Unleashing a novel function of endonuclease G in mitochondrial genome instability

  1. Sumedha Dahal
  2. Humaira Siddiqua
  3. Shivangi Sharma
  4. Ravi K Babu
  5. Diksha Rathore
  6. Sheetal Sharma
  7. Sathees Raghavan  Is a corresponding author
  1. Indian Institute of Science Bangalore, India
  2. Post Graduate Institute of Medical Education and Research, India

Abstract

Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9-bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9-bp deletion' when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described elimination of paternal mitochondria during fertilisation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data for each data is provided along with the figures

Article and author information

Author details

  1. Sumedha Dahal

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Humaira Siddiqua

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Shivangi Sharma

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Ravi K Babu

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Diksha Rathore

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Sheetal Sharma

    Department of Experimental Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Sathees Raghavan

    Department of Biochemistry, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    sathees@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3003-1417

Funding

Council of Scientific and Industrial Research, India (37(1692)/17/EMR-11)

  • Sathees Raghavan

Department of Atomic Energy, Government of India (21/01/2016-BRNS/35074)

  • Sathees Raghavan

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR/3458/COE/34/33/2015)

  • Sathees Raghavan

IISc-DBT partnership programme (BT/PR27952-INF/22/212/2018)

  • Sathees Raghavan

Indian Institute of Science

  • Sumedha Dahal

Indian Institute of Science

  • Humaira Siddiqua

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Indian National Law on animal care and use. All of the animals were handled according to approved institutional animal care and use committee protocols (CAF-SOP) of the Indian Institute of Science, Bangalore. The protocol was approved by the Committee on the Ethics of Animal Experiments of the Central Animal Facility (CAF/Ethics/526/2016).

Copyright

© 2022, Dahal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,364
    views
  • 201
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sumedha Dahal
  2. Humaira Siddiqua
  3. Shivangi Sharma
  4. Ravi K Babu
  5. Diksha Rathore
  6. Sheetal Sharma
  7. Sathees Raghavan
(2022)
Unleashing a novel function of endonuclease G in mitochondrial genome instability
eLife 11:e69916.
https://doi.org/10.7554/eLife.69916

Share this article

https://doi.org/10.7554/eLife.69916

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    2. Medicine
    Yongli Qin, Jumpei Shirakawa ... Baohong Zhao
    Research Article

    The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts, and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.