A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia

  1. Tooba Quidwai
  2. Jiaolong Wang
  3. Emma A Hall
  4. Narcis A Petriman
  5. Weihua Leng
  6. Petra Kiesel
  7. Jonathan N Wells
  8. Laura C Murphy
  9. Margaret A Keighren
  10. Joseph A Marsh
  11. Esben Lorentzen
  12. Gaia Pigino
  13. Pleasantine Mill  Is a corresponding author
  1. MRC Institute of Genetics and Molecular Medicine, United Kingdom
  2. Aarhus University, Denmark
  3. MRC Human Genetics Unit, University of Edinburgh, United Kingdom
  4. Max-Planck Institute of Molecular Cell Biology and Genetics, Germany
  5. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  6. The University of Edinburgh, United Kingdom
  7. University of Edinburgh, United Kingdom
  8. Human Technopole, Italy

Abstract

Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits, and demonstrate an accumulation of 'coat-less' vesicles which fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in-situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.

Data availability

Source Data (Figures 1B,C; 2B; 3B; as well as Figure 3 Supplement 1C, Figure 7 Supplement-1C) have been uploaded with the submission containing numerical data of all graphs shown in the figures and figure supplements. We have also uploaded the Excel or/and Prism files as source data in addition to the data points which have been referenced, as appropriate in the Figure legends. Source data of raw and full uncropped blots for Figures 3B, C, E and Figure 3 Supplement 1A, as well as Figure 5B, C and Figure 5 Supplement 1 B-D are uploaded as zipped files per figure. For Figure 7F, we have included the ROIs used for calculations uploaded in a single folder including all numerical data of Figure 7 (7B-D,F) graphs at Dryad https://doi.org/10.5061/dryad.m37pvmd33. All analysis tools have been made available on GitHub (https://github.com/IGMM-ImagingFacility/Quidwai2020 WDR35paper), as described in Materials and Methods. Proteomics data files are be uploaded ProteomeXchange (Identifer: PXD022652), with the accession number is available with the paper and is now publically available.Project Name: A WDR35-dependent coatomer transports ciliary membrane proteins from the Golgi to the ciliaProject accession: PXD022652

The following data sets were generated

Article and author information

Author details

  1. Tooba Quidwai

    Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5248-9010
  2. Jiaolong Wang

    Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Emma A Hall

    MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Narcis A Petriman

    Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3189-7530
  5. Weihua Leng

    Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Petra Kiesel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jonathan N Wells

    Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3700-020X
  8. Laura C Murphy

    MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Margaret A Keighren

    MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Joseph A Marsh

    Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Esben Lorentzen

    Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6493-7220
  12. Gaia Pigino

    Human Technopole, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  13. Pleasantine Mill

    MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Pleasantine.Mill@igmm.ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5218-134X

Funding

European Molecular Biology Laboratory (Short Term Fellowship)

  • Tooba Quidwai

European Commission (H2020,Grant Agreement number 888322)

  • Narcis A Petriman

Lister Institute of Preventive Medicine (Research Prize Fellow)

  • Joseph A Marsh

Novo Nordisk (Grant No. NNF15OC0014164)

  • Jiaolong Wang
  • Narcis A Petriman
  • Esben Lorentzen

Carlsbergfondet (Grant No. CF19-0253)

  • Jiaolong Wang
  • Narcis A Petriman
  • Esben Lorentzen

European Commission (H2020 Grant No. 819826)

  • Weihua Leng
  • Petra Kiesel
  • Gaia Pigino

European Commission (H2020 No. 866355)

  • Tooba Quidwai
  • Emma A Hall
  • Pleasantine Mill

Medical Research Council (Core unit funding No. MC_UU_12018/26)

  • Tooba Quidwai
  • Emma A Hall
  • Laura C Murphy
  • Margaret A Keighren
  • Pleasantine Mill

Medical Research Council (Edinburgh Super Resolution Imaging Consortium (ESRIC))

  • Tooba Quidwai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard A Kahn

Ethics

Animal experimentation: We followed international, national and institutional guidelines for the care and use of animals. Animal experiments were carried out under UK Home Office Project Licenses PPL 60/4424, PB0DC8431 and P18921CDE in facilities at the University of Edinburgh (PEL 60/2605) and were approved by the University of Edinburgh animal welfare and ethical review body.

Version history

  1. Received: April 26, 2021
  2. Accepted: November 4, 2021
  3. Accepted Manuscript published: November 4, 2021 (version 1)
  4. Accepted Manuscript updated: November 12, 2021 (version 2)
  5. Version of Record published: January 11, 2022 (version 3)

Copyright

© 2021, Quidwai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,426
    Page views
  • 508
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tooba Quidwai
  2. Jiaolong Wang
  3. Emma A Hall
  4. Narcis A Petriman
  5. Weihua Leng
  6. Petra Kiesel
  7. Jonathan N Wells
  8. Laura C Murphy
  9. Margaret A Keighren
  10. Joseph A Marsh
  11. Esben Lorentzen
  12. Gaia Pigino
  13. Pleasantine Mill
(2021)
A WDR35-dependent coat protein complex transports ciliary membrane cargo vesicles to cilia
eLife 10:e69786.
https://doi.org/10.7554/eLife.69786

Share this article

https://doi.org/10.7554/eLife.69786

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.