Abstract

Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.

Data availability

All supplementary information, including links to raw and processed data, can be found at the Nord Lab Resources page (https://nordlab.faculty.ucdavis.edu/resources/). Software can be found at the Nord Lab Git Repository (https://github.com/NordNeurogenomicsLab/) and https://github.com/NordNeurogenomicsLab/Publications/tree/master/Lambert_eLIFE_2021. Sequencing data have been deposited in GEO under accession code GSE172058.

The following data sets were generated
The following previously published data sets were used
    1. Roadmap Epigenomics Consortium
    (2013) Roadmap Consolidated Peak Dataset
    GEO GSM530651, GSM595913, GSM595920, GSM595922, GSM595923, GSM595926, GSM595928, GSM806934, GSM806939, GSM621457, GSM706999, GSM806935, GSM621427, GSM707000, GSM806936, GSM621393, GSM707001, GSM806937, GSM621410, GSM707002, GSM806938.

Article and author information

Author details

  1. Jason T Lambert

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Linda Su-Feher

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Karol Cichewicz

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5926-3663
  4. Tracy L Warren

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5125-0868
  5. Iva Zdilar

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0080-3132
  6. Yurong Wang

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kenneth J Lim

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jessica L Haigh

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9518-4003
  9. Sarah J Morse

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Cesar P Canales

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2505-8367
  11. Tyler W Stradleigh

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Erika Castillo Palacios

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Viktoria Haghani

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3700-4027
  14. Spencer D Moss

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hannah Parolini

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Diana Quintero

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Diwash Shrestha

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Daniel Vogt

    Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Leah C Byrne

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alex S Nord

    University of California, Davis, Davis, United States
    For correspondence
    asnord@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4259-7514

Funding

National Institutes of Health (R35GM119831)

  • Jason T Lambert

National Institutes of Health (T32-GM008799)

  • Linda Su-Feher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the University of California Animal Care and Use Committee (AUP #R200-0913BC). Surgery was performed under anesthesia, and all efforts were made to minimize suffering.

Reviewing Editor

  1. Genevieve Konopka, University of Texas Southwestern Medical Center, United States

Version history

  1. Preprint posted: January 15, 2021 (view preprint)
  2. Received: April 19, 2021
  3. Accepted: October 2, 2021
  4. Accepted Manuscript published: October 4, 2021 (version 1)
  5. Version of Record published: November 9, 2021 (version 2)

Copyright

© 2021, Lambert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,323
    Page views
  • 350
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason T Lambert
  2. Linda Su-Feher
  3. Karol Cichewicz
  4. Tracy L Warren
  5. Iva Zdilar
  6. Yurong Wang
  7. Kenneth J Lim
  8. Jessica L Haigh
  9. Sarah J Morse
  10. Cesar P Canales
  11. Tyler W Stradleigh
  12. Erika Castillo Palacios
  13. Viktoria Haghani
  14. Spencer D Moss
  15. Hannah Parolini
  16. Diana Quintero
  17. Diwash Shrestha
  18. Daniel Vogt
  19. Leah C Byrne
  20. Alex S Nord
(2021)
Parallel functional testing identifies enhancers active in early postnatal mouse brain
eLife 10:e69479.
https://doi.org/10.7554/eLife.69479

Share this article

https://doi.org/10.7554/eLife.69479

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Guanxiong Yan, Yang Ma ... Wei Miao
    Research Article

    Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.

    1. Genetics and Genomics
    Mathieu Hénault, Souhir Marsit ... Christian R Landry
    Research Advance

    Transposable elements (TEs) are major contributors to structural genomic variation by creating interspersed duplications of themselves. In return, structural variants (SVs) can affect the genomic distribution of TE copies and shape their load. One long-standing hypothesis states that hybridization could trigger TE mobilization and thus increase TE load in hybrids. We previously tested this hypothesis (Hénault et al., 2020) by performing a large-scale evolution experiment by mutation accumulation (MA) on multiple hybrid genotypes within and between wild populations of the yeasts Saccharomyces paradoxus and Saccharomyces cerevisiae. Using aggregate measures of TE load with short-read sequencing, we found no evidence for TE load increase in hybrid MA lines. Here, we resolve the genomes of the hybrid MA lines with long-read phasing and assembly to precisely characterize the role of SVs in shaping the TE landscape. Highly contiguous phased assemblies of 127 MA lines revealed that SV types like polyploidy, aneuploidy, and loss of heterozygosity have large impacts on the TE load. We characterized 18 de novo TE insertions, indicating that transposition only has a minor role in shaping the TE landscape in MA lines. Because the scarcity of TE mobilization in MA lines provided insufficient resolution to confidently dissect transposition rate variation in hybrids, we adapted an in vivo assay to measure transposition rates in various S. paradoxus hybrid backgrounds. We found that transposition rates are not increased by hybridization, but are modulated by many genotype-specific factors including initial TE load, TE sequence variants, and mitochondrial DNA inheritance. Our results show the multiple scales at which TE load is shaped in hybrid genomes, being highly impacted by SV dynamics and finely modulated by genotype-specific variation in transposition rates.