Abstract

Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.

Data availability

All supplementary information, including links to raw and processed data, can be found at the Nord Lab Resources page (https://nordlab.faculty.ucdavis.edu/resources/). Software can be found at the Nord Lab Git Repository (https://github.com/NordNeurogenomicsLab/) and https://github.com/NordNeurogenomicsLab/Publications/tree/master/Lambert_eLIFE_2021. Sequencing data have been deposited in GEO under accession code GSE172058.

The following data sets were generated
The following previously published data sets were used
    1. Roadmap Epigenomics Consortium
    (2013) Roadmap Consolidated Peak Dataset
    GEO GSM530651, GSM595913, GSM595920, GSM595922, GSM595923, GSM595926, GSM595928, GSM806934, GSM806939, GSM621457, GSM706999, GSM806935, GSM621427, GSM707000, GSM806936, GSM621393, GSM707001, GSM806937, GSM621410, GSM707002, GSM806938.

Article and author information

Author details

  1. Jason T Lambert

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Linda Su-Feher

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Karol Cichewicz

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5926-3663
  4. Tracy L Warren

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5125-0868
  5. Iva Zdilar

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0080-3132
  6. Yurong Wang

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kenneth J Lim

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jessica L Haigh

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9518-4003
  9. Sarah J Morse

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Cesar P Canales

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2505-8367
  11. Tyler W Stradleigh

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Erika Castillo Palacios

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Viktoria Haghani

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3700-4027
  14. Spencer D Moss

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Hannah Parolini

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Diana Quintero

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Diwash Shrestha

    University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Daniel Vogt

    Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Leah C Byrne

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Alex S Nord

    University of California, Davis, Davis, United States
    For correspondence
    asnord@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4259-7514

Funding

National Institutes of Health (R35GM119831)

  • Jason T Lambert

National Institutes of Health (T32-GM008799)

  • Linda Su-Feher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Genevieve Konopka, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: All procedures were performed in accordance with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research and were approved by the University of California Animal Care and Use Committee (AUP #R200-0913BC). Surgery was performed under anesthesia, and all efforts were made to minimize suffering.

Version history

  1. Preprint posted: January 15, 2021 (view preprint)
  2. Received: April 19, 2021
  3. Accepted: October 2, 2021
  4. Accepted Manuscript published: October 4, 2021 (version 1)
  5. Version of Record published: November 9, 2021 (version 2)

Copyright

© 2021, Lambert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,620
    views
  • 374
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jason T Lambert
  2. Linda Su-Feher
  3. Karol Cichewicz
  4. Tracy L Warren
  5. Iva Zdilar
  6. Yurong Wang
  7. Kenneth J Lim
  8. Jessica L Haigh
  9. Sarah J Morse
  10. Cesar P Canales
  11. Tyler W Stradleigh
  12. Erika Castillo Palacios
  13. Viktoria Haghani
  14. Spencer D Moss
  15. Hannah Parolini
  16. Diana Quintero
  17. Diwash Shrestha
  18. Daniel Vogt
  19. Leah C Byrne
  20. Alex S Nord
(2021)
Parallel functional testing identifies enhancers active in early postnatal mouse brain
eLife 10:e69479.
https://doi.org/10.7554/eLife.69479

Share this article

https://doi.org/10.7554/eLife.69479

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.