High-throughput automated methods for classical and operant conditioning of Drosophila larvae

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic  Is a corresponding author
  10. Kristina T Klein  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Janelia Research Campus, United States
  4. Institut Pasteur, France
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/70015/elife-70015-supp-v2.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elise C Croteau-Chonka
  2. Michael S Clayton
  3. Lalanti Venkatasubramanian
  4. Samuel N Harris
  5. Benjamin M W Jones
  6. Lakshmi Narayan
  7. Michael Winding
  8. Jean-Baptiste Masson
  9. Marta Zlatic
  10. Kristina T Klein
(2022)
High-throughput automated methods for classical and operant conditioning of Drosophila larvae
eLife 11:e70015.
https://doi.org/10.7554/eLife.70015