1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand the human ACE2 receptor on binding affinity and kinetics

  1. Michael I Barton
  2. Stuart A MacGowan
  3. Mikhail A Kutuzov
  4. Omer Dushek
  5. Geoffrey J Barton  Is a corresponding author
  6. P Anton van der Merwe  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Dundee, United Kingdom
Research Article
  • Cited 0
  • Views 507
  • Annotations
Cite this article as: eLife 2021;10:e70658 doi: 10.7554/eLife.70658

Abstract

The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the B.1.1.7 lineage has a mutation (N501Y) in its Spike RBD that enhances binding to ACE2. There are also ACE2 alleles in humans with mutations in the RBD binding site. Here we perform a detailed affinity and kinetics analysis of the effect of five common RBD mutations (K417N, K417T, N501Y, E484K and S477N) and two common ACE2 mutations (S19P and K26R) on the RBD/ACE2 interaction. We analysed the effects of individual RBD mutations, and combinations found in new SARS-CoV-2 Alpha (B.1.1.7), Beta (B.1.351) and Gamma (P1) variants. Most of these mutations increased the affinity of the RBD/ACE2 interaction. The exceptions were mutations K417N/T, which decreased the affinity. Taken together with other studies, our results suggest that the N501Y and S477N mutations enhance transmission primarily by enhancing binding, the K417N/T mutations facilitate immune escape, and the E484K mutation enhances binding and immune escape.

Data availability

All data generated and analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michael I Barton

    Sir William Dunn School, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9263-6481
  2. Stuart A MacGowan

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4233-5071
  3. Mikhail A Kutuzov

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3386-4350
  4. Omer Dushek

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5847-5226
  5. Geoffrey J Barton

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    g.j.barton@dundee.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9014-5355
  6. P Anton van der Merwe

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    anton.vandermerwe@path.ox.ac.uk
    Competing interests
    P Anton van der Merwe, Own shares in BioNTech SE.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9902-6590

Funding

Wellcome Trust (207537/Z/17/Z828)

  • Mikhail A Kutuzov
  • Omer Dushek

Biotechnology and Biological Sciences Research Council (BB/J019364/1)

  • Stuart A MacGowan
  • Geoffrey J Barton

Biotechnology and Biological Sciences Research Council (BB/R014752/1)

  • Stuart A MacGowan
  • Geoffrey J Barton

Wellcome Trust (101651/Z/13/Z).)

  • Stuart A MacGowan
  • Geoffrey J Barton

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ron AM Fouchier, Erasmus Medical Center, Netherlands

Publication history

  1. Received: May 25, 2021
  2. Accepted: August 20, 2021
  3. Accepted Manuscript published: August 26, 2021 (version 1)
  4. Accepted Manuscript updated: September 7, 2021 (version 2)

Copyright

© 2021, Barton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 507
    Page views
  • 152
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    Maria Carmela Filomena et al.
    Research Article

    Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.

    1. Biochemistry and Chemical Biology
    Xavier Portillo et al.
    Research Article Updated

    An RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme. Multiple paths to the new structure were explored by the evolving population, converging upon a common solution. Tertiary structural remodeling of RNA is known to occur in nature, as evidenced by the phylogenetic analysis of extant organisms, but this type of structural innovation had not previously been observed in an experimental setting. Despite prior speculation that the catalytic core of the ribozyme had become trapped in a narrow local fitness optimum, the evolving population has broken through to a new fitness locale, raising the possibility that further improvement of polymerase activity may be achievable.