HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain

  1. Edgar E Boczek
  2. Julius Fürsch
  3. Marie Laura Niedermeier
  4. Louise Jawerth
  5. Marcus Jahnel
  6. Martine Ruer-Gruß
  7. Kai-Michael Kammer
  8. Peter Heid
  9. Laura Mediani
  10. Jie Wang
  11. Xiao Yan
  12. Andrej Pozniakovski
  13. Ina Poser
  14. Daniel Mateju
  15. Lars Hubatsch
  16. Serena Carra
  17. Dr. Simon Alberti
  18. Anthony A Hyman
  19. Florian Stengel  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. University of Konstanz, Germany
  3. Max Planck Institute for the Physics of Complex Systems, Germany
  4. Biotec, TU Dresden, Germany
  5. University of Modena and Reggio Emilia, Italy

Abstract

Aberrant liquid-to-solid phase transitions of biomolecular condensates have been linked to various neurodegenerative diseases. However, the underlying molecular interactions that drive aging remain enigmatic. Here, we develop quantitative time-resolved crosslinking mass spectrometry to monitor protein interactions and dynamics inside condensates formed by the protein fused in sarcoma (FUS). We identify misfolding of the RNA recognition motif (RRM) of FUS as a key driver of condensate ageing. We demonstrate that the small heat shock protein HspB8 partitions into FUS condensates via its intrinsically disordered domain and prevents condensate hardening via condensate-specific interactions that are mediated by its α-crystallin domain (αCD). These αCD-mediated interactions are altered in a disease-associated mutant of HspB8, which abrogates the ability of HspB8 to prevent condensate hardening. We propose that stabilizing aggregation-prone folded RNA-binding domains inside condensates by molecular chaperones may be a general mechanism to prevent aberrant phase transitions.

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). The MS data (raw files, xQuest, xTract and in-house quantitation output files) have been deposited to the ProteomeXchange Consortium via the PRIDE (60) partner repository with the dataset identifier PXD021114 (Username: reviewer33076@ebi.ac.uk; Password: 5atfkbP8) and PXD021115 (Username: reviewer54149@ebi.ac.uk; Password: UZW7Gnr5).

The following data sets were generated

Article and author information

Author details

  1. Edgar E Boczek

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Edgar E Boczek, is currently an employee of Dewpoint Therapeutics..
  2. Julius Fürsch

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  3. Marie Laura Niedermeier

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  4. Louise Jawerth

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
  5. Marcus Jahnel

    Biophysics, Biotec, TU Dresden, Dresden, Germany
    Competing interests
    No competing interests declared.
  6. Martine Ruer-Gruß

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  7. Kai-Michael Kammer

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  8. Peter Heid

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    No competing interests declared.
  9. Laura Mediani

    University of Modena and Reggio Emilia, Modena, Italy
    Competing interests
    No competing interests declared.
  10. Jie Wang

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  11. Xiao Yan

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  12. Andrej Pozniakovski

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  13. Ina Poser

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Ina Poser, is currently an employee of Dewpoint Therapeutics.
  14. Daniel Mateju

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    No competing interests declared.
  15. Lars Hubatsch

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1934-7437
  16. Serena Carra

    University of Modena and Reggio Emilia, Modena, Italy
    Competing interests
    No competing interests declared.
  17. Dr. Simon Alberti

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Dr. Simon Alberti, is a shareholder, consultant and member of the scientific advisory board for Dewpoint Therapeutics..
  18. Anthony A Hyman

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    Anthony A Hyman, is cofounder, shareholder, consultant and member of the scientific advisory board for Dewpoint Therapeutics..
  19. Florian Stengel

    Department of Biology, University of Konstanz, Konstanz, Germany
    For correspondence
    Florian.Stengel@uni-konstanz.de
    Competing interests
    Florian Stengel, is a consultant and member of the scientific advisory board for Dewpoint Therapeutics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1447-4509

Funding

Deutsche Forschungsgemeinschaft (STE 2517/1-1)

  • Florian Stengel

Konstanz Research School Chemical Biology (Chemicals and small Equipment Purchase)

  • Florian Stengel

Deutsche Forschungsgemeinschaft (Cluster of Excellence Physics of Life"")

  • Dr. Simon Alberti

Deutsche Forschungsgemeinschaft (Cluster of Excellence Physics of Life"")

  • Anthony A Hyman

EU Joint Programme – Neurodegenerative Disease Research (Neurodegenerative Disease Research (JPND))

  • Serena Carra

EU Joint Programme – Neurodegenerative Disease Research (Neurodegenerative Disease Research (JPND))

  • Dr. Simon Alberti

AriSLA Foundation (Granulopathy and MLOpathy)

  • Serena Carra

MAECI (Dissolve_ALS)

  • Serena Carra

MIUR (E91I18001480001)

  • Serena Carra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Boczek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,116
    views
  • 564
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edgar E Boczek
  2. Julius Fürsch
  3. Marie Laura Niedermeier
  4. Louise Jawerth
  5. Marcus Jahnel
  6. Martine Ruer-Gruß
  7. Kai-Michael Kammer
  8. Peter Heid
  9. Laura Mediani
  10. Jie Wang
  11. Xiao Yan
  12. Andrej Pozniakovski
  13. Ina Poser
  14. Daniel Mateju
  15. Lars Hubatsch
  16. Serena Carra
  17. Dr. Simon Alberti
  18. Anthony A Hyman
  19. Florian Stengel
(2021)
HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA binding domain
eLife 10:e69377.
https://doi.org/10.7554/eLife.69377

Share this article

https://doi.org/10.7554/eLife.69377

Further reading

    1. Biochemistry and Chemical Biology
    Shraddha KC, Kenny H Nguyen ... Thomas C Boothby
    Research Article

    The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.