Visually induced changes in cytokine production in the chick choroid

  1. Jody Ann Summers  Is a corresponding author
  2. Elizabeth Cano Martinez
  1. University of Oklahoma Health Science Center, United States
  2. University of Oklahoma Health Sciences Center, United States

Abstract

Postnatal ocular growth is regulated by a vision-dependent mechanism which acts to minimize refractive error through coordinated growth of the ocular tissues. Of great interest is the identification of the chemical signals that control visually-guided ocular growth. Here we provide evidence that the pro-inflammatory cytokine, Interleukin-6 (IL-6), may play a pivotal role in the control of ocular growth using a chicken model of myopia. Microarray, real time RT-qPCR, and ELISA analyses identified IL-6 upregulation in the choroids of chick eyes under two visual conditions that introduce myopic defocus and slow the rate of ocular elongation (recovery from induced myopia and compensation for positive lenses). Intraocular administration of atropine, an agent known to slow ocular elongation, also resulted in an increase in choroidal IL-6 gene expression. Nitric oxide appears to directly or indirectly upregulate choroidal IL-6 gene expression, as administration of the non-specific nitric oxide synthase inhibitor, L-NAME, inhibited choroidal IL-6 gene expression, and application of a nitric oxide donor stimulated IL-6 gene and protein expression in isolated chick choroids. Considering the pleiotropic nature of IL-6 and involvement in many biological processes, these results suggest that IL-6 may mediate many aspects of the choroidal response in the control of ocular growth.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jody Ann Summers

    University of Oklahoma Health Science Center, OKLAHOMA CITY, United States
    For correspondence
    jody-summers@ouhsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8847-7812
  2. Elizabeth Cano Martinez

    University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (EY09391)

  • Jody Ann Summers

National Institute of General Medical Sciences (P30GM122744)

  • Jody Ann Summers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were managed in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research, with the Animal Welfare Act, and with the National Institutes of Health Guidelines. All procedures were approved by the Institutional Animal Care and Use Committee of the University of Oklahoma Health Sciences Center. (protocol # 20-092-H).

Reviewing Editor

  1. Audrey M Bernstein, State University of New York Upstate Medical University, United States

Publication history

  1. Received: May 22, 2021
  2. Preprint posted: June 3, 2021 (view preprint)
  3. Accepted: October 4, 2021
  4. Accepted Manuscript published: October 5, 2021 (version 1)
  5. Version of Record published: November 24, 2021 (version 2)

Copyright

© 2021, Summers & Martinez

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 260
    Page views
  • 62
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jody Ann Summers
  2. Elizabeth Cano Martinez
(2021)
Visually induced changes in cytokine production in the chick choroid
eLife 10:e70608.
https://doi.org/10.7554/eLife.70608

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Mathi Thiruppathy et al.
    Short Report

    Whereas no known living vertebrate possesses gills derived from the jaw-forming mandibular arch, it has been proposed that the jaw arose through modifications of an ancestral mandibular gill. Here, we show that the zebrafish pseudobranch, which regulates blood pressure in the eye, develops from mandibular arch mesenchyme and first pouch epithelia and shares gene expression, enhancer utilization, and developmental gata3 dependence with the gills. Combined with work in chondrichthyans, our findings in a teleost fish point to the presence of a mandibular pseudobranch with serial homology to gills in the last common ancestor of jawed vertebrates, consistent with a gill origin of vertebrate jaws.

    1. Cell Biology
    2. Developmental Biology
    Katelyn J Hoff et al.
    Research Article Updated

    Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.