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Abstract Severe falciparum malaria has substantially affected human evolution. Genetic

association studies of patients with clinically defined severe malaria and matched population

controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic

imprecision compromises discovered associations. In areas of high malaria transmission, the

diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis

are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and

white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan

children with clinically defined severe malaria and 3940 population controls, adjusting for

phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that

approximately one-third of cases did not have severe malaria. We propose a data-tilting approach

for case-control studies with phenotype mis-labelling and show that this reduces false discovery

rates and improves statistical power in genome-wide association studies.

Introduction
Severe malaria caused by the parasite Plasmodium falciparum kills nearly half a million children each

year, mostly in sub-Saharan Africa (World Health Organization, 2020). By causing death in children

before they reach their reproductive age, P. falciparum has exerted a substantial selective evolution-

ary pressure on the human genome (Carter and Mendis, 2002; Kariuki and Williams, 2020). Recent

advances in whole-genome sequencing and haplotype imputation (Teo et al., 2010), combined with

data gathered prospectively from large patient cohorts, have improved our understanding of

genetic susceptibility to P. falciparum infection and severe disease (Malaria Genomic Epidemiology
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Network et al., 2013; Malaria Genomic Epidemiology Network, 2014; Band et al., 2019;

Malaria Genomic Epidemiology Network et al., 2017), but many questions remain unanswered

(Kariuki and Williams, 2020). A major limitation of genetic association studies in severe malaria is

that the diagnosis of severe falciparum malaria in children is imprecise (White et al., 2013;

Taylor et al., 2004; Bejon et al., 2007). This imprecision increases with transmission intensity

because of the low positive predictive value of a ‘positive blood film’ or rapid diagnostic test (RDT)

in areas where the background prevalence of microscopy detectable parasitaemia in apparently

healthy young children is high (often around 30%, Rodriguez-Barraquer et al., 2018, but can

exceed 90%, Smith et al., 1994).

Severe falciparum malaria has been defined by experts convened by the World Health Organiza-

tion (WHO) as clinical or laboratory evidence of vital organ dysfunction in the presence of circulating

asexual P. falciparum parasitaemia (World Health Organisation, 2014). The WHO definition of

severe malaria is aimed primarily at clinicians and health care workers managing patients with

malaria who appear severely ill. This appropriately prioritises sensitivity over specificity (Anstey and

Price, 2007). An inclusive clinical definition ensures that cases are not missed and patients receive

the best treatment. In contrast, genetic association studies require high specificity (Zondervan and

Cardon, 2007). For a given sample size, their statistical power, false discovery rates (FDRs) and the

validity of their interpretation are weakened by phenotypic inaccuracy. Specificity in the diagnosis of

severe malaria depends in part on the prevalence of malaria parasitaemia. This reflects background

transmission intensity. In areas of low or seasonal transmission (e.g. most of endemic Asia and the

eLife digest In areas of sub-Saharan Africa where malaria is common, most people are

frequently exposed to the bites of mosquitoes carrying malaria parasites, so they often have malaria

parasites in their blood. Young children, who have not yet built up strong immunity against malaria,

often fall ill with severe malaria, a life-threatening disease. It is unclear why some children develop

severe malaria and die, while other children with high numbers of parasites in their blood do not

develop any apparent symptoms.

Genetic susceptibility studies are designed to uncover why such differences exist by comparing

individuals with severe malaria (referred to as ‘cases’) with individuals drawn from the general

population (known as ‘controls’). But severe malaria can be a challenge to diagnose. Since high

numbers of malaria parasites can be found in healthy children, it is sometimes difficult to determine

whether the parasites are making a child ill, or whether they are a coincidental finding.

Consequently, some of the ‘cases’ recruited into these studies may actually have a different disease,

such as bacterial sepsis. This ultimately affects how the studies are interpreted, and introduces error

and inaccuracy into the data.

Watson, Ndila et al. investigated whether measuring blood biomarkers in patients (derived from

the complete blood count, including platelet counts and white blood cell counts) could improve the

accuracy with which malaria is diagnosed. They developed a new mathematical model that

incorporates platelet and white blood cell counts. This model estimates that in a large cohort of

2,220 Kenyan children diagnosed with severe malaria, around one third of enrolled children did not

actually have this disease. Further analysis suggests that patients with severe malaria are highly

unlikely to have platelet counts higher than 200,000 per microlitre. This defines a cut-off that

researchers can use to avoid recruiting patients who do not have severe malaria in future studies.

Additionally, the ability to diagnose severe malaria more accurately can make it easier to detect and

treat other diseases with similar symptoms in children with high numbers of malaria parasites in their

blood.

Watson, Ndila et al.’s findings support the recommendation that all children with suspected

malaria be given broad spectrum antibiotics, as many misdiagnosed children will likely have bacterial

sepsis. It also suggests that using complete blood counts, which are cheap to obtain and

increasingly available in low-resource settings, could improve diagnostic accuracy in future clinical

studies of severe malaria. This could ultimately improve the ability of these studies to find new

treatments for this life-threatening disease.
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Americas), clinical and laboratory signs of severity accompanied by a positive blood film for P. falci-

parum are highly specific for severe malaria, which predominantly affects young adults. In contrast in

high transmission areas in sub-Saharan Africa and in lowland areas of the island of New Guinea,

where severe malaria is largely a disease of young children, the diagnostic criteria for defining severe

malaria are less specific because of the high background prevalence of asymptomatic parasitaemia

and the lower specificity of the clinical manifestations. Standard case definitions of severe malaria

will therefore inevitably include both patients with non-malarial severe illness with concomitant para-

sitaemia and with concomitant non-severe malaria.

Our goal was to develop a biomarker-based model that can differentiate probabilistically

between ‘true severe malaria’ and severe illness not caused primarily by malaria, but with concomi-

tant parasitaemia. We define ‘true severe malaria’ conceptually as a febrile illness caused by malaria

parasites, with organ dysfunction, that can result in death whereby mortality is attributable directly

to the malaria parasites. This attributable mortality can be given a formal causal definition by using a

conceptual (albeit unethical) randomised experiment of delayed versus prompt antimalarial therapy.

In a theoretical patient population with true severe malaria, delay in administration of an effective

antimalarial would result in increased mortality (Warrell et al., 1982; Gomes et al., 2009) whereas

in a population with severe illness not caused by malaria (‘not severe malaria’) there would not be a

corresponding increase in mortality.

We developed a probabilistic diagnostic model of severe malaria based on haematological bio-

markers using data from 1704 adults and children mainly from low transmission settings whose diag-

nosis of severe malaria is considered to be highly specific. We used this model to demonstrate low

phenotypic specificity in a cohort of 2220 Kenyan children who were diagnosed clinically with severe

malaria. We validated the predictions using a natural experiment, the distribution of sickle cell trait

(HbAS), the genetic polymorphism with the strongest known protective effect against all forms of

clinical malaria (Malaria Genomic Epidemiology Network, 2014). Building on work on ‘data-tilting’

(Nie et al., 2013), we suggest a new method for testing genetic associations in the context of case-

control studies in which cases are re-weighted by the probability that the severe malaria diagnosis is

correct under the model. As proof of concept, we ran a genome-wide association study across 9.6

million imputed biallelic variants using the subset of cases with genome-wide genotype data

(n = 1297) and population controls (n = 1614). Adjusting for case mis-classification decreased

genome-wide FDRs (Storey, 2002) and increased effect sizes in three of the top regions of the

human genome most strongly associated with protection from severe malaria in East Africa (HBB,

ABO and FREM3, Band et al., 2019). A re-analysis of 120 directly typed polymorphisms in 70 candi-

date malaria-protective genes in the 2220 Kenyan cases and 3940 population controls, examining

differential effects between correctly and incorrectly classified cases, suggests that the protective

effect of glucose-6-phosphate dehydrogenase (G6PD) deficiency has been obscured in this popula-

tion by case mis-classification. Our results show that adding full blood count metadata – routinely

measured in most hospitals in sub-Saharan Africa – to severe malaria cohorts would lead to more

accurate quantitative analyses in case-control studies and increased statistical power.

Results

Reference model of severe malaria
We used the joint distribution of platelet counts and white blood cell counts (both on a logarithmic

scale) to develop a simple biomarker-based reference model of severe malaria. To fit the reference

model (i.e. P[Data | Severe malaria]), we used platelet and white count data from (i) severe malaria

patient cohorts enrolled in low transmission areas where severe disease accompanied by a positive

blood stage parasitaemia has a high positive predictive value for severe malaria (930 adults from

Vietnam [Hien et al., 1996; Phu et al., 2010] and 653 adults and children from Thailand and Bangla-

desh); and (ii) severely ill African children with plasma PfHRP2 concentrations >1000 ng/mL

and >1000 parasites per mL of blood (121 children from Uganda, Maitland et al., 2011). Severe ill-

ness accompanied by a high plasma PfHRP2 concentration makes the diagnosis of severe falciparum

malaria highly specific (Hendriksen et al., 2012). The joint distribution of platelet and white blood

cell counts in severe malaria was modelled as a bivariate t-distribution with both blood count varia-

bles on the log10 scale.
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Figure 1A shows the reference data (green triangles: patients with a highly specific diagnosis of

severe malaria, summarised in Table 1) alongside data from a large Kenyan cohort of hospitalised

children diagnosed with severe malaria, whose diagnosis had unknown specificity (pink squares). The

median platelet count in the reference data was 57,000 per mL, and the median total white blood

cell count was 8400 per mL. In contrast, the median platelet count in the Kenyan children was

120,000 per mL, and the median total white blood cell count was 13,000 per mL. Direct comparisons

of white counts across these two datasets are confounded by geography and age. Total white blood

cell counts are known to be age-dependent and vary across genetic backgrounds, in particular lower

neutrophil counts are associated with mutations in the ACKR1 gene that results in the Duffy negative

phenotype prevalent in African populations (Reich et al., 2009). However, after adjustment for age

(see Materials and methods), the marginal distributions of total white counts were comparable

between Asian adults and children with severe malaria and African children with high plasma PfHRP2

(Appendix 1). Platelet counts are not age-dependent and do not vary substantially across genetic

backgrounds. The marginal distributions of platelet counts were comparable between Asian adults

and children with severe malaria and African children with high plasma PfHRP2 (Appendix 2). A low

platelet count (thrombocytopenia) is a universal feature of severe malaria (see evidence collated in

Materials and methods). To illustrate this important point, in a cohort of 566 severely ill Ugandan

children enrolled in the Fluid Expansion as Supportive Therapy (FEAST) trial (Maitland et al., 2011),

a trial including all severe illness not restricted to severe malaria, low platelet counts were highly

Figure 1. Platelet counts and white blood cell counts as diagnostic predictors of severe falciparum malaria. Panel (A) shows the bivariate marginal

distribution for the reference data (thought to be highly specific to severe malaria, green triangles, n = 1704, summarised in Table 1) and for the

Kenyan case data (pink squares, n = 2220; black diamonds: HbAS). The dashed ellipses show the 50% and 95% bivariate normal probability contours

approximating each dataset (dark green: reference data; purple: Kenyan data). Panel (B) shows the relationship between platelet counts and plasma

PfHRP2 in adults with severe malaria from Bangladesh (green circles, n = 172, the dashed green line shows a linear fit) and in children enrolled in the

FEAST trial (n = 567, not specific to severe malaria, Maitland et al., 2011). Undetectable plasma PfHRP2 concentrations were set to 1 ng/mL ± random

jitter. Orange squares: malaria-positive blood slide; black triangles: malaria-negative blood slide. The brown line shows a spline fit to the FEAST data

(smooth.spline function in R with default parameters) including the data points where PfHRP2 was below the lower limit of detection.
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predictive of blood stage parasitaemia and elevated PfHRP2 (p=10-16 for a spline term on the log10

platelet count in a generalised additive logistic regression model predicting PfHRP2 >1000 ng/mL,

Appendix 2). Children enrolled in the FEAST trial who had significant thrombocytopenia (<100,000

platelets per mL) had comparable PfHRP2 concentrations to Asian adults diagnosed with severe falci-

parum malaria (Figure 1B).

Estimating the proportion of children mis-diagnosed with severe
malaria
We can consider the hospitalised Kenyan children in this series as a mixture of two latent sub-popu-

lations, ‘severe malaria’ and ‘not severe malaria’ (i.e an alternative aetiology for severe illness). To

estimate the proportion of each, we use the distribution of HbAS, the human polymorphism most

protective against all forms of clinical falciparum malaria. HbAS provides at least 90% protection

against severe malaria (Taylor et al., 2012; Malaria Genomic Epidemiology Network, 2014). The

causal SNP rs334 was genotyped in 2213 of the Kenyan children, of whom 57 were HbAS. The causal

pathways (a) or (b) in Figure 2 (note all children have been selected into the study on the basis of

clinical symptoms consistent with severe malaria) show how the distribution of HbAS can be used to

infer the marginal probability P(Severe malaria) in the Kenyan cohort as the prevalence of HbAS is

expected to differ in the two latent sub-populations.

We assumed that cases with the highest likelihood values P(Data | Severe malaria) under the refer-

ence model (a bivariate t-distribution fit to the severe malaria reference data) had a diagnosis of

severe malaria that was 100% specific (top 40% of cases, a sensitivity analysis varied this threshold).

The cases with lower likelihood values were assumed to be drawn from a mixture of the two latent

populations with an unknown mixing proportion; the prevalence of HbAS in the ‘not severe malaria’

subgroup was estimated from a cohort of hospitalised children enrolled in the same hospital and

who were malaria blood slide positive but were clinically diagnosed as not having severe malaria

(n = 6748 of whom 364 were HbAS; Uyoga et al., 2019). We assumed that this diagnosis of

‘not severe malaria’ was 100% specific. Under these assumptions, we estimated that P(Severe

malaria) = 0.64 (95% credible interval [C.I.] 0.46–0.8), implying that approximately one-third of the

2200 cases are from the ‘not severe malaria’ sub-population (they have malaria parasitaemia in addi-

tion to another severe illness – likely to be bacterial sepsis – Figure 2).

Estimating individual probabilities of severe malaria
We then estimated P(Severe malaria | Data) for each Kenyan case by fitting a mixture model to the

reference data and to the Kenyan data jointly. The model assumed that the platelet and white count

data for the Kenyan children were drawn from a mixture of P(Data | Severe malaria) and P(Data | Not

severe malaria). The reference data (Asian adults and children with severe malaria and African chil-

dren with PfHRP2 >1000 ng/mL) were assumed to be drawn only from P(Data | Severe malaria). P

Table 1. Summary of severe disease datasets used in our analyses.

For age and parasite density, we show the median values as the distributions are highly skewed. *For the FEAST trial, the severe

malaria reference dataset only included platelet and white count data from the 121 patients who had PfHRP2 >1000 ng/mL and >1000

parasites per mL. IQR: interquartile range.

Bangladesh-Thailand Vietnam FEAST (Uganda) Kenya

Description Observational studies of
severe malaria

Randomised controlled trials in
severe malaria

Randomised controlled trial in
severe febrile illness

Observational severe
malaria cohort

Purpose Reference data Reference data Reference data* and Figure 1B Testing data

Published references Leopold et al., 2019 Hien et al., 1996; Phu et al.,
2010

Maitland et al., 2011 MalariaGEN Consortium
et al., 2018

n 653 930 567 2220

Age (years, range) 28 (2–80) 30 (15–79) 2.1 (0–12) 2.3 (0–13)

Parasite density (per
mL, IQR)

48,984 (8289–187,395) 83,084 (13,047–316,512) 400 (0–53,200) 72,000 (6208–315,250)

Mortality (%) 18.2 12.9 11.3 11.6
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(Data | Not severe malaria) was modelled itself as a mixture of bivariate t-distributions. We used an

informative prior on the mixture proportion (‘severe malaria’ versus ‘not severe malaria’) in the Ken-

yan cases, a beta distribution approximating the posterior estimate from the analysis of HbAS

prevalence.

Figure 3A shows the bimodal distribution of the posterior individual estimates of P(Severe

malaria | Data). As expected, the individual posterior probabilities of severe malaria were highly pre-

dictive of HbAS (p ¼ 10
�6 from a generalised additive logistic regression model fit, Figure 3C). The

individual probabilities were also predictive of in-hospital mortality (p ¼ 10
�9 from a generalised

additive model fit; Figure 3D) and admission peripheral blood parasite density (p ¼ 10
�25 from a

generalised additive model fit; Figure 3E). In the top quintile of patients with the highest estimated

P(Severe malaria | Data), the prevalence of HbAS was 0.7% (3 out of 446). In contrast, for patients in

the lowest quintile of estimated P(Severe malaria | Data), the prevalence of HbAS was 4.8% (21 out

of 444). The patients with a low probability of severe malaria had a substantially higher case fatality

ratio (18.8% mortality for patients in the bottom quintile of P[Severe malaria | Data] versus 6.1% mor-

tality for the top quintile of P[Severe malaria | Data]). This may be explained by the higher case-spe-

cific mortality of severe bacterial sepsis (the most likely alternative cause of severe illness). The

admission parasite densities in patients with a probability of severe malaria close to 1 were approxi-

mately fivefold higher than in patients with a probability of severe malaria close to 0. The blood cul-

ture positive rate was 2.1% in the top quintile of P(Severe malaria | Data) and 4.4% in the lowest

quintile of P(Severe malaria | Data), and the individual probabilities were predictive of blood culture

results (p ¼ 0:004 under a generalised additive logistic regression model fit).

Accounting for case imprecision in case-control studies
‘False-positive’ cases reduce statistical power and dilute effect size estimates in case-control studies.

We propose a novel approach for case-control studies with phenotypic imprecision based on data-

tilting (Nie et al., 2013). The idea is to ‘tilt’ the cases towards a pseudo-population with higher spec-

ificity for severe malaria. We can do this by re-weighting the data by the probabilities P(Severe

malaria | Data), that is, re-weighting the contribution to the log-likelihood in an association model.

We applied this approach as proof of concept to a genome-wide association study using the sub-

set of Kenyan children who had clinical and genome-wide data available (after quality control checks

Figure 2. Theoretical causal pathways that lead to the clinical diagnosis of severe malaria under the current WHO definition (World Health

Organisation, 2014). Pathways (a) and (b) represent the two ways patients can be mis-classified as severe malaria. For both pathways (a) and (b), we

expect a higher prevalence of HbAS relative to the population with true severe malaria as a consequence of the protective bottlenecks. In this causal

model, we assume that HbAS does not protect against asymptomatic parasitaemia, although this assumption is not strictly necessary. Adapted with

permission from Small et al., 2017.
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Figure 3. Model estimates of P(Severe malaria | Data) in 2220 Kenyan children clinically diagnosed with severe malaria. Panel (A) shows the distribution

of posterior probabilities of severe malaria being the correct diagnosis. Panel (B) shows these same probabilities plotted as a function of the platelet

and white counts on which they are based (dark red: probability close to 0; dark blue: probability close to 1). The black diamonds show the HbAS

individuals. Panels (C–E) show the relationship between the estimated probabilities of severe malaria and HbAS, in-hospital mortality and admission

parasite density, respectively. The black lines (shaded areas) show the mean estimated values (95% confidence intervals) from a generalised additive

logistic regression model with a smooth spline term for the likelihood (R package mgcv). The horizontal lines in panels (C–E) show the mean values in

the data.
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n = 1297 cases) and a set of matched population controls (n = 1614), across 9.6 million biallelic var-

iants on the autosomal chromosomes (Band et al., 2019). We compared the data-tilting method to

the standard non-weighted approach by estimating local FDRs (Storey, 2002). Compared to the

standard non-weighted GWAS, data-tilting substantially increased the number of significant associa-

tions for local FDRs in the range of 1–5% (Figure 4). For example, at an FDR of 2%, the number of

significant hits is more than doubled with the additional hits all around known loci associated with

protection from severe malaria. We note that if the data weights were not predictive of the true

latent phenotype, we would expect fewer significant hits for a given FDR because of the reduction in

effective sample size. This is demonstrated by permuting the data weights (for the cases only), which

results in 50–75% reduction in the number of significant hits at FDRs < 5% (Appendix 3).

Examining three major genetic regions strongly associated with protection from severe malaria in

East Africa (HBB: HbAS; ABO: O blood group; FREM3: in close linkage with the GYPA/B/E structural

variants that encode the Dantu blood group; Band et al., 2019), the data-tilting approach estimated

larger effect sizes compared to the non-weighted model in all three regions (effect size increases:

30% around HBB, 9% around ABO and 5% around FREM3). This resulted in larger –log10 p-values

for HBB and ABO, but slightly smaller for FREM3 (Figure 5). We note that there was no signal of

association at ATP2B4 in this subset, most likely due to limited power (ATP2B4 had the third largest

Bayes factor for association in the largest multicentre GWAS to date, Band et al., 2019).

Reappraisal of directly typed polymorphisms
We re-analysed case-control associations for 120 polymorphisms on 70 candidate malaria-protective

genes which were typed directly in the 2220 Kenyan children along with 3940 population controls. In

this case-control cohort, 14 polymorphisms had previously been identified as associated with protec-

tion or increased risk in severe malaria (MalariaGEN Consortium et al., 2018). A re-analysis of these

14 variants using the same models of association as previously published and down-weighting the

likely mis-classified cases replicated the majority of associations, with increased effect sizes and

Figure 4. The number of significant hits as a function of the FDR for the genome-wide association study across 9.6 million biallelic variants. This analysis

is based on a subset of the Kenyan children with whole-genome data available and passing quality checks n = 1297 and n = 1614 controls. Dashed line:

weighted model; thick line: non-weighted model.
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Figure 5. The three regions in the human genome with the greatest evidence for protection against severe malaria in East Africa (HBB, ABO and

FREM3; Band et al., 2019). The Manhattan plots (left panels) compare p-values from the weighted model (blue) and the non-weighted model (orange).

Each Manhattan plot is centred around the known causal position shown by the vertical dashed line (0.5 Mb region). The horizontal dashed line shows

p ¼ 10
�7 (threshold often used for defining genome-wide significance). The 10 positions with the greatest –log10 p-values under the non-weighted

model are shown as large diamonds. The scatter plots on the right compare absolute effect size estimates under both models with the same top 10 hits

shown by the larger purple diamonds. Increases of 30, 9 and 5% are seen for the 10 top hits for HBB, ABO and FREM3, respectively.
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increased –log10 p-values (Appendix 4). For the three major genes (HBB, ABO, FREM3), effect sizes

were increased by 10–30% and associations all had higher significance levels on the –log10 scale

(0.25–1.7). The allele frequencies of all three polymorphisms were directly associated with the proba-

bility weights, showing increased protection in individuals more likely to have severe malaria (Appen-

dix 5). Two polymorphisms on the genes ARL14 and LOC727982, reported previously as associated

with protection in severe malaria (neither of which are related to red cells), showed decreased effect

sizes and –log10 p-values and are thus potentially spurious hits.

We explored whether there was evidence of differential effects in the Kenyan cases using P

[Severe malaria | Data] to assign probabilistically each case to the ‘severe malaria’ versus ‘not severe

malaria’ sub-populations. We fitted a categorical logistic regression model predicting the latent sub-

population label versus control, where the latent case label was estimated from the weights shown

in Figure 3A. This resulted in approximately 1279 cases in the ‘severe malaria’ sub-population and

941 cases in the ‘not severe malaria’ sub-population. Differential effects were tested by comparing

the estimated log-odds for the two sub-populations. After accounting for multiple testing, two poly-

morphisms showed significant differential effects: rs334 (derived allele encodes haemoglobin S,

p ¼ 10
�6) and rs1050828 (derived allele encodes G6PD + 202T, p ¼ 10

�3 in the model fit to females

only), see Figure 6. As expected, rs334 was associated with protection in both sub-populations

(Scott et al., 2011; Uyoga et al., 2019) but the effect was almost eight times larger on the log-

odds scale in the ‘severe malaria’ sub-population relative to the ‘not severe malaria’ sub-population

(odds ratio of 0.029 [95% C.I. 0.0088–0.094] in the ‘severe malaria’ population versus 0.63 [95% C.I.

0.48–0.83] in the ‘not severe malaria’ population). For rs1050828 (G6PD + 202T allele), approxi-

mately the same absolute log-odds were estimated for both sub-populations but they had opposite

signs. Under an additive model in females, the rs1050828 T allele was associated with protection in

the ‘severe malaria’ sub-population (odds ratio of 0.71 [95% C.I. 0.57–0.88]) but with increased risk

in the ‘not severe malaria’ sub-population (odds ratio of 1.30 [95% C.I. 1.00–1.70]). The additive

model including both males and females was consistent with these opposing effects but significant

only at a nominal threshold (p ¼ 0:02). Opposing effects across the two sub-populations are consis-

tent with the hypothesis that G6PD deficiency leads to a greater risk of being erroneously classified

as severe malaria as under the severe anaemia criterion (Watson et al., 2019), shown in more detail

in Appendix 5. Investigation of haemoglobin concentrations as a function of P(Severe malaria | Data)

indicates that the mis-classified group is very heterogeneous, but with a larger proportion of severe

anaemia (<5 g/dL) relative to the correctly classified sub-population (Appendix 6).

Discussion
The clinical diagnosis of severe falciparum malaria in African children is imprecise (Taylor et al.,

2004; Bejon et al., 2007; White et al., 2013). Even with quantitation of parasite densities, specific-

ity is still imperfect (Bejon et al., 2007). In children with cerebral malaria (unrouseable coma with

malaria parasitaemia), the most specific of the severe malaria clinical syndromes, postmortem exami-

nation revealed another diagnosis in a quarter of cases studied in Blantyre, Malawi (Taylor et al.,

2004). Diagnostic specificity can be improved by visualisation of the obstructed microcirculation

in vivo (e.g. through indirect ophthalmoscopy) or from parasite biomass indicators (quantitation and

staging of malaria parasites on thin blood films, counting of neutrophil-ingested malaria pigment,

measurement of plasma concentrations of PfHRP2 or parasite DNA), but these are still largely

research procedures and have not been widely adopted or measured at scale for genetic association

studies. Our results suggest that imprecision in clinical phenotyping is more substantial than thought

previously. In this cohort of 2220 Kenyan children diagnosed with severe malaria from an area of

moderate transmission, a probabilistic assessment suggests that around one-third may not have had

severe malaria (although malaria may have contributed to their illness; Small et al., 2017). This sup-

ports our previous conclusion that differences in treatment effects between Asian adults and African

children (i.e the benefits of artesunate over quinine in severe malaria estimated from randomised tri-

als; Dondorp et al., 2005; Dondorp et al., 2010) are predominantly driven by differences in diag-

nostic specificity (Hendriksen et al., 2012; White et al., 2013). Mortality was higher in the severe

‘not malaria’ patients, probably because the main illness was bacterial sepsis. This strongly supports

current recommendations to give broad-spectrum antibiotics to all children in endemic areas with

suspected severe malaria (World Health Organisation, 2014). Using HbAS as a natural experiment
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Figure 6. Exploring differential effects in 120 directly typed polymorphisms across 70 candidate malaria-protecting genes. (A) Case-control effect sizes

estimated for the ‘severe malaria’ sub-population versus the ‘not severe malaria’ sub-population (n = 3940 controls and n = 2220 cases, with

approximately 1279 in the ‘severe malaria’ sub-population and 941 in the ‘not severe malaria’ sub-population). The vertical and horizontal grey lines

show the 95% credible intervals. (B) The log10 p-values testing the hypothesis that the effects are the same for the two sub-populations relative to

controls. The top dashed line shows the Bonferroni corrected a ¼ 0:05 significance threshold (assuming 70 independent tests). The bottom dashed line

shows the nominal a ¼ 0:05 significance threshold. In both panels, red circles denote p<0:05 (nominal significance level), and red squares denote

p<0:05=70. (C) Analysis of the rs1050828 SNP (encoding G6PD + 202T) under a non-additive model (hemi/homozygotes and heterozygotes are distinct

categories). This shows that heterozygotes are clearly under-represented in the ‘severe malaria’ sub-population and hemi/homozygotes are clearly over-

represented in the ‘not severe malaria’ sub-population. (D) Evidence of differential effects for the O blood group (rs8176719, recessive model) and

FREM3 (additive model).
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to validate the biomarker model, we show that the joint distribution of platelet and white blood cell

counts is a diagnostic predictor of severe malaria. Complete blood counts are inexpensive and

increasingly available in low-resource setting hospitals. Application of an upper threshold of 200,000

platelets per mL would have substantially decreased mis-classification in this large cohort of Kenyan

children diagnosed with severe malaria.

This re-analysis using rich clinical data provides additional evidence for the three major genetic

polymorphisms protective against severe malaria present in East Africa. After probabilistic down-

weighting of the likely mis-classified cases, substantial increases in effect sizes were found. Dilution

of effect sizes resulting from mis-classification could partially explain the large heterogeneity in

effects noted in the largest severe malaria GWAS to date (Band et al., 2019). For haemoglobin S

(rs334), there was a fourfold variation in estimated odds ratios across participating sites. Some of

this heterogeneity can be attributed to variations in linkage disequilibrium affecting imputation accu-

racy (Malaria Genomic Epidemiology Network et al., 2013), but our analysis shows an additional

substantial source of heterogeneity which results from diagnostic imprecision. This can be adjusted

for if detailed clinical data are available. For example, in the case of rs334 (directly typed), the data-

tilting approach results in a 25% increase in effect size on the log-odds scale, corresponding to 35%

decrease in estimated odds ratios (0.1 versus 0.16).

As for the interpretation of genetic effects, one of the most interesting results concerns the

G6PD gene. G6PD deficiency is the most common enzymopathy of humans. Its potential role in pro-

tecting against falciparum malaria has been controversial (MalariaGEN Consortium et al., 2017;

Watson et al., 2019). A very large multi-country genetic association study with over 11,000 severe

malaria cases and 17,000 population controls found no overall protective effect of the G6PD + 202T

allele (the most common mutation in sub-Saharan Africa causing G6PD deficiency), under an additive

model (Malaria Genomic Epidemiology Network, 2014). The same pattern is observed in this Ken-

yan cohort (which is a subset of the larger study). In the Kenyan cohort overall, a previous analysis

found no clear evidence of protection for male homozygotes but substantial evidence of protection

for female heterozygotes (MalariaGEN Consortium et al., 2015). This would suggest a heterogy-

zote advantage leading to a balancing polymorphism. However, when the Kenyan cases are mod-

elled as two distinct sub-populations, there is evidence of differential effects between the ‘severe

malaria’ and ‘not severe malaria’ sub-populations. Hemi- and homozygous G6PD deficiency was

associated with an increased risk of mis-classification (reflecting an increased risk of severe anaemia),

but it is unclear whether or not hemi/homozygous G6PD deficiency was protective in the ’true severe

malaria’ sub-population (Figure 6C). On the other hand, heterozygote deficiency was very clearly

protective in the true severe malaria subgroup, consistent with previous findings, and did not appear

to lead to an increased risk of mis-classification (consistent with a lower risk of extensive haemolysis

and thus false classification in heterozygotes who have both normal and G6PD-deficient erythrocytes

in their circulation). When examining the ‘severe malaria’ sub-population only, the sample size in this

study is too small to discriminate between the heterozygote and additive models of association. In

our view, the relationship between G6PD deficiency and severe falciparum malaria remains unan-

swered. A biomarker-driven approach should be applied to other case-control cohorts for a defini-

tive understanding of the role of this major human polymorphism.

The limitations of our diagnostic model can be summarised as follows. First, the validity and inter-

pretation of the individual probabilities of severe malaria is heavily dependent on the reference

model and thus the reference data. Our reference data were primarily from Asian adults in whom

diagnostic specificity for severe malaria is thought to be very high. Diagnostic checks suggested that

the marginal distributions of platelet counts were similar between adults and children, and we made

age corrections to the white blood cell count, but small deviations could reduce the discriminatory

value (e.g. lower white counts associated with the Duffy negative phenotype; Reich et al., 2009).

Second, it is possible that rare genetic conditions exist in which the probabilities of severe malaria

under this model might be biased. One example is sickle cell disease (HbSS, <0.5% in the Kenyan

cases), which results in chronic inflammation with high white counts and low platelet counts relative

to the normal population (Sadarangani et al., 2009). The 11 children with HbSS in this cohort were

all assigned low probabilities of severe malaria, but this should be interpreted with caution. Whether

HbSS is protective against severe malaria or increases the risk of severe malaria remains unclear

(Williams and Obaro, 2011). For these patients, other biomarkers such as plasma PfHRP2 may be

more appropriate. Third, it is possible that the joint distribution of the complete blood count
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variables used to fit the reference model could be dependent on the severe malaria sub-phenotype.

For example, if the reference data were biased towards cerebral malaria, and the joint distribution

of platelet and white cell counts in cerebral malaria differed from those in the other severe malaria

syndromes, then the predicted outliers could represent other forms of severe malaria instead of

‘not severe’ malaria. However, there are no known biological reasons why this would be the case.

The strong correlation between platelet counts and PfHRP2 (Figure 1B) suggests that low platelet

counts are a universal feature of severe malaria.

In summary, under a probabilistic model based on routine blood count data, we have shown that

it is possible to estimate mis-classification rates in diagnosed severe childhood malaria in a malaria

endemic area of East Africa and compute probabilistic weights that can downweight the contribu-

tion of likely mis-classified cases. The well-established protective effect of HbAS provided an inde-

pendent validation of the model. Relative to predicted mis-classified cases, patients predicted to

have ‘true severe malaria’ had a substantially lower prevalence of HbAS, higher parasite densities,

lower rates of positive blood cultures and lower mortality. These data strongly support the current

guideline to give broad-spectrum antibiotics to all children with suspected severe malaria and sug-

gest that normal range platelet counts (>200,000 per mL) could be used as a simple exclusion crite-

rion in studies of severe malaria. Based on this analysis, we recommend that future studies in severe

malaria collect and record complete blood count data. Further studies of platelet and white blood

cell counts from a diverse cohort of children with severe falciparum malaria, confirmed using high-

specificity diagnostic techniques such as visualisation of the microcirculation, and measurement of

plasma PfHRP2, or plasma P. falciparum DNA concentrations, should be conducted to validate this

approach.

Materials and methods

Data
Kenyan case-control cohort
The Kenyan case-control cohort has been described in detail previously (MalariaGEN Consortium

et al., 2018). Severe malaria cases consisted of all children aged <14 years who were admitted with

clinical features of severe falciparum malaria to the high-dependency ward of Kilifi County Hospital

between 11 June 1999 and 12 June 2008. Severe malaria was defined as a positive blood film for P.

falciparum along with prostration (Blantyre Coma Score of 3 or 4), cerebral malaria (Blantyre Coma

Score of <3), respiratory distress (abnormally deep breathing) and severe anaemia (haemoglobin <5

g/dL). Controls were infants aged 3–12 months who were born within the same area as the cases

and who were recruited to a cohort study investigating genetic susceptibility to a wide range of

childhood diseases. Cases and controls were genotyped for the rs334 SNP and for aþ-thalassaemia

along with 120 other SNPs using DNA extracted from fresh or frozen samples of whole blood as

described in detail previously (MalariaGEN Consortium et al., 2018; Wambua et al., 2006).

Fluid Expansion as Supportive Therapy (FEAST)
FEAST was a multicentre randomised controlled trial comparing fluid boluses for severely ill children

(n = 3161) that was not specific to severe malaria (Maitland et al., 2011). Platelet counts, white

blood cell counts, parasite densities and PfHRP2 were jointly measured for 566 children (patients

enrolled in the sites in Mulago, Lacor and Mbale, in Uganda). In order to select only those with a

very high probability of having severe malaria as the primary cause of illness, we selected the 121

children who had measured PfHRP2 >1000 ng/mL and parasitaemia >1000 per mL.

AQ Vietnam and AAV randomised controlled trials
The AQ and the AAV studies were two randomised clinical trials in Vietnamese adults diagnosed

clinically with severe falciparum malaria recruited to a specialist ward of the Hospital for Tropical Dis-

eases, Ho Chi Minh City, Vietnam, between 1991 and 2003 (Hien et al., 1996; Phu et al., 2010). AQ

Vietnam was a double-blind comparison of intramuscular artemether versus intramuscular quinine

(n = 560); AAV compared intramuscular artesunate and intramuscular artemether (n = 370).
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Observational studies in Thai and Bangladeshi adults and children
We included data from multiple observational studies in severe falciparum malaria conducted by the

Mahidol Oxford Tropical Medicine Research Unit in Thailand and Bangladesh between 1980 and

2019. These pooled data have been described previously (Leopold et al., 2019). Platelet counts and

white blood cell counts were available in 657 patients. We excluded one 30-year-old adult from Ban-

gladesh whose recorded platelet count was 1000 per mL and three other adults with platelet counts

greater than 450,000 per mL as outliers reflecting likely data entry errors. Plasma PfHRP2 concentra-

tions were available in 172 patients from Bangladesh. 55 patients from this series were younger than

15 years of age.

Multiple imputation
In the Kenyan severe malaria cohort (n = 2220), data on platelet counts were missing in 18%, white

blood counts were missing in 0.2% and parasite density was missing in 1.6%. In-hospital outcome

(died/survived) was missing for 13 patients. rs334 genotype was missing for 7; a
þ-thalassaemia

genotype was missing for 101 patients. In the Vietnamese adults, platelet counts were missing in

4%, white counts in 2% and parasitaemia in 0%.

We did multiple imputation using random forests for all available clinical variables using the R

package missForest (targeted genotyping data was not included for imputation). Appendix 7 shows

the missing data pattern in the studies in Vietnamese adults and in the Kenyan severe malaria cases.

Ten datasets were imputed for each dataset independently and were used for the subsequent analy-

ses. Analyses using directly typed genetic polymorphisms or the within-hospital outcome as the

dependent variables used only the data where these outcomes were recorded, assuming that they

were missing at random.

Reference model of severe malaria
Biological rationale
Thrombocytopenia accompanied by a normal white blood count and a normal neutrophil count are

typical features of severe malaria (Hanson et al., 2015; Leblanc et al., 2020), but they may also

occur in some systemic viral infections and in severe sepsis. Neutrophil leukocytosis may sometimes

occur in very severe malaria, but is more characteristic of pyogenic bacterial infections. These indi-

ces, whilst individually not very specific, could each have useful discriminatory value. We reasoned

therefore that their joint distribution could help discriminate between children with severe malaria

versus those severely ill with coincidental parasitaemia. The Kenyan severe malaria cohort did not

have differential white count data, so we used platelet counts and total white blood cell counts as

the two diagnostic biomarkers in the reference model of severe malaria.

Choice of reference data and confounders
The best data for fitting the biomarker model are either from children or adults from low transmis-

sion areas (where parasitaemia has a high positive predictive value) or in children or adults with high

plasma PfHRP2 measurements indicating a large latent parasite biomass (Hendriksen et al., 2012).

In the first years of life, white blood cell counts are often much higher than in adults because of

lymphocytosis. We used data from 858 children from the FEAST trial, in whom white counts were

measured, to estimate the relationship between age and mean white count in severe illness (median

age was 24 months). The estimated relationship is shown in Appendix 8 (using a generalised additive

linear model with the white count on the log10 scale), with mean white counts reaching a plateau

around 5 years of age. We used this to correct all white count data in children less than 5 years of

age, both in the reference data and the Kenyan cohort.

There is also a systematic difference associated with the Duffy negative phenotype which is near

fixation in Africa but absent in Asia. Duffy negative individuals have lower neutrophil counts (termed

benign ethnic neutropenia) (Reich et al., 2009). The use of Asian adults to estimate the reference

distribution of white counts in severe malaria could thus falsely include individuals with elevated

white counts (relative to the normal ranges). However, a diagnostic quantile-quantile plot (Appendix

1, on the log scale) comparing the white blood cell count distribution in Vietnamese adults and in

children in the FEAST trial who had PfHRP2 >1000 ng/mL did not suggest any major differences. In

fact the African children had slightly higher white counts on average even after the correction for
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age. This may represent imperfect specificity for severe malaria when using a plasma PfHRP2 cutoff

of 1000 mg/mL.

For platelet counts (which have the greatest diagnostic value for severe malaria in our series), age

is not a confounder and published data support the hypothesis that thrombocytopenia is highly spe-

cific for ‘true’ severe malaria in children as well as adults suspected of having severe malaria (with a

diagnostic and a prognostic value). The French national guidelines specifically mention thrombocyto-

penia (<150,000 per mL) for the diagnosis of severe malaria in children who have travelled to a

malaria endemic area. In a French paediatric severe malaria series in travellers, almost half had

severe thrombocytopenia (<50,000 per mL) (Lanneaux et al., 2016; Pediatric Imported Malaria

Study Group for the ‘Centre National de Référence du Paludisme’ et al., 2017). In Dakar, Senegal

(one of the lowest transmission areas in Africa), thrombocytopenia was an independent predictor of

death and the median platelet count was 100,000 (Gérardin et al., 2007; Gérardin et al., 2002).

Comparison of the distributions of platelet counts (on the log scale) between Asian children and

Asian adults suggested no major differences (Appendix 1), although we had few data for Asian chil-

dren. In the seminal Blantyre autopsy study (Taylor et al., 2004), platelet counts were substantially

different between fatal cases confirmed postmortem to be severe malaria (62,000 per mL and 56,000

per mL for the children with sequestration only and sequestration + microvascular pathology, respec-

tively) and fatal cases with a mis-diagnosis of severe malaria (no sequestration: 176,000 per mL; the

inter-group difference was statistically significant, p ¼ 0:008). A larger cohort from the same centre in

Malawi reported substantially higher platelet counts in retinopathy-negative cerebral malaria (mean

platelet count was 161,000 per mL, n = 288) compared to retinopathy-positive cerebral malaria

(mean count was 81,000 per mL, n = 438) (Small et al., 2017).

We visually checked approximate normality for each marginal distribution using quantile-quantile

plots (Appendix 9). On the log10 scale, platelet counts and white counts show a good fit to the nor-

mal approximation but with some outliers so a t-distribution was used (robust to outliers). For all

modelling of the joint distribution of platelet counts and white blood cell counts, we chose bivariate

t-distributions with 7 degrees of freedom as the default model. The final reference model used was

a bivariate t-distribution fit to the joint distribution of platelet counts and white counts both on the

logarithmic scale. On the log10 scale, the mean values (standard deviations) were approximately 1.76

(0.11) and 0.92 (0.055) for platelets and white counts, respectively. The covariance was approxi-

mately 0.0035. These values varied very slightly across the 10 imputed datasets. Log-likelihood val-

ues for each severe malaria case in the Kenyan cohort were calculated for each imputed dataset

independently. The median log-likelihoods per case were then used in downstream analyses.

Limitations of the model
The diagnostic model of severe malaria using platelet counts and white blood cell counts cannot be

applied to all patients. We summarise here the known and possible limitations. When using this

model to estimate the association between a genetic polymorphism and the risk of severe malaria, if

the genetic polymorphism of interest affects the complete blood count independently, there will be

selection bias (see the directed acyclic graph in Appendix 10). One example is HbSS. Children with

HbSS have chronic inflammation with white blood cells counts about 2–3 times higher than normal

and slightly lower platelet counts (Sadarangani et al., 2009). All 11 children in the Kenyan cohort

with HbSS were assigned low probabilities of having severe malaria (Appendix 10), but these proba-

bilities could reflect a deficiency of the model. Including or excluding these children from the analy-

sis had no impact on the results as they represent less than 0.5% of the cases.

The second possible limitation concerns the validation using HbAS. Previous studies have sug-

gested negative epistasis between the malaria-protective effects of HbAS and a
þ-thalassaemia

(Williams et al., 2005; Opi et al., 2014). The 3.7 kb deletion across the HBA1-HBA2 genes (known

as aþ-thalassaemia) has an allele frequency of ~ 40% in this population; therefore, 16% of HbAS indi-

viduals are homozygous for a
þ-thalassaemia (Ndila et al., 2020). Negative epistasis implies that

those with both polymorphisms would have less or no protective effect against severe malaria. Of

the 2113 Kenyan cases with both HbS and a
þ-thalassaemia genotyped, 13 were HbAS and homozy-

gous a
þ-thalassaemia. Appendix 11 shows that the majority of those with both polymorphisms had

clinical indices pointing away from severe malaria, suggesting that the observed number of patients

with both HbAS and homozygous aþ-thalassaemia is inflated by two- to threefold.
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The third possible problem concerns the use of white blood cell counts in relation to invasive bac-

terial infections. Bacteraemia could either be the cause of severe illness (with coincidental parasitae-

mia) or it could be concomitant (which may result from extensive parasitised erythrocyte

sequestration in the gut), that is, a result of severe malaria. The former should be identified as

‘not severe malaria’ (as bacteraemia is the main cause of illness), but the latter should be identified

as ‘severe malaria’ and might be mis-classified as ‘not severe malaria’ under our model. However, in

a series of 845 Vietnamese adults (high diagnostic specificity), only one of eight patients who had

concomitant-invasive bacterial infections and a white count measured had leukocytosis (median

white count was 8100; range 3500–14,850 per mL; Phu et al., 2020).

Estimating the diagnostic specificity in the Kenyan cohort
We assume that the Kenyan cases are a latent mixture of two sub-populations: P0 is the population

‘severe malaria’ and P1 is the population ‘not severe malaria’ (mis-classified). For a set of diagnostic

biomarkers X, this implies that X ~G ¼ pf0 þ ð1� pÞf1, where f0; f1 are the sampling distributions (like-

lihoods) of each sub-population, respectively.

We can infer the value of p (proportion correctly classified as severe malaria) without making

parametric assumptions about f1 by using the distribution of HbAS (motivated by the causal path-

ways shown in Figure 2). This is done as follows: we first estimate bf0 by fitting a bivariate t-distribu-

tion to the reference data – this approximates the sampling distribution for P0. We then make three

assumptions:

1. Out of the 2213 Kenyan cases with rs334 genotyped, we assume that cases in the top 40th

percentile of the likelihood distribution under bf0 are drawn from P0: N0 ¼ 887, of which

Nsickle
0

¼ 9 are HbAS.
2. For the other cases, the proportion drawn from P0 is unknown and denoted p

0: NG ¼ 1; 326, of

which Nsickle
G ¼ 48 are HbAS.

3. Finally, additional information is incorporated by using data from a cohort of individuals with
severe disease from the same hospital who had positive malaria blood slides but whose diag-

nosis was not severe malaria ðN1 ¼ 6; 748, of which Nsickle
1

¼ 364 were HbAS) (Uyoga et al.,
2019).

Under these assumptions, we can fit a Bayesian binomial mixture model to these data with three

parameters: fp0; p0; p1g. The likelihood is given by

Nsickle
0

~Binomialðp0;N0Þ
Nsickle
G ~Binomialðp0p0 þð1�p

0Þp1;NGÞ
Nsickle
1

~Binomialðp1;N1Þ

The priors used were p1 ~Betað5;95Þ (i.e. 5% prior probability with 100 pseudo observations);

p0 ~Betað1;99Þ (1% prior probability with 100 pseudo observations). A sensitivity analysis with flat

beta priors (Beta[1,1]) did not qualitatively change the result (by one percentage point for the final

estimate of p). To check the validity of the use of the external population from Uyoga et al., 2019,

we did a sensitivity analysis using the lowest quintile of the likelihood ratio distribution as a popula-

tion drawn entirely from P1 (instead of the external data from Uyoga et al., 2019).

Estimating P(Severe malaria | Data) in the Kenyan cohort
Denote the platelet and white count data from the FEAST trial as fXFEAST

i g121i¼1
; the data from the

Vietnamese adults and children as fXAsia
i g1583i¼1

; the data from the Kenyan children as fXKenya
i g2220i¼1

. We

fit the following joint model to the reference biomarker data and the Kenyan biomarker data.

XFEAST
i ~Student ð�1

SM ;S
1

SM ;7Þ
XAsia
i ~Student ð�2

SM ;S
2

SM ;7Þ

X
Kenya
i ~pf0 þð1�pÞf1

f0 ¼ p Student ð�1

SM ;S
1

SM ;7Þþ ð1� pÞStudentð�2

SM ;S
2

SM ;7Þ

f1 ¼
PK

j¼1
aj Studentð�

j
notSM ;S

j
notSM ;7Þ

with the following prior distributions and hyperparameters, where a¼ fa1; ::;aKg such that
PK

j¼1
aj ¼ 1 :
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p~Betað40:3;24:7Þ
p~Betað2;2Þ

�1;2
SM ~Normalðf1:8;0:95g;0:12Þ

�1::K
notSM ~Normalðf2:5;1:5g;0:252Þ
a~Dirichletð1=K; :::;1=KÞ

The covariance matrices S
1;2
SM and S1:6

SM were parameterised as their Cholesky LKJ decomposition,

where the L correlation matrices had a uniform prior (i.e. hyperparameter n = 1). The model was

implemented in rstan.

This models the biomarker data in ‘not severe malaria’ as a mixture of K t-distributions. We chose

K ¼ 6 as the default choice (sensitivity analysis increasing this has no impact). The Dirichlet prior with

hyperparameter 1=K forces sparsity in this mixture model (most of the prior weight is on the vertices

of the K-dimensional simplex); see, for example, Frühwirth-Schnatter and Malsiner-Walli, 2019.

This is a very general and flexible way of modelling the ‘not severe malaria’ distribution: we are not

trying to make inferences about this distribution, we just want the mixture model to be flexible

enough to describe it. The model also allows for differences in the joint distribution of platelet

counts and white counts between the reference datasets (FEAST trial and the Asian studies). The

Kenyan cases drawn from the ‘severe malaria’ sub-population are then modelled as a mix of these

two reference models.

Re-weighted likelihood for case-control analyses
For each fXKenya

i g2220i¼1
, we estimate the posterior probability of being drawn from the sampling distri-

bution f0. The mean posterior probability then defines a precision weight wi which can be used in a

standard generalised linear model (glm) with the same interpretation as inverse probability weights.

The weighted glm is equivalent to computing the maximum likelihood estimate where the log-likeli-

hood is weighted by wi. In our case-control analyses, all the controls are given weight 1. Nie et al.,

2013 give a proof of correctness for this re-weighted log-likelihood (equivalent to ‘tilting’ the data-

set towards the desired distribution bf0ðXÞ). The log-odds ratio computed from the weighted logistic

regression can be interpreted as the causal effect of the polymorphism on ‘true severe malaria’ rela-

tive to the controls, where ‘true severe malaria’ is defined by the sampling distribution f0. Appendix

12 shows the results of a simulation study demonstrating how the effect estimates and standard

error estimates vary as a function of the proportion of mis-classified cases (as given by the probabil-

ity weights).

Genome-wide association study
Anonymised whole-genome data from the Illumina Omni 2.5M platform for 1944 severe malaria

cases and 1738 population controls were downloaded from the European Genome-Phenome

Archive (dataset accession ID: EGAD00010001742, release date March 2019; Band et al., 2019).

This contained sequencing data on 2,383,648 variants. We used the quality control metadata pro-

vided with the 2019 data release to select SNPs and individuals with high-quality data. We first

excluded 386 individuals (due to relatedness: 155; missing data or low intensity: 226; gender: 5). We

then removed 616,426 SNPs that did not pass quality control, leaving a total of 1,767,222 SNPs. We

used plink2 to prune the SNPs (options: –maf 0.01 –indep-pairwise 50 2 0.2) down to a set of

462,120 SNPs in approximate linkage equilibrium. These SNPs were then used to calculated the first

five principal components (Appendix 13), which we subsequently used to control for population

structure in the genome-wide association study. We used the Michigan imputation server with the

1000 Genomes Phase 3 (version 5) as the reference panel to impute 28.6 million polymorphisms

across the 22 autosomal chromosomes. This is a web-based service that runs imputation pipelines

(phasing is done with Eagle2, imputation with Minimac4). Encrypted results are returned with a one-

time password. Of the remaining 3682 individuals (1681 cases and 1615 controls), we had clinical

data available for 1297 cases. We only used the subset of individuals with clinical data available in

order for a fair comparison between the weighted and non-weighted genome-wide association stud-

ies. We ran subsequent genome-wide association studies on all biallelic sites with a minor allele fre-

quency � 5% (9,615,446 sites in total) assuming an additive model of association. We used the R

function glm with a binomial link for all tests of association (genetic data were encoded as the

Watson, Ndila, et al. eLife 2021;10:e69698. DOI: https://doi.org/10.7554/eLife.69698 17 of 39

Research article Epidemiology and Global Health Genetics and Genomics

https://doi.org/10.7554/eLife.69698


number of ancestral alleles). The supplementary appendix gives the R code for weighted logistic

regression. The point estimates from the weighted model estimated by glm are correct but it is nec-

essary to transform the standard errors in order to take into account the reduction in effective sam-

ple size (see code).

Case-control study in directly typed polymorphisms
We fit a categorical (multinomial) logistic regression model to the case-control status as a function of

the directly typed polymorphisms (120 after discarding those that are monomorphic in this popula-

tion; see MalariaGEN Consortium et al., 2018 for additional details). We modelled the severe

malaria cases as two separate sub-populations with a latent variable: ‘severe malaria’ versus ‘not

severe malaria’, resulting in three possible labels (controls, ‘severe malaria’, ‘not severe malaria’).

The models adjusted for self-reported ethnicity and sex. The model was coded in stan

(Stan Development Team, 2020) using the log-sum-exp trick to marginalise out the likelihood over

the latent variables (see code). Normal(0,5) priors were set on all parameters, and parameter esti-

mates and standard errors were estimated from the maximum a posteriori value (function optimizing

in rstan).

Code availability
Code, along with a minimal clinical dataset for reproducibility of the diagnostic phenotyping model,

is available via a GitHub repository: https://github.com/jwatowatson/Kenyan_phenotypic_accuracy

(Watson, 2021; copy archived at swh:1:rev:03a2de285d38b85a769aa25de46b7960487efc62).

Data availability
A curated minimal clinical dataset is currently available alongside the code on the GitHub repository.

This will also be made available at publication via the KEMRI-Wellcome Harvard Dataverse (https://

dataverse.harvard.edu/dataverse/kwtrp).

This paper used genome-wide genotyping data generated by Band et al., 2019, available on

request from the European Genome-Phenome Archive (dataset accession ID: EGAD00010001742).

Requests for access to appropriately anonymised clinical data and directly typed genetic variants

(Malaria Genomic Epidemiology Network, 2014) for the Kenyan severe malaria cohort can be

made by application to the data access committee at the KEMRI-Wellcome Trust Research Pro-

gramme by email to mmunene@kemri-wellcome.org.

The FEAST trial datasets are available from the principal investigator on reasonable request (k.

maitland@imperial.ac.uk). Requests for access to appropriately anonymised clinical data from the

AQ and AAV Vietnam study and the Asian paediatric cohort can be made via the Mahidol Oxford

Tropical Medicine Research Unit data access committee by emailing the corresponding author JAW

(jwatowatson@gmail.com) or Rita Chanviriyavuth (rita@tropmedres.ac).
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french guidelines. Médecine Et Maladies Infectieuses 50:127–140. DOI: https://doi.org/10.1016/j.medmal.2019.
02.005, PMID: 30885541

Leopold SJ, Watson JA, Jeeyapant A, Simpson JA, Phu NH, Hien TT, Day NPJ, Dondorp AM, White NJ. 2019.
Investigating causal pathways in severe falciparum malaria: a pooled retrospective analysis of clinical studies.
PLOS Medicine 16:e1002858. DOI: https://doi.org/10.1371/journal.pmed.1002858, PMID: 31442221

Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, Nyeko R, Mtove G, Reyburn H, Lang T,
Brent B, Evans JA, Tibenderana JK, Crawley J, Russell EC, Levin M, Babiker AG, Gibb DM. 2011. Mortality after
fluid bolus in african children with severe infection. New England Journal of Medicine 364:2483–2495.
DOI: https://doi.org/10.1056/NEJMoa1101549

Malaria Genomic Epidemiology Network, Malaria Genomic Epidemiological Network, Band G, Le QS, Jostins L,
Pirinen M, Kivinen K, Jallow M, Sisay-Joof F, Bojang K, Pinder M, Sirugo G, Conway DJ, Nyirongo V, Kachala D,
Molyneux M, Taylor T, Ndila C, Peshu N, Marsh K, Williams TN, Alcock D, et al. 2013. Imputation-based meta-
analysis of severe malaria in three african populations. PLOS Genetics 9:e1003509. DOI: https://doi.org/10.
1371/journal.pgen.1003509, PMID: 23717212

Malaria Genomic Epidemiology Network. 2014. Reappraisal of known malaria resistance loci in a large
multicenter study. Nature Genetics 46:1197–1204. DOI: https://doi.org/10.1038/ng.3107, PMID: 25261933

Malaria Genomic Epidemiology Network, Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS, Clarke GM, Bojang
KA, Conway DJ, Jallow M, Sisay-Joof F, Bougouma EC, Mangano VD, Modiano D, Sirima SB, Achidi E, Apinjoh
TO, Marsh K, Ndila CM, Peshu N, Williams TN, et al. 2017. Resistance to malaria through structural variation of
red blood cell invasion receptors. Science 356:eaam6393. DOI: https://doi.org/10.1126/science.aam6393,
PMID: 28522690

MalariaGEN Consortium, Uyoga S, Ndila CM, Macharia AW, Nyutu G, Shah S, Peshu N, Clarke GM, Kwiatkowski
DP, Rockett KA, Williams TN. 2015. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and

Watson, Ndila, et al. eLife 2021;10:e69698. DOI: https://doi.org/10.7554/eLife.69698 21 of 39

Research article Epidemiology and Global Health Genetics and Genomics

https://doi.org/10.1128/CMR.15.4.564-594.2002
http://www.ncbi.nlm.nih.gov/pubmed/12364370
https://doi.org/10.1016/S0140-6736(05)67176-0
https://doi.org/10.1016/S0140-6736(05)67176-0
http://www.ncbi.nlm.nih.gov/pubmed/16125588
https://doi.org/10.1016/S0140-6736(10)61924-1
https://doi.org/10.1016/S0140-6736(10)61924-1
https://doi.org/10.1007/s11634-018-0329-y
https://doi.org/10.1007/s11634-018-0329-y
http://www.ncbi.nlm.nih.gov/pubmed/31007770
https://doi.org/10.4269/ajtmh.2002.66.686
https://doi.org/10.1186/1475-2875-6-51
https://doi.org/10.1186/1475-2875-6-51
http://www.ncbi.nlm.nih.gov/pubmed/17470294
https://doi.org/10.1016/S0140-6736(08)61734-1
https://doi.org/10.1186/s12916-015-0324-5
http://www.ncbi.nlm.nih.gov/pubmed/25907925
https://doi.org/10.1371/journal.pmed.1001297
https://doi.org/10.1371/journal.pmed.1001297
http://www.ncbi.nlm.nih.gov/pubmed/22927801
https://doi.org/10.1056/NEJM199607113350202
https://doi.org/10.1007/s00439-020-02142-6
http://www.ncbi.nlm.nih.gov/pubmed/32130487
https://doi.org/10.1136/archdischild-2015-309665
https://doi.org/10.1136/archdischild-2015-309665
http://www.ncbi.nlm.nih.gov/pubmed/27281455
https://doi.org/10.1016/j.medmal.2019.02.005
https://doi.org/10.1016/j.medmal.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30885541
https://doi.org/10.1371/journal.pmed.1002858
http://www.ncbi.nlm.nih.gov/pubmed/31442221
https://doi.org/10.1056/NEJMoa1101549
https://doi.org/10.1371/journal.pgen.1003509
https://doi.org/10.1371/journal.pgen.1003509
http://www.ncbi.nlm.nih.gov/pubmed/23717212
https://doi.org/10.1038/ng.3107
http://www.ncbi.nlm.nih.gov/pubmed/25261933
https://doi.org/10.1126/science.aam6393
http://www.ncbi.nlm.nih.gov/pubmed/28522690
https://doi.org/10.7554/eLife.69698


other diseases in children in Kenya: a case-control and a cohort study. The Lancet Haematology 2:e437–e444.
DOI: https://doi.org/10.1016/S2352-3026(15)00152-0, PMID: 26686045

MalariaGEN Consortium, Clarke GM, Rockett K, Kivinen K, Hubbart C, Jeffreys AE, Rowlands K, Jallow M,
Conway DJ, Bojang KA, Pinder M, Usen S, Sisay-Joof F, Sirugo G, Toure O, Thera MA, Konate S, Sissoko S,
Niangaly A, Poudiougou B, Mangano VD, et al. 2017. Characterisation of the opposing effects of G6PD
deficiency on cerebral malaria and severe malarial anaemia. eLife 6:e15085. DOI: https://doi.org/10.7554/eLife.
15085, PMID: 28067620

MalariaGEN Consortium, Ndila CM, Uyoga S, Macharia AW, Nyutu G, Peshu N, Ojal J, Shebe M, Awuondo KO,
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Appendix 1

Appendix 1—figure 1. Comparison of the marginal distributions of white blood cell counts between

Asian adults and children with severe malaria and African children with severe malaria. FEAST: 121

severely ill Ugandan children with PfHRP2 >1000 ng/mL (Maitland et al., 2011). Vietnamese adults:

930 adults from two large randomised trials in severe malaria (Phu et al., 2010; Hien et al., 1996).

Bangladesh/Thailand: 653 adults and children from observational studies of severe malaria

(Leopold et al., 2019).
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Appendix 1—figure 2. Comparison of the marginal distributions of platelet counts between Asian

adults and children with severe malaria and African children with severe malaria. FEAST: 121

severely ill Ugandan children with PfHRP2 >1000 ng/mL (Maitland et al., 2011). Vietnamese adults:

930 adults from two large randomised trials in severe malaria (Phu et al., 2010; Hien et al., 1996).

Bangladesh/Thailand: 653 adults and children from observational studies of severe malaria

(Leopold et al., 2019). The bottom-left qqplot compares the white counts from the children in the

FEAST study with the combined dataset from Vietnam and Bangladesh/Thailand.
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Appendix 2

Appendix 2—figure 1. The relationship between platelet counts and plasma PfHRP2 in severely ill

African children. The black line (shaded area) shows the estimated probability (95% confidence

interval) that the plasma PfHRP2 >1000 ng/mL as a function of log10 platelet count. This fit is

derived from a generalised additive logistic regression model (p<10�16 for the spline term), fit using

the R package mgcv. The generalised additive model was fit to data from 566 African children

enrolled in the FEAST trial (Maitland et al., 2011) (all the children who had both platelet counts and

PfHRP2 data available). Plasma PfHRP2 >1000 ng/mL is highly discriminatory for severe malaria

(Hendriksen et al., 2012).
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Appendix 3

Appendix 3—figure 1. Effect of permuting the weights in the re-weighted (data-tilting) GWAS.

Here we show the results of 20 random permutations of the weights, applied to the Kenyan case-

control GWAS using only chromosomes 4, 9 and 11 (where the top hits are – we limit it to these

three chromosomes for computational reasons). The random permutations (grey) decrease the

number of significant hits compared to the non-weighted (thick black) and the non-permuted re-

weighted model (dashed purple).

Watson, Ndila, et al. eLife 2021;10:e69698. DOI: https://doi.org/10.7554/eLife.69698 27 of 39

Research article Epidemiology and Global Health Genetics and Genomics

https://doi.org/10.7554/eLife.69698


Appendix 4

Appendix 4—figure 1. Comparison of the non-weighted and weighted models of association for

directly typed polymorphisms previously reported as associated with severe malaria

(MalariaGEN Consortium et al., 2018). (A) Estimated effect sizes under the non-weighted model

versus the difference in effect sizes between the weighted and non-weighted models (absolute

effects on the log-odds scale). Differences > 0 imply that the absolute effect size is estimated to be

larger under the weighted model. (B) –log10 p-values under the non-weighted model versus the

differences in –log10 p-values under the weighted and non-weighted models, again differences > 0

represent larger –log10 p-values for the weighted model. Each point is represented by the gene

name. In each case, we use the model that best fit the data in the original analysis

(MalariaGEN Consortium et al., 2018). For the X-linked polymorphisms (G6PD, CD40LG), multiple

models were reported and so the association model is also shown. H: heterozygote; A: additive; M:

males only; F: females only; M/F: all.
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Appendix 5

Appendix 5—figure 1. Case-only analysis of five key polymorphisms effecting red cells, reported in

Ndila et al., 2020 under additive, recessive or heterozygote models. The horizontal dashed lines

show the estimated frequency in the controls (for additive models, this is the frequency of the

derived allele; for the heterozygote or recessive models, this is the frequency of the genotype

thought to confer protection). The line (shaded area) shows logistic regression fits with P(Severe

malaria | Data) as the predictor (95% confidence interval of the fit). The p-value corresponds to the

test that the predictor P(Severe malaria | Data) is not associated with the genotype in the cases only.

OBG: O blood group.
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Appendix 6

Appendix 6—figure 1. Distribution of admission haemoglobin concentrations as a function of P

(Severe malaria | Data). Severe anaemia is generally defined as a haemoglobin less than 5 g/dL in

African children diagnosed with severe malaria, shown by the horizontal dashed red line in the top

panel and the vertical dashed red lines in the bottom panels. The vertical dashed red lines in the top

panel show the top and bottom quintiles of the probability distribution (0.9 and 0.2, respectively).

Patients in the bottom quintile of the probability distribution had a markedly bimodal distribution in

haemoglobin concentrations with a substantial proportion meeting the severe anaemia criterion and

a substantial proportion with relatively high haemoglobin concentrations (>10 g/dL), suggesting two

patients subgroups. Patients in the top quintile had a unimodal distribution of haemoglobin.
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Appendix 7

Appendix 7—figure 1. Pattern of missing clinical data in the 930 Vietnamese adults. These data

pool the AQ Vietnam severe malaria study (Hien et al., 1996) and the AAV severe malaria study

(Phu et al., 2010) (red: missing; yellow: recorded).

Appendix 7—figure 2. Missing clinical data in the 2220 Kenyan children diagnosed with severe

malaria (red: missing; yellow: recorded).
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Appendix 8

Appendix 8—figure 1. Relationship between age and mean white count (modelled on the log10

scale). This is estimated from 858 children in the FEAST trial who had white counts available using an

additive linear model (p ¼ 10
�8 for the smooth spline term). We used this model to adjust observed

log10 white counts in all children less than 5 years of age in the reference and Kenyan datasets.
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Appendix 9

Appendix 9—figure 1. Normal-quantile plots for platelet counts and white blood cell counts in the

reference data. Both were standardised to have mean 0 and standard deviation of 1 on the log10

scale. The diagonal lines show the identity line.
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Appendix 10

Appendix 10—figure 1. Collider bias in the diagnostic model of severe malaria based on complete

blood count data. HBB in its homozygous S form (HbSS, <1% prevalence in this Kenyan population)

is a rare example of how this can occur. Children with HbSS have white counts above 2–3 times

higher than the normal population and slightly lower platelet counts (Sadarangani et al., 2009).

Under the probabilistic model, all 11 children with HbSS were classified as having a low probability

of severe malaria, based on their high white counts (mean 40,000 per mL). These probabilities cannot

be taken at face value, and it remains an unanswered question whether children with HbSS are more

or less susceptible than their wild-type counterparts (Williams and Obaro, 2011).

Appendix 10—figure 2. The relationship between HbSS and the estimated probabilities of severe

malaria under the diagnostic model. There were 11 children with HbSS and they all had low

probabilities of severe malaria, but this is biased as these children have chronic inflammation with

Appendix 10—figure 2 continued on next page
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Appendix 10—figure 2 continued

white counts 2–3 higher than the general population (Sadarangani et al., 2009) (see above

Appendix 10—figure 1 for the causal diagram showing collider bias).
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Appendix 11

Appendix 11—figure 1. Scatter plots of platelet counts versus white blood cell counts for the Ken-

yan cohort, showing the 13 individuals with the double mutation HbAS and homozygous aþ-thalas-

saemia as large black diamonds (HZ-alpha-thal). The red-yellow-blue colour scheme is proportional

to the P(Severe malaria | Data) as given by the legend in the top-left corner.
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Appendix 12

Simulation study
To demonstrate how the re-weighted likelihood works on simulated data where the true latent clas-

ses are known, we constructed the following simulation assuming

. A biallelic marker with a derived allele frequency of 10% in the control population (diplotypes
encoded as 0, 1, 2).

. An additive protective effect for the true cases resulting in a derived allele frequency of 7% in
the true cases; no effect in the false cases.

. The latent class probability weights for the true cases are drawn from a Beta(0.2, 1) distribu-
tion, and the probability weights for the false cases are drawn from a Beta(1, 0.2) distribution.

. A proportion of true versus false cases varying between 50% and 100%.

The R code for the simulation is given in the file Simulation_study_weightedLikelihood.R in the

GitHub repository https://github.com/jwatowatson/Kenyan_phenotypic_accuracy. Figures 1 and

2 show how the estimates effect sizes, the standard errors and the power (1-type 2 error) vary as a

function of the proportion of the true cases.

Appendix 12—figure 1. Simulation study demonstrating how likelihood re-weighting can improve

estimation accuracy in case-control studies. Panels (A) and (B) show histograms of the case

probability weights used in the simulations for the scenarios when 50% of cases are true cases and

when 100% of cases are true cases, respectively. Panel (C) shows the estimated effect sizes as a

function of the proportion of mis-classified cases. Panel (D) shows the standard errors of effect

estimates as a proportion of mis-classified cases.
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Appendix 12—figure 2. Effect of case re-weighting on power (1-type 2 error). The thick red line

shows the estimated power for the re-weighted approach; the dashed black line shows the

estimated power for the non-weighted approach.
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Appendix 13

Appendix 13—figure 1. Principal components analysis of 1666 Kenyan cases and 1606 population

controls. The colours show the main self-reported ethnicities (black: Chonyi; red: Giriama; green:

Kauma; blue: other). The first five principal components were used to stratify for population

structure in the GWAS analyses.
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