, Southend- on- Sea, UK). Semi- 
quantitative analysis (range absent to +++) of LOXL2 and PLOD2 expression in cell types in IPF tissue 
was performed by an expert lung pathologist (AF).

2D cell culture, reagents, and transfections
Primary fibroblast cultures were established from lung parenchyma tissue of patients with IPF obtained 
by video- assisted thoracoscopic lung biopsy at University Hospital Southampton or non- fibrotic control 
lung parenchyma tissue (macroscopically normal lung sampled remote from a cancer site in patients 
undergoing surgery for early stage lung cancer) (Jones et al., 2018; Yao et al., 2019; Conforti et al., 
2020; Hill et al., 2019b). MRC5 lung fibroblasts (RRID:CVCL_0440) were obtained from the European 
Collection of Authenticated Cell Cultures (ECACC). All cultures were tested and free of mycoplasma 
contamination. Demographic details for the primary lung fibroblast lines are provided in Supplemen-
tary file 1b.

Fibroblasts were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 
10% foetal bovine serum (FBS), 50 units/ml penicillin, 50  μg/ml streptomycin, 2  mM L- glutamine, 
1 mM sodium pyruvate, and 1 x non- essential amino acids (DMEM/FBS) (Life Technologies, Paisley, 
UK). All cells were kept at 37  °C and 5% CO2. Hypoxic incubation of cells was carried out in a H35 
Hypoxystation (Don Whitley Scientific) in which cells were cultured in humidified atmosphere of 1% 

REACTIVE_OXYGEN_SPECIES_PATHWAY (M5938). (D) Plot of upregulated oxidative stress GSVA scores for each fibroblast type in control and IPF cells. 
(E) Correlation plot of HIF score vs upregulated oxidative stress GSVA score for single cell RNAseq data. Correlation coefficient is Pearson’s product- 
moment coefficient.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Fibroblast populations identified within a single- cell RNA sequencing dataset.

Figure 8 continued

https://doi.org/10.7554/eLife.69348
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O2, 5% CO2, and 94% N2 at 37 °C. Following hypoxic incubation, cells were kept in hypoxic condition 
until samples were collected.

For pro- fibrogenic mediator studies, control lung fibroblasts were treated in the presence of EGF 
(R&D systems, 236- GMP- 200, 10 ng/mL), TGFβ1 (R&D systems, 240- GMP- 010, 10 ng/mL), Dimethy-
loxaloylglycine (DMOG) (Merck, CAS89464- 63- 1, 1 mM), Wnt3a (R&D systems, 5036- WN- 010, 100 ng/
mL), Wnt5a (R&D systems, 645- WN- 010, 100 ng/mL), or vehicle control (DMSO). For subsequent HIF 
studies fibroblasts were treated in the presence of DMOG (1 mM), IOX2 (50 μM or 250 μM), or vehicle 
control (DMSO).

Short interfering RNA (siRNA) oligos against HIF1A (HIF1α) (MU- 00401805- 01- 0002), EPAS1 
(HIF2α) (MU- 004814- 01- 0002), ARNT (HIF1β) (MU- 007207- 01- 0002) and HIF1AN (FIH) (MU- 004073- 
02- 0002), LOXL2(L- 008020- 01- 0005) were from Dharmacon, Cambridge, UK. Sequences are available 
from Dharmacon, or Supplementary file 2. As a negative control, we used siGENOME RISC- Free 
siRNA (Dharmacon, D- 001220–01). Human lung fibroblasts were transfected with the indicated siRNA 
at a final concentration of 35 nM using Lipofectamine RNAiMAX reagent (Invitrogen).

Reporter assay
FIH activity was evaluated using a UAS- luc/GAL4DBD- HIF1αCAD binary reporter system (HIF1α 
CAD reporter) (Coleman et  al., 2007). For the luciferase reporter assays, human lung fibroblasts 
(control or IPF fibroblasts) were reverse transfected using Lipofectamine 3000 (Invitrogen) with 50  ng 
of phRL- CMV (Promega UK, Southampton, UK), which constitutively expresses the Renilla luciferase 
reporter, plus 225  ng of plasmid- GAL4DBD- HIF1αCAD and 225  ng of plasmid- UAS- luc per well. After 
24 hour of transfection, a final concentration of 1 mM of DMOG, 1 mM DMSO or 20 μM freshly 
prepared T‐hydro (tert‐butyl hydroperoxide) (Sigma- Aldrich, Poole, UK) was dosed for 16 hours. T‐
hydro was added to the cells every 2 hours. Finally, the transcriptional assay was carried out using the 
Dual- Luciferase reporter assay system (Promega) following the manufacturer’s protocol.

HIF score, TGFβ score, and oxidative stress GSVA analyses
Raw CEL files for GSE73854 and GSE40839 were downloaded from GEO and imported into RStudio 
(version 3.6). Raw data were normalised by Robust Multi- array Average (RMA) function in the affy 
package (version 1.64.0). Multiple probes relating to the same gene were deleted and summarised as 
the median value for further analysis.

A 15- gene expression signature (ACOT7, ADM, ALDOA, CDKN3, ENO1, LDHA, MIF, MRPS17, 
NDRG1, P4HA1, PGAM1, SLC2A1, TPI1, TUBB6, and VEGFA) was selected to classify HIF activity 
(Buffa et al., 2010). All parameters and variables can be found in the accompanying file (Source code 
1). This gene signature was defined based on knowledge of gene function and analysis of in vivo 
co- expression patterns and was highly enriched for HIF- regulated pathways. The HIF score for each 
sample was calculated by using gene set variation analysis (GSVA) (Hänzelmann et al., 2013) based 
on this 15- gene expression signature. The TGFβ score for each sample was calculated by using GSVA 
based on a list of gene from Gene Set: HALLMARK_TGF_BETA_SIGNALING (M5896). All parameters 
and variables can be found in the accompanying file (Source code 2). The Student t- test was used to 
evaluate the statistical difference in HIF scores between different conditions.

For single- cell transcriptomic analyses raw CEL files for GSE135893 were downloaded from GEO. 
Data was processed using the Seurat R package (v3.2.1) in R version 4.0.2. Cell types were assigned 
based on the published metadata (Habermann et  al., 2020). Fibroblast counts data were log- 
normalised, variable genes quantified and principal component analysis performed on these variable 
genes. T- stochastic nearest neighbour embedding (t- SNE) dimensional reduction was performed on 
the top 15 principal components to obtain embeddings for individual cells. GSVA was performed 
using the 15 genes used for HIF score calculation as above. An oxidative stress score for each cell 
was calculated using GSVA based on a list of genes upregulated in IPF cell populations (ABCC1, 
CDKN2D, FES, GCLC, GCLM, GLRX2, HHEX, IPCEF1, JUNB, LAMTOR5, LSP1, MBP, MGST1, MPO, 
NDUFA6, PFKP, PRDX1, PRDX2, PRDX4, PRNP, SBNO2, SCAF4, SOD1, SOD2, RXN1, TXN, TXNRD1) 
from Gene Set: HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY (M5938). All parameters and 
variables can be found in the accompanying file (Source code 3). Upregulated oxidative stress genes 
were those whose expression was higher in IPF populations than control. Calculated GSVA scores 
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were mapped onto t- SNE plots. Student’s t- test was used to calculate statistical differences between 
GSVA scores of the different cellular populations.

3D in vitro model of fibrosis
Culture was performed as previously described (Jones et al., 2018). Briefly, peripheral lung fibroblasts 
were obtained as outgrowths from surgical lung biopsy tissue of patients (n = 3 donors) who were 
subsequently confirmed with a diagnosis of IPF. All primary cultures were tested and free of myco-
plasma contamination. The fibroblasts were seeded in Transwell inserts in DMEM containing 10% 
FBS. After 24 hr, the media was replaced with DMEM/F12 containing 5% FBS, 10 μg/ml L- ascorbic 
acid- 2- phosphate, 10 ng/ml EGF, and 0.5 μg/ml hydrocortisone with or without 50 μM or 250 μM IOX2 
and/or 1 mM DM- NOFD (McDonough et al., 2005), as indicated; each experiment included a vehicle 
control (0.2% DMSO). TGF-β1 (3 ng/mL) was added to the cultures, and the medium replenished 
three times per week. After 2 weeks spheroids were lysed for western blotting. After 6 weeks, the 
spheroids were either snap frozen for parallel- plate compression testing, analysis of cross- linking, and 
histochemical staining, or fixed using 4% paraformaldehyde for histochemistry or 3% glutaraldehyde 
in 0.1 M cacodylate buffer at pH 7.4 for electron microscopy.

Reverse transcription quantitative polymerase chain reaction (RTqPCR)
RTqPCR was performed as previously described (Yao et al., 2019; Conforti et al., 2020; Hill et al., 
2019b). Primers and TaqMan probe sets were obtained from Primer Design, Southampton, UK 
(LOXL2, COL1A1, Col3A1, PLOD2), ThermoFisher Scientific, Reading, UK (HIF1A [HIF1α], EPAS1 
[HIF2α], ARNT [HIF1β]), and Qiagen, Manchester, UK (QuantiTect Primer Assays, HIF1A, EPAS1, ARNT, 
LOXL2, PLOD2, CA9, ACTB).

Western blotting
Fibroblasts were lysed using 2 x Laemmli SDS sample buffer or urea buffer (8 M Urea, 1 M Thiourea, 
0.5% CHAPS, 50 mM DTT, and 24 mM Spermine). Western blotting of cellular lysates was performed 
for β-actin (1:100.000, Sigma- Aldrich, Poole, UK), LOXL2 (1:1000, R&D Systems, Abingdon, UK), 
HIF1α (1:1000, BD Biosciences, Wokingham, UK), FIH (1:200, mouse monoclonal 162 C) (Wang et al., 
2018), β-tubulin (1:1000, Cell Signaling Technology, London, UK), HIF1 β (1:1000, Cell Signaling Tech-
nology), p- Smad2/3 (1:1000, Cell Signaling Technology), p- ERK (1:1000, Cell Signaling Technology), 
active β-catenin (1:1000, Cell Signaling Technology). Immunodetected proteins were identified using 
the enhanced chemiluminescence system (Clarity Western Blotting ECL Substrate, Bio- Rad Laborato-
ries Ltd, Watford, UK) or Odyssey imaging system (LI- COR), and evaluated by ImageJ 1.42q software 
(National Institutes of Health).

Immunofluorescence staining
Cells were fixed with 4% paraformaldehyde followed by permeabilisation and staining with primary 
antibodies for LOXL2 (1:100, R&D Systems), PLOD2 (1:100, Proteintech) and tetramethylrhodamine 
(TRITC)- conjugated Phalloidin (1:1000, Millipore UK Limited, Watford, UK). The secondary antibodies 
used were Alexafluor 488 and 647 (1:1000, BioLegend UK Ltd, London, UK). Cell nuclei were coun-
terstained with 4',6- Diamidino- 2- Phenylindole, Dihydrochloride (DAPI) (1:1000, Millipore UK Limited, 
Watford, UK). Cells were imaged using an inverted confocal microscope (Leica TCS- SP5 Confocal 
Microscope, Leica Microsystems).

Immunohistochemistry
Control or IPF lung tissues (n = 3 donors) were fixed and embedded in paraffin wax; tissue sections 
(4 μm) were processed and stained as previously described (Yao et al., 2019; Hill et al., 2019b). 
Briefly, the tissue sections were de- waxed, rehydrated and incubated with 3% hydrogen peroxide 
in methanol for 10 min to block endogenous peroxidase activity. Sections were then blocked with 
normal goat serum and incubated at room temperature with a primary antibody against CA- IX (1:500, 
Novus Biologicals, Cambridge, UK) or HIF1α (1:500, Cayman Chemical, Michigan, USA), followed by a 
biotinylated secondary antibody (1:500, Vector Laboratories Ltd., UK); antibody binding was detected 
using streptavidin- conjugated horse- radish peroxidase and visualised using DAB before counter- 
staining with Gill’s Haematoxylin. Images were acquired using an Olympus Dotslide Scanner VS110.
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Picrosirius red collagen area quantitation
Sample sections, stained with Picrosirius Red as previously described (Jones et  al., 2018), were 
imaged under polarised light and 10 areas were selected at random for each condition (5 each from 
two donors). Images of dimension 1498 × 1221 pixels with a pixel size of 0.14 μm x 0.14 μm were 
taken using Olympus Olyvia software and converted through ImageJ to binary RGB images using 
pre- determined threshold levels (low 25, high 255) to demonstrate areas of collagen fibres only, as 
previously described (Hadi et al., 2011). The proportion of area composed of collagen fibres within 
total sample area was then calculated.

Protein, hydroxyproline and collagen cross- link assays performed as previously described (Jones 
et al., 2018).

Parallel plate compression testing: performed as previously described (Jones et al., 2018).
Transmission electron microscopy: performed as previously described (Jones et al., 2018).
Atomic force microscopy nanoindentation imaging of individual non- hydrated collagen fibrils: 

performed as previously described (Jones et al., 2018).

Statistics
Statistical analyses were performed in GraphPad Prism v7.02 (GraphPad Software Inc, San Diego, 
CA) unless otherwise indicated. No data were excluded from the studies and for all experiments, 
all attempts at replication were successful. For each experiment, sample size reflects the number 
of independent biological replicates and is provided in the figure legend. Normality of distribution 
was assessed using the D’Agostino- Pearson normality test. Statistical analyses of single comparisons 
of two groups utilised Student’s t- test or Mann- Whitney U- test for parametric and non- parametric 
data respectively. Where appropriate, individual t- test results were corrected for multiple comparisons 
using the Holm- Sidak method. For multiple comparisons, one- way analysis of variance (ANOVA) with 
Dunnett’s multiple comparison test or Kruskal- Wallis analysis with Dunn’s multiple comparison test 
were used for parametric and non- parametric data, respectively. Results were considered significant if 
p < 0.05, where *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation

Source or  
reference Identifiers

Additional 
information

transfected 
construct (human)

GAL4DBD- HIF1αCAD (residues 
652–826)  
for  
HIF1α CAD reporter assay

Ratcliffe lab (University of  
Oxford) Coleman et al., 
2007

transfected 
construct (Homo- 
sapiens)

UAS- luc reporter  
for  
HIF1α CAD reporter assay

Ratcliffe lab (University of  
Oxford) Coleman et al., 
2007

transfected 
construct (Homo- 
sapiens)

Plasmid for Dual- Luciferase 
Reporter Assay Promega phRL- CMV

transfected 
construct (Homo- 
sapiens) siRNA to human HIF1AN (FIH)

Dharmacon/ 
Thermo Fisher Scientific MU- 004073- 02- 0002

transfected 
construct (Homo- 
sapiens)

siRNA to human  
HIF1A (HIF1α)

Dharmacon/ 
Thermo Fisher Scientific MU- 00401805- 05- 0002

transfected 
construct (Homo- 
sapiens) siRNA to human EPAS1(HIF2α)

Dharmacon/ 
Thermo Fisher Scientific MU- 004814- 01- 0002

transfected 
construct (Homo- 
sapiens)

siRNA to  
human ARNT  
(HIF1β)

Dharmacon/ 
Thermo Fisher Scientific MU- 007207- 01- 0002

transfected 
construct (Homo- 
sapiens)

siGENOME  
RISC- Free

Dharmacon/ 
Thermo Fisher Scientific D- 001220- 01- 05

Antibody

Anti- CAIX  
(Rabbit  
polyclonal) Novus Biologicals Cat. #: NB100- 417 IHC 1:500

Antibody
Anti- HIF1A  
(Rabbit polyclonal) Cayman Chemical Cat. #: 10006421 IHC 1:500

antibody

anti- human  
HIF1α (Mouse  
polyclonal IgG1k) BD Biosciences Cat #:610,958 WB (1:1000)

antibody
Anti- HIF1β  
(Rabbit polyclonal) Cell Signaling Technology Cat #:5,537 WB (1:1000)

antibody
Anti- phospho- 
Smad2 (Rabbit polyclonal) Cell Signaling Technology Cat #: 3,104 WB (1:1000)

antibody
anti-β-tubulin  
(Mouse polyclonal) Cell Signaling Technology Cat #: 86,298 WB (1:1000)

antibody

anti- PLOD2  
(Mouse  
monoclonal  
IgG2B) R&D Systems Cat #: MAB4445 WB (1:500)

antibody
Anti- human  
LOXL2 (Goat polyclonal) R&D Systems Cat #: AF2639

WB (1:1000)
IF (1:100)

antibody
anti- human FIH  
(Mouse monoclonal 162 C)

Ratcliffe lab (University of  
Oxford) Stolze et al., 2004 WB (1:200)

Antibody

Anti- P- ERK  
(polyclonal rabbit Thr202/
Tyr204) Cell Signalling Technology Cat #: 9,101 WB (1:1000)

Antibody
Anti- P- SMAD2/3  
(Rabbit polyclonal Ser465/467) Cell Signalling Technology Cat #: 8,828 WB (1:1000)
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Reagent type 
(species) or 
resource Designation

Source or  
reference Identifiers

Additional 
information

Antibody

IRDye 800CW  
Donkey anti- Goat  
IgG Secondary  
Antibody

LI- COR  
Biosciences Cat #: 926–32214 WB (1:5000)

Antibody

IRDye 800CW Goat anti- Rabbit 
IgG Secondary  
Antibody

LI- COR  
Biosciences Cat #: 926–32211 WB (1:5000)

Antibody

IRDye 680LT Goat  
anti- Mouse IgG Secondary  
Antibody

LI- COR  
Biosciences Cat #: 926–68020 WB (1:5000)

Antibody

Anti- non- phospho (active) 
β-catenin (Rabbit  
monoclonal IgG) Cell Signalling Technology Cat. #: 8,814 S WB (1:1000)

Antibody

Anti- mouse IgG  
HRP- linked  
whole antibody Life Sciences Cat. #: NXA931 WB (1:1000)

Antibody

Anti- goat Immunoglobulins/ 
HRP (affinity  
isolated) Dako Cat. #: P0449 WB (1:1000)

Antibody
Anti- goat IgG H&L (Alexa Fluor 
647) Abcam Cat. #: Ab150131 ICC 1:100

sequence- based 
reagent Human HIF1A (HIF1α) Qiagen

QuantiTect PCR  
primers
Cat #: QT00083664

sequence- based 
reagent Human EPAS1 (HIF2α) Qiagen

QuantiTect PCR  
primers
Cat #: QT00069587

sequence- based 
reagent Human ARNT (HIF1β) Qiagen

QuantiTect PCR  
primers
Cat #: QT00023177

sequence- based 
reagent Human ACTB(β-actin) Qiagen

QuantiTect PCR  
primers
Cat #: QT01680476

Sequence- based 
reagent LOXL2 Primer Design

Sequence- based 
reagent PLOD2 Primer Design

Sequence- based 
reagent COL1A1 Primer Design

Sequence- based 
reagent COL3A1 Primer Design

Peptide,  
recombinant  
protein

Recombinant  
Human TGF-  
beta 1 Protein R&D Systems Cat. #: 240- B- 010

Peptide,  
recombinant  
protein

Recombinant  
Human EGF  
GMP Protein R&D Systems Cat. #: 236- GMP- 200

Commercial  
assay or kit

RNAscope 2.5  
HD Duplex Assay Advanced Cell Diagnostics Cat. #: 322,430

Commercial  
assay or kit

RNAscope probe- 
Hs- LOXL2- C1 Advanced Cell Diagnostics Cat. #: 311,341

Commercial  
assay or kit

RNAscope probe- 
Hs- PLOD2- C2 Advanced Cell Diagnostics Cat. #: 547761- C2
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Reagent type 
(species) or 
resource Designation

Source or  
reference Identifiers

Additional 
information

Commercial  
assay or kit

MicroVue Bone  
PYD EIA Quidel Cat. #: 8,010

Commercial  
assay or kit

Hydroxyproline  
Assay Kit Merck Cat. #: MAK008

Commercial  
assay or kit

Total Protein  
Assay QuickZyme Biosciences Cat. #: QZBtotprot

Commercial assay 
or kit

Picro Sirius Red  
Stain Kit  
(Connective  
Tissue Stain) Abcam Cat. #: Ab150681

commercial assay 
or kit Lipofectamine 3,000 Thermo Fisher Scientific Cat. #: L3000008

commercial assay 
or kit Lipofectamine RNAiMAX Thermo Fisher Scientific Cat. #: 13778–075

commercial assay 
or kit

Dual- Luciferase Reporter Assay  
System Promega Cat. #: E1910

commercial assay 
or kit

QuantiNova SYBR Green RT- 
PCR kits Qiagen Cat. #: 208052

chemical 
compound, drug

Dimethyloxaloylglycine 
(DMOG) Sigma Aldrich

Cat #: D3695
CAS: 89464- 63- 1

chemical 
compound, drug

N-[[1,2- Dihydro- 4- hydroxy- 
2- oxo- 1- (phenylmethyl)–3- 
quinolinyl]carbonyl]-glycine 
(IOX2) Selleck Chemicals

Cat #: S2919
CAS: 931398- 72- 0

chemical 
compound, drug

Dimethyl N- oxalyl- D- 
phenylalanine (DM- NOFD)

Schofield lab (University of 
Oxford) McDonough et al., 
2005

chemical 
compound, drug DMSO Sigma Aldrich

Cat #: 276,855
CAS: 67- 68- 5

chemical 
compound, drug

T- hydro (tert- butyl 
hydroperoxide) Sigma Aldrich

Cat #: 19,999
CAS: 75- 91- 2

20 µM (fresh 
prepared)

Appendix 1 Continued

https://doi.org/10.7554/eLife.69348

	Pseudohypoxic HIF pathway activation dysregulates collagen structure-­function in human lung fibrosis
	Editor's evaluation
	Introduction
	Results
	The pyridinoline collagen fibrillogenesis genes PLOD2 and LOXL2 are co-expressed at sites of active fibrogenesis
	HIF pathway activation is a key inducer of PLOD2 and LOXL2 expression in lung fibroblasts
	HIF pathway activation and TGFβ1 synergistically increase PLOD2 expression
	HIF pathway activation alters collagen structure-function and increases tissue stiffness
	Pseudohypoxia and loss of FIH activity promotes HIF pathway activation in lung fibroblasts
	HIF pathway activation localises in areas of active fibrogenesis to cells co-expressing LOXL2 and PLOD2

	Discussion
	Materials and methods
	Lung tissue sampling
	Transcriptomic analysis of in situ IPF fibroblast foci
	RNA in-situ hybridisation
	2D cell culture, reagents, and transfections
	Reporter assay
	HIF score, TGFβ score, and oxidative stress GSVA analyses
	3D in vitro model of fibrosis
	Reverse transcription quantitative polymerase chain reaction (RTqPCR)
	Western blotting
	Immunofluorescence staining
	Immunohistochemistry
	Picrosirius red collagen area quantitation
	Statistics

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	﻿Appendix 1﻿


