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Abstract Recent initiatives to improve translation of findings from animal models to human 
disease have focussed on reproducibility but quantifying the relevance of animal models remains 
a challenge. Here, we use comparative transcriptomics of blood to evaluate the systemic host 
response and its concordance between humans with different clinical manifestations of malaria and 
five commonly used mouse models. Plasmodium yoelii 17XL infection of mice most closely repro-
duces the profile of gene expression changes seen in the major human severe malaria syndromes, 
accompanied by high parasite biomass, severe anemia, hyperlactatemia, and cerebral microvascular 
pathology. However, there is also considerable discordance of changes in gene expression between 
the different host species and across all models, indicating that the relevance of biological mech-
anisms of interest in each model should be assessed before conducting experiments. These data 
will aid the selection of appropriate models for translational malaria research, and the approach is 
generalizable to other disease models.

Editor's evaluation
Using comparative transcriptomics, the authors performed an unbiased investigation of similarities 
and differences of mouse malaria models and human Plasmodium falciparum malaria. Whilst the 
data cannot convincingly identify which mouse models are best suited for studying specific human 
malaria phenotypes, the comparative analyses do indicate that these models reflect the broad diver-
sity of human malaria disease. These comparative analyses provide a scientific rationale for the use 
of rodent malaria models.

Introduction
Animal models have played an important role in current understanding and treatment of many human 
diseases. Historically animal models were often selected because they reproduced certain clinical or 
pathological features of human disease (Hau, 2008), and their use has often been reinforced when 
treatments effective in the model were found to be effective in humans. However, this approach has 
limitations, because the same clinical or pathological features can occur as a result of different biolog-
ical processes, and mechanisms that may be important in human disease might not be recapitulated 
or may be redundant in animal models, and vice-versa (Pound and Ritskes-Hoitinga, 2018; Justice 
and Dhillon, 2016). A fundamental and largely unresolved question is how best to define or quantify 
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the relevance of any given animal model to the corresponding human disease (Justice and Dhillon, 
2016; Ferreira et al., 2019).

Mice are the most widely used model animals for many diseases, including infectious diseases, and 
for study of corresponding protective or pathogenic immune responses. Mouse models have signifi-
cantly broadened our understanding of the function and structure of mammalian immune systems 
and disease mechanisms. Despite the evolutionary distance between human and mouse (Mestas and 
Hughes, 2004) and the high evolutionary pressure on immune systems (Cagliani and Sironi, 2013), 
the principles of the immune systems for these species remain remarkably similar. However, there are 
also numerous differences between mice and humans in terms of their response to infection (Mestas 
and Hughes, 2004). Therefore, it is inevitable that mouse models of infection will not recapitulate all 
features of the human response, and this should be taken into account when using models to make 
inferences about mechanisms of human disease. Recently, we and others proposed that unbiased 
approaches to assessment of the host response to infection, such as comparison of transcriptomic 
responses, might provide a meaningful way to quantify similarities between mouse models and human 
disease, to assess the relevance of the models, and to aid the selection of the best models for specific 
hypothesis testing (Lee et al., 2018a).

The relevance of mouse models for translational research on the pathogenesis of severe malaria 
(SM) has been particularly controversial and has polarized the malaria research community (Craig 
et  al., 2012). There are many different mouse malaria models, with very different characteristics 
dependening on the combination of parasite species (and strain) and mouse strain which are used 
(Lamb et al., 2006). Superficially these models can, between them, reproduce almost all the clinical 
manifestations of human SM, such as coma, seizures, respiratory distress, and severe anemia (SA) 
(Zuzarte-Luis et al., 2014). Nevertheless, there are also notable differences to human disease, such 
as the lack of the pathognomonic cytoadhesive sequestration of large numbers of parasite-infected 
red cells in the cerebral microvasculature in mice with cerebral malaria-like illness (experimental cere-
bral malaria, ECM) (Ghazanfari et  al., 2018). In C57BL/6 mice infected with Plasmodium berghei 
ANKA, ECM is dependent on recruitment of CD8+ T  cells to the brain, a phenomenon that was 
recently shown to also occur in human cerebral malaria (Riggle et al., 2020). C57BL/6 mice infected 
with P. berghei NK65 develop acute lung injury with similarities to malaria-associated acute respira-
tory distress syndrome (MA-ARDS), associated with hemozoin accumulation (Deroost et al., 2013), 
endothelial activation, and alveolar edema (Zuzarte-Luis et al., 2014; Van den Steen et al., 2010; 
Claser et al., 2019). SA can occur in C57BL/6 mice infected with all of the most commonly used 
mouse malaria parasite species (P. chabaudi AS, P. yoelii 17XL, P. yoelii 17XNL, P. berghei ANKA, and P. 
berghei NK65; Thawani et al., 2014; Couper et al., 2007; Niikura et al., 2008), sharing features with 
human SM anemia such as hemolysis, hemozoin-, and inflammatory cytokine-mediated suppression of 
erythropoiesis (Thawani et al., 2014; Lamikanra et al., 2007).

Many host-directed treatments for SM have been effective in mice, but none have yet translated 
into benefit in human studies, which has been considered by some as evidence that mechanisms of 
disease in mouse models are of little relevance to human disease (White et al., 2010). We contend 
that this polarization of views is unhelpful, and that mouse models are likely to be useful for under-
standing human malaria, so long as they are used selectively with full recognition of their limitations. 
Such limitations include: mice are not the natural hosts for the commonly used rodent malaria para-
sites (Lamb et al., 2006) natural infection of humans occurs through sporozoite inoculation during 
mosquito feeding (Rénia and Goh, 2016), but mice are often infected by injection of blood-stage 
parasites to ensure a reproducible inoculum of parasites (Craig et al., 2012) malaria naïve mice are 
typically used in experiments, whereas most human malaria infections occur in endemic settings where 
individuals have had previous malaria infections (Doolan et al., 2009) mice often tolerate higher para-
sitemias than those seen in human infections (Fontana et al., 2016).

In order to provide a more quantitative framework to understand how well mouse malaria models 
recapitulate the biological processes occurring in human malaria, and to aid selection of the most 
appropriate models for study of specific mechanisms of disease, we present an unbiased investigation 
of the similarities and differences in the host response between human malaria and mouse models 
using comparative transcriptomics. We demonstrate that this approach allows us to identify mouse 
models with the greatest similarity of host response to specific human malaria phenotypes, and that 
models selected in this way do indeed have similar clinical and pathological features to those of the 
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corresponding human phenotype. We propose that this approach should be applied more broadly 
to the selection of the most relevant animal models for study of malaria and other human diseases.

Results
Mouse models of malaria
The five rodent malaria parasite strains used in this study produce different kinetics of parasitemia, 
different rates of progression of illness (Figure 1), and different disease manifestations. Eight-week-old 
C57BL/6J mice infected with P. berghei ANKA, P. yoelii 17XL, and P. berghei NK65 developed severe 
illness with ascending parasitemia, consistent with previously reported outcomes of these lethal infec-
tions (White et al., 2010; Carroll et al., 2010; Walliker et al., 1976; Vandermosten et al., 2018). 
Humane endpoints were reached at days 8–9 in P. berghei ANKA, day 5 in P. yoelii 17XL, and day 20 
in P. berghei NK65. Mice infected with P. berghei ANKA showed typical features of ECM as assessed 
by Rapid Murine Coma and Behavior Scale (RMCBS) scores <12 (Carroll et al., 2010) and by histo-
pathology. Mice infected with P. yoelii 17XL developed a rapidly progressive, severe infection with 
hyperparasitemia (Walliker et al., 1976). Mice infected with P. berghei NK65 developed a biphasic 
illness with a transient recovery of initial weight loss before progression to fatal outcome in a second 
phase (Vandermosten et al., 2018).

Eight-week-old C57BL/6J mice infected with P. yoelii 17XNL and P. chabaudi AS, which lead to self-
resolving infections, developed only mild symptoms as expected (Wijayalath et al., 2014; Achtman 
et  al., 2003). Maximum severity was reached around day 14 in P. yoelii 17XNL and day 13 in P. 
chabaudi AS.

Comparative analysis of infection-associated changes in gene 
expression
To objectively assess how similar disease-associated systemic processes occurring in mouse malaria 
models are to those occurring in human P. falciparum malaria, we used a comparative transcriptomic 
approach focussed on blood. Rather than directly comparing the expression of orthologous genes in 
humans and mice, which would be confounded by species-specific differences in constitutive gene 
expression, we first identified differentially expressed genes in pairwise within-species comparisons 
and then used these differentially expressed genes as the basis for between-species comparisons 
(Figure 2a). This also enabled us to conduct within-species adjustment for variation in leukocyte cell 
mixture (Supplementary file 1A), which is an important confounder in whole blood gene expression 
analysis (Lee et al., 2018b). Additionally, this allows for the removal of platform-specific effects, which 
is especially relevant for comparisons between data generated by microarray and RNA-Seq.

Sometimes we may wish to investigate the host immune response to infection per se or alterna-
tively we may want to investigate the processes associated with severe disease pathogenesis, and 
these different aims require different comparator groups. In the former situation, changes in gene 
expression associated with infection per se are best characterized by comparison between healthy 
and infected states, whereas in the latter situation it may be more appropriate to compare severe and 
non-severe infection states.

To investigate concordance of the host response to uncomplicated malaria (UM) in humans and 
mice, we first focussed on comparisons between subjects with UM and healthy uninfected subjects. To 
assess changes in gene expression due to naturally acquired P. falciparum malaria, we used two human 
transcriptomic data sets previously published by Idaghdour et  al., 2012 and Boldt et  al., 2019, 
each of which included a healthy uninfected group and an uncomplicated P. falciparum malaria group 
(Supplementary file 1B). As an additional comparison with infection in malaria naïve humans, we 
used a previously published data set from controlled human malaria infection (CHMI) in malaria-naïve 
adults (Milne et al., 2021) before infection and on the day of first symptoms. For mice, we identified 
changes in gene expression occurring between healthy uninfected control mice and infected mice at 
first onset of visible signs of illness.

To reduce confounding by infection-induced changes in the relative proportions of different leuko-
cyte populations and large differences in leukocyte proportions between humans and mice (Supple-
mentary file 1A), all primary differential expression analyses were performed with adjustment for 
the proportions of the major leukocyte populations (see Materials and methods; unadjusted results 
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Figure 1. Course of infection in five mouse malaria models. Comparison of parasitemia (a–e) and change in weight 
(as percentage of baseline weight) (f–j) for 8-week-old C57BL/6J female wild-type mice infected with: Plasmodium 
yoelii 17XL, P. berghei ANKA, P. berghei NK65, P. yoelii 17XNL, and P. chabaudi AS, respectively. Points show mean, 
and bars show SD, for n=6 mice (up to and including time point of first signs of ill health, dashed vertical line) and 

Figure 1 continued on next page
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are also available for reference in Supplementary files 2-5). Genes with absolute log-fold change in 
expression >1 in the human healthy control vs UM comparison (Supplementary files 6 and 7) and 
their mouse orthologs (Supplementary file 8) were used for comparison between species.

First, considering only whether genes were upregulated or downregulated by infection in the 
mouse models, we found the mouse models varied from 58% to 73% concordance (Supplementary 
file 9, Figure 2) with the upregulation or downregulation in the human subjects in the study by Idagh-
dour et al. However, we reasoned that the relative magnitude of changes in gene expression is also 
important to identify the mouse models which most closely recapitulate the changes in gene expres-
sion in human malaria. To assess this, we ranked genes to account for the relative magnitude of change 
in expression in human malaria, and then performed a principal component analysis (PCA) with rank-
weighted changes in expression (see Materials and methods). This revealed variation between the 
mouse models, but no model was clearly much more representative of the changes in gene expression 
in human UM than any other (Figure 2b). Indeed, when we focused only on the expression of the 20 
most differentially expressed genes in human UM, we found that the mouse models showed broadly 
similar patterns of changes in gene expression (Figure 2c). When we examined the concordance of 
upregulation and downregulation of gene expression between the mouse models and human malaria 
in the Boldt et al. data set, we found less overall similarity between species in the direction of changes 
in gene expression (Supplementary file 9). Despite this, and different genes driving the axes of vari-
ation, the PCA plots revealed a remarkably similar pattern to the analysis based on the Idaghdour et 
al. data set, and none of the mouse models appeared to be clearly more representative of human UM 
than any other when accounting for the magnitude of changes in expression (Figure 2d). Considering 
the most differentially expressed genes, there was more heterogeneity in the pattern of expression 
(Figure 2e) which may be partly explained by the substantially smaller size, and analysis of pooled 
samples in the Boldt et al. study. Comparing differential gene expression from the mice with that of 
malaria naïve humans undergoing CHMI (Supplementary file 10) resulted in PCA plots broadly similar 
to those derived using the naturally acquired UM subjects (Supplementary file 1C), yielding similar 
inferences about concordance between uncomplicated or early stage infections in mice and humans.

Gene ontology (GO) analysis was used to examine the genes driving the axes of variation between 
humans and mouse models in the PCA plots. For the Idaghdour et al. data set, we found that PC1 
showed enrichment of leukocyte mediated immunity and adaptive immune response, while PC2 
showed enrichment for intrinsic apoptotic signaling in response to oxidative stress and regulation 
of T cell activation (Supplementary file 11). For the Boldt et al. data set comparison, we found 
that that PC1 showed enrichment of cytokine-mediated signaling pathways and hemopoiesis as 
the top GO terms, while for PC2 the top GO terms included immune system process and myeloid 
cell development (Supplementary file 11). These pathways are consistent with well-characterized 
aspects of the early host response to malaria, in which parasites are sensed by pattern recognition 
receptors, promoting the production of cytokines (Gowda and Wu, 2018), and ensuing mobilization 
of early myeloid progenitors from bone marrow to establish emergency myelopoiesis in the spleen 
(Nahrendorf et al., 2021; Belyaev et al., 2013). Proinflammatory and immunoregulatory cytokines 
play important roles in shaping T-cell activation and adaptive immune responses (Urban et al., 2005). 
Reactive oxygen species produced by phagocytic cells in response to parasites, and through cell-
free heme released during hemolysis, contribute to inflammation and tissue damage (Vasquez et al., 
2021).

In the Milne et al. CHMI data set, the top GO terms for PC1 were related to bacterial and interfer-
on-γ responses, whilst PC2 was related to viral and interferon-γ responses (Supplementary file 11). 
These again are consistent with the earliest innate responses to malaria parasites, with timing and 

n=3 mice (after dashed vertical line) for each infection. † indicates humane endpoint for lethal infections. Severity 
scoring for each infection shown in Figure 1—figure supplement 1, and individual mouse parasitemia and 
weights shown in Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Individual mouse parasitemia and weights.

Figure supplement 1. Severity scoring.

Figure 1 continued
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Figure 2. Comparison of host differential gene expression in human uncomplicated malaria and early stage illness in five mouse malaria models. 
(a) Schematic illustration of the comparative transcriptomic analysis. (b, d) Principal component analysis (PCA) plots generated using rank-normalized 
log-fold change (logFC) values from the human and mouse differential expression analyses. Only genes with 1:1 mouse and human orthologs and with 
absolute logFC value greater than 1 in the corresponding human comparison were included. Comparison of changes in gene expression in the mouse 

Figure 2 continued on next page
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duration of IFN-γ production being important determinants of whether its effects are protective or 
pathogenic (King et al., 2015; Walther et al., 2009; Hermsen et al., 2003; De Souza et al., 1997; 
Mitchell et al., 2005; Amani et al., 2000; Villegas-Mendez et al., 2012).

Comparative analysis of severe malaria-associated changes in gene 
expression
A common approach to identify processes associated with the pathogenesis of severe infection is to 
compare individuals with severe manifestations against other individuals who have the same infection 
but have not developed severe illness (Lee et al., 2018a). This approach is expected to enrich for 
genes involved in the pathogenesis of severe illness from amongst the larger set of genes involved 
in the overall response to infection (Lee et  al., 2018a). Therefore, we identified changes in gene 
expression in mice between the first time point at which mice developed signs of illness (early) and the 
maximum severity (late time point) of each of the five infection models. We compared these changes 
in gene expression in mice with those we had previously identified in Gambian children with UM and 
three different P. falciparum (SM) phenotypes (hyperlactatemia [HL], cerebral malaria [CM], or the 
combined phenotype of hyperlactatemia with cerebral malaria [CH]) (Lee et al., 2018b; Figure 3a). 
All differential expression analyses were performed with adjustment for the proportions of the major 
leukocyte populations in blood (see Materials and methods; Supplementary file 14), but unadjusted 
results are also available for reference (Supplementary files 2 and 15).

Overall, the direction of changes in gene expression in the mouse models were less concordant 
with those in human SM phenotypes than we observed in the comparisons with UM (Supplementary 
file 9, Figure 3). There was, however, much clearer variation between the different mouse models in 
how closely the changes in expression of individual genes recapitulated those observed in each human 
SM manifestation (Figure 3b, d and f). Using the principal component-based approach to compare 
weighted changes in gene expression in each infection, we were able to identify the models with 
greatest similarity to the transcriptional host response of each human SM phenotype (Figure 3b, d 
and f and Supplementary file 9). It is notable that even amongst the 20 most differentially expressed 
genes associated with each human SM manifestation, there was considerable variation in the degree 
of concordance and discordance with the mouse models (Figure 3c, e and g).

Hyperlactatemia is a relatively common manifestation of SM in children, and an independent 
predictor of death (Krishna et al., 1994). PCA revealed that P. yoelii 17XL and P. berghei NK65 models 
most closely recapitulated the changes in gene expression associated with this disease phenotype 
in Gambian children (Figure 3b). We performed GO enrichment analysis on the genes contributing 
most to the principal components explaining the greatest proportion of variation between the mouse 
models and human disease, identifying neutrophil degranulation driving PC1 and myeloid leukocyte 
activation driving PC2 (Supplementary file 11). Despite P. yoelii 17XL having the closest proximity to 
human malaria hyperlactatemia in the PCA plot, it was clear that even for this model many of the most 

models (uninfected vs. early in infection, Supplementary file 12) with those in uncomplicated malaria versus healthy (PfUMH) Beninese children (b, 
Idaghdour et al., 2012) or Gabonese children (Boldt et al., 2019). The percentage of the total variation explained by principal components 1 and 2 
are shown in the axis labels. Greyscale heatmaps parallel to each axis show the contributions of the 10 genes contributing most to the corresponding 
PC. (c, e) Heatmaps show logFC for the 20 genes with the greatest absolute logFC values in the human differential gene expression analysis, and their 
orthologs in each mouse model, corresponding to the analyses illustrated in (b) and (d), respectively. Mouse models are ordered left to right in order 
of increasing dissimilarity to the human disease, based on the Euclidian distance calculated from all principal components (Supplementary file 13). 
The rows (genes) are ordered by absolute log-fold change in the human comparison in descending order. n=3 for early and n=3 for late time point in 
each mouse model; n=93 UM, n=61 controls (Beninese children, Idaghdour et al.), n=5 pools UM and n=5 pools healthy control samples (each pool 
contained RNA from four Gabonese children with the same phenotype, Boldt et al.). Full heatmaps for the expression of genes contributing most to the 
first two principal components in humans and each mouse model shown in Figure 2—figure supplements 1–4. The mouse model abbreviations are as 
follows: PbNK65 (P. berghei NK65), PbANKA (P. berghei ANKA), PcAS (P. chabaudi AS), Py17XL (P. yoelii 17XL), and Py17XNL (P. yoelii 17XNL).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Additional heatmaps for Figure 2.

Figure supplement 2. Additional heatmaps for Figure 2.

Figure supplement 3. Additional heatmaps for Figure 2.

Figure supplement 4. Additional heatmaps for Figure 2.

Figure 2 continued

https://doi.org/10.7554/eLife.70763
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Figure 3. Comparison of host differential gene expression in three severe malaria phenotypes in Gambian 
Children and five mouse malaria models. (a) Schematic illustration of the comparative transcriptomic analysis. 
(b, d, f) Principal component analysis (PCA) plots generated using rank-normalized log-fold change values from 
the human and mouse differential expression analyses. Only genes with 1:1 mouse and human orthologs and 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.70763
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differentially expressed genes were not concordantly regulated (Figure 3c, Supplementary file 9). 
Amongst the most concordant genes were those encoding neutrophil granule proteins: Lactotrans-
ferrin (LTF, Ltf), Olfactomedin 4 (OLFM4, Olfm4), CD177 (CD177, Cd177), Matrix Metallopeptidase 
8 (MMP8, Mmp8), Lipocalin 2 (LCN2, Lcn2), Matrix Metallopeptidase 9 (MMP9, Mmp9), and S100 
Calcium Binding Protein A8 (S100A8, S100a8); but there was notable discordance of expression of 
genes encoding Arginase 1 (ARG1, Arg1), Cathepsin G (CTSG, Ctsg), Resistin (RETN, Retn), Vascular 
Cell Adhesion Molecule 1 (VCAM1, Vcam1), and Secreted Phosphoprotein 1 (SPP1, Spp1) (Figure 3c).

In the comparison of the mouse models with the human CM phenotype (Figure  3d), P. yoelii 
17XL was again the mouse model with greatest similarity in gene expression changes, and GO anal-
ysis revealed that myeloid leucocyte activation and neutrophil degranulation were again the most 
enriched GO terms amongst the genes explaining the greatest variation between models (Supple-
mentary file 11). The genes with concordant and discordant changes in expression between humans 
and mice were also similar to those in the HL comparison.

Findings were similar when we compared the changes in gene expression in the mouse models 
with those in children with UM versus children with the most severe phenotype where both CM and 
HL are present (CH) (Lee et al., 2018b). P. yoelii 17XL was placed closest to human CH in the PCA 
plot (Figure 3g), and the genes contributing most to PC1 and PC2 were again enriched in neutrophil 
degranulation and myeloid leukocyte activation GO terms (Supplementary file 11). The finding that 
neutrophil degranulation and myeloid leukocyte activation pathway genes account for the greatest 
variation between human SM phenotypes and the mouse models is consistent with increasing evidence 
that different aspects of neutrophil function could contribute to pathogenesis or protection from SM 
in both humans and some mouse models (Lee et al., 2018b; Knackstedt et al., 2019; Georgiadou 
et al., 2021; Aitken et al., 2018; Feintuch et al., 2016; Sercundes et al., 2016). Taken together, the 
comparisons between mouse models and these three SM phenotypes in Gambian children suggest 
that P. yoelii 17XL recapitulates the profile of the most prominent changes in gene expression associ-
ated with human SM phenotypes more closely than the other mouse models.

The relative frequency of different manifestations of P. falciparum SM varies across different 
geographic locations, influenced by the intensity of exposure to malaria, naturally acquired immunity, 
and age of individuals (Wassmer et al., 2015; Okiro et al., 2009). Changes in gene expression asso-
ciated with the same disease manifestation may also vary between studies in different populations, 
under genetic and environmental influences, and due to technical differences in the methods used to 

with absolute logFC value greater than 1 in the corresponding human comparison were included. Comparison 
of changes in gene expression in the mouse models with those in human hyperlactatemia (PfHL) (b), cerebral 
malaria (PfCM) (d), or human hyperlactatemia plus cerebral malaria phenotype (PfCH) (f). The percentage of 
the total variation explained by principal components 1 and 2 are shown in the axis labels. Grayscale heatmaps 
parallel to each axis show the contributions of the 10 genes contributing most to the corresponding PC (c, e, 
g). Heatmaps show logFC for the 20 genes with the greatest absolute logFC values in the human differential gene 
expression analysis, and their orthologs in each mouse model, corresponding to the analyses illustrated in (b), 
(d), and (f), respectively. Mouse models are ordered left to right in order of increasing dissimilarity to the human 
disease, based on the Euclidian distance calculated from all principal components (Supplementary file 13). The 
rows (genes) are ordered by absolute logFC in the human comparison in descending order. n=3 for early and 
n=3 for late time point in each mouse model; n=21 Uncomplicated, n=8 HL, n=5 CM, n=12 CH. Full heatmaps 
for the expression of genes contributing most to the first two principal components in humans and each mouse 
model shown in Figure 3—figure supplements 1–6. The mouse model abbreviations are as follows: PbNK65 
(Plasmodium berghei NK65), PbANKA (P. berghei ANKA), PcAS (P. chabaudi AS), Py17XL (P. yoelii 17XL), and 
Py17XNL (P. yoelii 17XNL).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional heatmaps for Figure 3.

Figure supplement 2. Additional heatmaps for Figure 3.

Figure supplement 3. Additional heatmaps for Figure 3.

Figure supplement 4. Additional heatmaps for Figure 3.

Figure supplement 5. Additional heatmaps for Figure 3.

Figure supplement 6. Additional heatmaps for Figure 3.

Figure 3 continued

https://doi.org/10.7554/eLife.70763
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assess gene expression (Driss et al., 2011; Wang et al., 2009). Therefore, we investigated whether 
similar results would be obtained using data from an independent study conducted in Gabonese chil-
dren with P. falciparum infection (Boldt et al., 2019).

In the study from which we obtained this data, Gabonese children with CM and CH (CM/CH) were 
not distinguished as separate phenotypes and were pooled into a single group for microarray analysis 
(see Materials and methods). Nevertheless, there was relatively high (78%) concordance of differen-
tially expressed genes in the Gambian CH-UM and Gabonese CM/CH-UM comparisons (Supplemen-
tary files 1D and 9). Comparison of changes in gene expression between early and late stages of the 
mouse infections with those between Gabonese children with UM and CM/CH revealed that P. yoelii 
17XL most closely recapitulated the differential expression seen in humans (Figure 4, Supplementary 
files 12 and 7). GO analysis confirmed that the innate immune response and leukocyte mediated 
immunity were the main drivers of variation between models, similar to the analysis in Gambian chil-
dren (Supplementary file 11).

In contrast to the Gambian data set, where SA was rare (Cunnington et  al., 2013), the SA 
phenotype was included in the Gabonese data set. Comparing the differential gene expression 
in the mouse models and those between UM and SA also identified that the changes in gene 
expression seen in P. yoelii 17XL were most similar to the differences seen in the Gabonese chil-
dren (Figure 4c). The genes with highly concordant expression between SA and P. yoelii 17XL were 
prominently neutrophil related (LTF, OLFM4, MMP9, and IL1R2) (Figure 4d), GO analysis revealed 
that the main drivers of PC1 were slightly different to previous comparisons with prominence of 
immune response and type I interferon signaling pathways, whilst PC2 drivers were more similar to 
previous comparisons including leukocyte activation and neutrophil degranulation (Supplementary 
file 11). Type I interferon signaling, known for its immune-modulatory and anti-viral functions, has 
conflicting roles in human and mouse malaria (Sebina and Haque, 2018; He et al., 2020) depen-
dent on timing and persistence of expression, which can be either advantageous (Kempaiah et al., 
2012; Krupka et al., 2012; Subramaniam et al., 2015; Yu et al., 2016) or detrimental (Feintuch 
et al., 2018; Capuccini et al., 2016; Spaulding et al., 2016) to the host. The data from Gabonese 
children provide independent, cross-platform, comparison, and substantiate that the profile of gene 
expression associated with severe P. yoelii 17XL infection is most similar to those in the major human 
SM phenotypes.

The lack of suitable publicly available gene expression data sets from mice infected with the range 
of malaria parasites used in our analyses precluded exploration of whether similar results would be 
obtained from mouse infection experiments conducted in different laboratories or using different 
platforms to assess gene expression. However, a comparison of differential expression in published 
microarray data from blood of early and late-stage P. chabaudi AS infections (Lin et al., 2017) showed 
high (86%) concordance with the differentially expressed genes in equivalent analysis in our mouse 
RNA-Seq data set (see Materials and methods; Supplementary file 2, Supplementary file 9, Supple-
mentary file 16), suggesting that generalizability is likely.

Comparative transcriptomic results are consistent with 
pathophysiology
The profile of changes in gene expression associated with HL, CM, and SA, the three most common 
manifestations of SM in children, were all better recapitulated by the changes in gene expression 
in P. yoelii 17XL than any other mouse model. However, this model is not widely used to study the 
pathogenesis of these specific SM syndromes, so we sought to determine whether P. yoelii 17XL does 
reproduce the pathophysiological features of these infections. Blood lactate levels have rarely been 
reported in mouse malaria models, so we systematically measured lactate concentrations at early and 
late stages of infection in all five mouse models (Figure 5a, Figure 5—source data 1). Small differ-
ences, if any, were noticed at the uncomplicated stage early in infection, while at maximum severity P. 
yoelii 17XL and P. berghei NK65 infected mice developed dramatic hyperlactatemia with concentra-
tions similar to the maximum values seen in human HL (Lee et al., 2018b).

P. yoelii 17XL also reproduced the changes in gene expression associated with human SA better 
than other mouse models. Human SA is often associated with very high parasite biomass (Cunnington 
et al., 2013) and P. yoelii 17XL achieves much higher parasite load than other mouse models (Figure 1) 
as well as causing rapid and profound anemia (Couper et al., 2007; Totino et al., 2010; Figure 5b).

https://doi.org/10.7554/eLife.70763
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Figure 4. Comparison of host differential gene expression in two severe malaria phenotypes in Gabonese Children and five mouse malaria models. (a, 
c) Principal component analysis (PCA) plots generated using rank-normalized log-fold change values from the human and mouse differential expression 
analyses. Only genes with 1:1 mouse and human orthologs and with absolute logFC value greater than 1 in the corresponding human comparison were 
included. Comparison of changes in gene expression in the mouse models with those in human cerebral malaria (PfCM) (a) and severe anemia (PfSA) 
(c). The percentage of the total variation explained by principal components 1 and 2 are shown in the axis labels. Grayscale heatmaps parallel to each 
axis show the contributions of the 10 genes contributing most to the corresponding PC (b, d). Heatmaps show logFC for the 20 genes with the greatest 
absolute log-fold change values in the human differential gene expression analysis, and their orthologs in each mouse model, corresponding to the 
analyses illustrated in (a) and (c). Mouse models are ordered left to right in order of increasing dissimilarity to the human disease, based on the Euclidian 
distance calculated from all principal components (Supplementary file 13). The rows (genes) are ordered by absolute log-fold change in the human 
comparison in descending order. n=3 for early and n=3 for late time point in each mouse model; n=5 pooled samples uncomplicated (UM), n=5 pooled 

Figure 4 continued on next page
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P. yoelii 17XL also showed the greatest transcriptional similarity to the pattern of changes in whole 
blood gene expression associated with human CM. P. yoelii 17XL was originally described as a virulent 
clone causing CM-like pathology (Yoeli and Hargreaves, 1974), but it has subsequently been replaced 
by P. berghei ANKA as the most commonly used model of experimental CM. Since one of the key 
pathological mechanisms leading to death in pediatric CM is brain swelling due to extravascular fluid 
leak (Moxon et al., 2020), we examined the presence of extravascular fibrinogen (Georgiadou et al., 
2021) as an indicator of vascular leak in the brains of both P. berghei ANKA and P. yoelii 17XL infected 
mice compared to uninfected mice (Figure 5c). We found that brains from both infections had areas 
that stained positively for perivascular fibrinogen (indicative of vascular leak), while additionally some 
of the vessels from P. yoelii 17XL infected mice showed strong intravascular staining, suggestive of 
microthrombus formation (Figure 5c, iv ), another mechanism that has been implicated in human CM 
(Moxon et al., 2020; Georgiadou et al., 2021).

Discussion
Mice are the most cost effective and widely used model organism for studying many human diseases 
(Stuart et al., 2003; Zheng-Bradley et al., 2010). Nevertheless, mice are distant evolutionarily and 
differ substantially from humans in many ways (Mestas and Hughes, 2004; Liao and Zhang, 2008). 
Disease models in mice often involve artificial induction of disease, which may reduce complexity and 
aid reproducibility, but might also limit their translational relevance. Therapeutic interventions that 
work in mice often fail when used in human clinical trials (Bugelski and Martin, 2012; Hünig, 2012). 
As a result, the usefulness of mice in some areas of translational research is debated (Shay et al., 
2013; Seok et  al., 2013). Recently, concerted efforts have been made to improve both scientific 
and ethical aspects of the use of animals in biomedical research, with emphasis on the principles of 
replacement, reduction, and refinement (the “3Rs”), and improving reproducibility through better 
experimental design and standardized reporting guidelines (Percie du Sert et al., 2020). Despite 
this, there has been little parallel effort made to assess or improve the relevance of animal models 
in translational research, and approaches that would improve translation from mice to humans are 
needed (Normand et al., 2018).

In malaria research, mouse models are widely used but their relevance to human disease is conten-
tious (Craig et al., 2012). Here, we objectively assessed the biological processes occurring in blood 
in some of the most commonly used mouse models of malaria to examine their similarity to human 
malaria, using a comparative transcriptomic approach. The five rodent malaria parasites, we used 
led to the development of distinct disease trajectories and clinical features. Whilst no rodent malaria 
parasites induced changes in gene expression which fully recapitulated those in human malaria, at 
an early stage of infection, the rodent malaria parasites induced relatively similar transcriptional host 
responses to each other, with at least a broad overall similarity to that seen in a large study of UM in 
African children, and CHMI in malaria naïve adults. However, when we investigated the similarity of 
the changes in gene expression associated with different SM manifestations, we saw that there was 
more heterogeneity, and the concordance and discordance of expression of individual genes varied 
more between each mouse model and each phenotype. One of the greatest sources of variation 
between the mouse models was in the myeloid cell response, particularly neutrophil response, asso-
ciated with SM manifestations.

samples CM, n=5 pooled samples SA (each pool contained RNA from four individuals with the same phenotype). Full heatmaps for the expression of 
genes contributing most to the first two principal components in humans and each mouse model shown in Figure 4—figure supplements 1–4. The 
mouse model abbreviations are as follows: PbNK65 (Plasmodium berghei NK65), PbANKA (P. berghei ANKA), PcAS (P. chabaudi AS), Py17XL (P. yoelii 
17XL), and Py17XNL (P. yoelii 17XNL).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional heatmaps for Figure 4.

Figure supplement 2. Additional heatmaps for Figure 4.

Figure supplement 3. Additional heatmaps for Figure 4.

Figure supplement 4. Additional heatmaps for Figure 4.

Figure 4 continued
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Figure 5. Pathophysiological features of rodent malaria infections. (a) Lactate concentration in blood (mmol/L) in mice, uninfected, or at the early or 
late stage of each malaria parasite infection (n=3 for each infection time point). Error bars show median with range, One-way ANOVA p-value<0.0001, 
p-values for post hoc Dunnett’s multiple comparisons against uninfected mice are shown within the plot. (b) Erythrocyte counts from Plasmodium yoelii 
17XL infected mice, n=9, representative of three experiments, repeated measures ANOVA p-value<0.01. (c) Representative histological specimens 

Figure 5 continued on next page
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An important implication of our findings is that the selection of the most appropriate mouse model 
for investigation of a particular mechanism of interest should not be made solely on the similarity of 
clinical phenotype in humans and mice. We propose that it should also be based on the degree of 
concordance of expression of genes associated with the mechanism of interest. Failure to consider the 
similarities and differences in biological processes indicated by gene expression could lead to exper-
iments targeting pathways that are not involved in the host response to a particular mouse malaria 
parasite, making the experiments futile, unethical, and potentially leading to erroneous conclusions.

We identified that the pattern of changes in gene expression between early and late stages of P. yoelii 
17XL infected mice showed the greatest similarity to the differences in gene expression between human 
UM and each of HL, CM, CH, and SA, suggesting that this model might be most representative of the 
profile of changes in host response induced by human SM. This mouse model not only develops a very 
high parasite load, but our data suggest lethality at 5–7 days post-infection is part of a multisystem disorder, 
accompanied by extreme hyperlactatemia at levels similar to those seen in human HL and CH. Until now, 
the lack of a rodent model to study malaria-induced hyperlactatemia has held back understanding of the 
mechanisms causing such high levels of lactate and how these relate to the increased risk of death in 
patients with malaria. P. yoelii 17XL infection of C57BL/6J mice is an attractive model for further transla-
tional research on this SM phenotype.

In the brains of P. yoelii 17XL infected mice, we identified extravascular fibrinogen leak. This 
suggests that these mice may be in the process of developing a neurological syndrome at the time 
they reach the humane endpoint and may explain why this model showed transcriptional similarity to 
human CM. The transcriptional similarity of Py17XL to the human SA phenotype is consistent with the 
SA and high parasite load which occurs in this infection.

Despite Py17XL appearing to have the closest overall transcriptional similarity to human SM syndromes, 
we identified many genes with discordant expression, and Py17XL infection may not recapitulate all patho-
physiological features of human SM. The maximum parasitemia (~80%) seen in Py17XL infection is much 
higher than that typically seen in human SM (~10%) (Cunnington et al., 2013), although the sequestration 
of P. falciparum-infected red cells in human SM means that total parasite load may be several fold-higher 
than indicated by peripheral blood parasitemia (Cunnington et al., 2013).

Our study provides important insights into the translational relevance of commonly used mouse 
models of malaria, and more generally highlights the importance of considering relevance in addition to 
the 3Rs and reproducibility when planning any animal experiments. Our data are provided as a resource 
for researchers to help them to determine the concordance of gene expression between mouse malaria 
models and human disease, and we have identified an attractive mouse model for further translational 
studies on malarial hyperlactatemia. A strength of analyzing the blood transcriptome is that it represents 
the systemic host response to infection, capturing both the direct influence of an infectious agent on 
blood leukocytes, and the response of blood leukocytes to mediators released into the circulation by cells 
in other organs. However, the blood transcriptome cannot assess the concordance of processes occurring 
within specific organs that do not produce changes in gene expression of circulating leukocytes, and our 
data should not be used to prevent testing of reasonable hypotheses about such tissue-specific interac-
tions. Reassuringly, our findings were broadly consistent when we performed comparisons across inde-
pendent studies conducted in different locations and using different transcriptomic methods. Stronger 
and more generalizable conclusions, and more nuanced approaches to analysis may be possible if future 
studies add to the data we have collected, with larger numbers of mice and greater sequencing depth. 
Future work should also assess other commonly used mouse malaria models, using additional common 
mouse strains (including Balb/c and DBA/2) and outbred mice, both sexes, additional parasite strains, and 
mosquito-transmitted infections.

of brain with fibrinogen staining to identify vascular leak in mice uninfected (i, ii), infected with P. yoelii 17XL (iii, iv), and infected P. berghei ANKA (v, 
vi) collected at the late stage (humane endpoint) of infection. Arrowheads identify extravascular fibrinogen indicating leak from the vasculature. Arrow 
points to strong intravascular fibrinogen staining (iv) suggestive of microthrombus. Representative images from analysis of uninfected mouse brains n=3; 
P. yoelii 17XL-infected mouse brains n=5; P. berghei ANKA-infected mouse brains n=4; Scale bar: 50 µm. Eight-week-old wild-type female C57BL/6J 
mice were used in all experiments. Individual mouse lactate measurements and erythrocyte counts shown in Figure 5—source data 1.

The online version of this article includes the following source data for figure 5:

Source data 1. Individual mouse lactate measurements and erythrocyte counts.

Figure 5 continued
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Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background 
Plasmodium berghei NK65

https://doi.org/10.4049/jimmunol.​
0904019

Strain, strain 
background P. berghei ANKA

https://doi.org/10.4049/jimmunol.​
1100241

Strain, strain 
background P. yoelii 17XL

https://doi.org/10.1371/journal.​
ppat.1000004

Strain, strain 
background P. yoelii 17XNL doi:10.1002/eji.201546018

Strain, strain 
background P. 
chabaudi AS

https://doi.org/10.1111/j.1365-​
3024.2012.01366.x

Strain, strain 
background (Mus 
musculus, female) C57BL/6J Charles River Laboratories

Antibody
Anti-Fibrinogen antibody Rabbit 
polyclonal antibody Abcam ab34269 RRID:AB_732367 (1:100)

Antibody

Alexa Fluor 488 anti-mouse/
human CD11b Clone M1/70 Rat 
monoclonal antibody BioLegend (101217) RRID:AB_389305 (1:300)

Antibody APC anti-mouse Ly-6G Clone 
1 A8 Rat monoclonal antibody

BioLegend
(127614) RRID:AB_2227348 (1:300)

Antibody PE anti-mouse CD19 Clone 6D5 
Rat monoclonal antibody

BioLegend
(115508) RRID:AB_313643 (1:300)

Antibody Brilliant Violet 421 anti-
mouse CD4 Clone GK1.5 Rat 
monoclonal antibody

BioLegend

(100443) RRID:AB_2562557 (1:200)

Antibody

Alexa Fluor 700 anti-mouse 
CD8a Clone 53–6.7 Rat 
monoclonal antibody

BioLegend

(100730) RRID:AB_493703 (1:200)

Antibody Brilliant Violet 650 anti-
mouse CD3 Clone 17 A2 Rat 
monoclonal antibody

BioLegend

(100229) RRID:AB_11204249 (2:100)

Antibody

Alexa Fluor 488 anti-mouse CD4 
Clone GK1.5 Rat monoclonal 
antibody

BioLegend

(100425) RRID:AB_493520 (1:200)

Antibody APC anti-mouse CD4 Clone 
GK1.5 Rat monoclonal antibody

BioLegend
(100411) RRID:AB_312696 (1:200)

Antibody
PE anti-mouse CD4 Clone GK1.5 
Rat monoclonal antibody

BioLegend
(100407) RRID:AB_312692 (1:200)

Antibody Alexa Fluor 700 anti-mouse CD4 
Clone GK1.5 Rat monoclonal 
antibody

BioLegend

(100429) RRID:AB_493698 (1:200)

Antibody

Brilliant Violet 650 anti-
mouse CD4 Clone GK1.5 Rat 
monoclonal antibody

BioLegend

(100545) RRID:AB_11126142 (1:200)

Commercial assay 
or kit PAXgene Blood RNA Kit QIAGEN Cat. No./ID: 762174

Commercial assay 
or kit Agilent RNA 6000 Nano Kit Agilent 5067-1511

https://doi.org/10.7554/eLife.70763
https://doi.org/10.4049/jimmunol.0904019
https://doi.org/10.4049/jimmunol.0904019
https://doi.org/10.4049/jimmunol.1100241
https://doi.org/10.4049/jimmunol.1100241
https://doi.org/10.1371/journal.ppat.1000004
https://doi.org/10.1371/journal.ppat.1000004
https://doi.org/10.1002/eji.201546018
https://doi.org/10.1111/j.1365-3024.2012.01366.x
https://doi.org/10.1111/j.1365-3024.2012.01366.x
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https://identifiers.org/RRID/RRID:AB_2562557
https://identifiers.org/RRID/RRID:AB_493703
https://identifiers.org/RRID/RRID:AB_11204249
https://identifiers.org/RRID/RRID:AB_493520
https://identifiers.org/RRID/RRID:AB_312696
https://identifiers.org/RRID/RRID:AB_312692
https://identifiers.org/RRID/RRID:AB_493698
https://identifiers.org/RRID/RRID:AB_11126142


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Georgiadou, Dunican, et al. eLife 2022;11:e70763. DOI: https://doi.org/10.7554/eLife.70763 � 16 of 28

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm R https://www.R-project.org/ R 3.5.1 RRID:SCR_001905

Software, algorithm STAR
DOI:10.1093/bioinformatics/
bts635 2.5.4b RRID:SCR_004463

Software, algorithm Python Package: HTSeq
DOI:10.1093/bioinformatics/
btu638 1.99.2 RRID:SCR_005514

Software, algorithm GraphPad PRISM https://www.graphpad.com
GraphPad Prism 8 
RRID:SCR_002798

 Continued

Experimental design
We compared the whole blood transcriptome changes associated with SM in mice and humans to 
identify concordant and discordant patterns of gene expression, and to identify which mouse models 
show the most similar changes to those seen in humans.

We chose to compare the changes in gene expression between human UM and SM categories 
with those seen between early and late mouse infections, assuming that mice early in infection (when 
the first symptoms occur) represent UM while mice at the peak of severity symptoms (or humane 
endpoints) represent SM. Human data were obtained from published data sets from our group (Lee 
et al., 2018b) and others (Idaghdour et al., 2012; Boldt et al., 2019; Milne et al., 2021) while mouse 
data were generated specifically for this experiment and extracted from limited publicly available data 
(Lin et al., 2017).

Animals and procedures
Eight-week-old wild-type female C57BL/6J mice were obtained from Charles River Laboratories. All 
mice were specified pathogen-free, housed in groups of five in individually ventilated cages, and 
allowed free access to food and water. All protocols and procedures were approved by Imperial 
College Animal Welfare and Ethical Review Board, following Laboratory Animal Science Association 
good practice guidance. Mice were acclimatized to the animal facility for 1 week before any experi-
mental procedures.

Parasites (P. berghei ANKA [lethal], P. berghei NK65 [lethal], P. yoelii 17XL [lethal], P. yoelii 17XNL 
[non-lethal], and P. chabaudi AS [non-lethal]) were a kind gift from Professor Eleanor Riley and had 
been serially blood passaged through C57BL/6 mice (Findlay et al., 2010; Villegas-Mendez et al., 
2011; Couper et al., 2008; Stegmann et al., 2015; Toscano et al., 2012). Parasites stocks were 
stored in Alsever’s solution with 10% glycerol (mixed at 1:2 ratio) and were defrosted and diluted 
(depending on parasitemia of the frozen stock) to infect a passage mouse. The passage mouse infec-
tion was then closely monitored until healthy parasites were observed in a blood smear and para-
sitemia reached at least 2%. Blood was collected, before parasitemia reached 5%, by aseptic cardiac 
puncture under non-recovery isoflurane anesthesia, and diluted in sterile phosphate-buffered saline 
to achieve desired concentration. Experimental mice were infected with 105 live parasites by intraper-
itoneal injection. Fifty mice were randomly allocated to be infected in groups of 10 with each parasite 
strain and then segregated into two cages of five mice each per parasite strain. Ten control uninfected 
mice were used for weight-gain comparisons.

The weight and physical condition of each mouse were monitored throughout the course of each 
infection (Figure 1—figure supplement 1, Figure 1—source data 1). Change in weight was calcu-
lated as a percentage of baseline weight measured prior to infection. For P. berghei ANKA infec-
tion, which causes ECM, additional neurological monitoring was performed using the Rapid Murine 
Coma and Behaviour Scale (RMCBS) (Carroll et al., 2010), which includes assessment of gait, motor 
performance, balance, limb strength, body position, touch escape, pina reflex, foot withdrawal reflex, 
aggression, and grooming. Due to the need for different intensity and nature of monitoring in each 
infection to ensure animal welfare, blinding to infection group was considered inappropriate.

The early time point was defined as the first time at which mice manifested any signs of ill health, 
including any reduction in activity, ruffled fur or, weight loss. The late time point was defined as the 

https://doi.org/10.7554/eLife.70763
https://www.R-project.org/
https://identifiers.org/RRID/RRID:SCR_001905
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humane endpoint for each lethal parasite strain (Figure 1—figure supplement 1, Supplementary 
file 17), or a time point chosen to be just before the expected day of maximum severity of non-lethal 
infections (to avoid sampling mice which were starting to recover).

Tail capillary blood was used to prepare blood smears for analysis of parasitemia and lactate 
measurement using the Lactate Pro 2 (HAB direct) lactate meter. Parasitemia was quantified by micros-
copy of thin blood smears stained with 10% Giemsa and examined at 100× magnification with a Miller 
Square reticle. Erythrocyte counts were determined using a Z2 Coulter particle counter (Beckman 
Coulter). When mice were euthanized, heparinized blood was collected by cardiac puncture under non-
recovery isoflurane anesthesia, and an aliquot of 300–500 µl was immediately mixed at 1:2.76 volume 
ratio with fluid from a PAXgene Blood RNA Tube (QIAGEN), whilst the remainder was stored on ice 
for flow cytometry analysis. Brains were collected from P. yoelii 17XL and P. berghei ANKA infected 
mice and fixed in 4% paraformaldehyde for 48 hr before being processed. Brains were then paraffin 
embedded, cut, and stained with antibody against fibrinogen (ab34269 1:100, Abcam, UK) using a 
Roche automated staining system. Digitized images were taken at 40× magnification (LEICA SCN400, 
Leica Microsystems UK) at IQPath (Institute of Neurology, University College, London, UK). Images 
were then viewed and examined with Aperio ImageScope software (Leica Biosystems Imaging, Inc).

Flow cytometry
The proportions of major leukocyte subpopulations in mouse blood were determined by flow cytom-
etry using specific cell-surface marker antibodies. Approximately 50 µl of whole blood was mixed 
with 2 ml ammonium chloride red-cell lysis buffer for 5 min at room temperature, then samples were 
centrifuged and washed in flow cytometry buffer and centrifuged again. Resultant cell pellets were 
resuspended in 50 µl of antibody cocktail (all antibodies from BioLegend, Key resources table) for 
30 min before further washing and fixation in 2% paraformaldehyde. Flow cytometry was performed 
using a BD LSR Fortessa machine. BD FACSDiva software was used to collect the data and analysis 
was conducted using FlowJo v10 (TreeStar Inc), gating on single leukocytes before identification of 
major cell populations according to their surface marker staining (Supplementary file 1E). Leucocyte 
proportions for early and late timepoints within each infection are presented in Supplementary file 
1F.

Comparison of cell type proportions between species
The proportions of lymphocytes, neutrophils, and monocytes, measured by haematology analyser, in 
human malaria subjects (Lee et al., 2018b) were compared to the proportions of lymphocytes (sum 
of the B-lymphocyte and CD4+ T-lymphocyte and CD8+ T-lymphocyte), neutrophils, and monocytes, 
measured by flow cytometry, in the mouse RNASeq data set.

RNA isolation from mouse blood
RNA extraction was performed using the PAXgene Blood RNA Kit (QIAGEN ) according to the manu-
facturers’ instructions (Meyer et al., 2016). After the isolation of the RNA, Nanodrop ND-1000 Spec-
trophotometer (LabTech) was used to obtain the ratio of absorbance at 260 nm and 280 nm (260/280) 
which is used to assess the purity of RNA (or DNA). Values of ~2 are generally accepted as pure for 
RNA. RNA integrity was assessed using Agilent RNA 6000 Nano Kit (Agilent), used according to the 
manufacturers’ instructions with the Agilent 2100 Bioanalyzer (Agilent), and all traces were inspected 
visually for evidence of RNA degradation because the RNA Integrity Number calculation can be 
misleading when host and parasite RNA are both present in significant quantities (Lee et al., 2018b).

For the RNA sequencing analysis, six samples were selected from each infection (three from the 
early time point and three from the late time point), along with three uninfected controls. Samples 
were selected based on the RNA quality (260/280 ratio and Agilent 2100 Bioanalyzer traces). If more 
than three samples for each infection and time point were of sufficient quality, we selected the three 
with most similar clinical score and parasitemia levels within each group.

Dual-RNA sequencing
Library preparation and sequencing to generate the mouse RNA-Seq data was performed at the 
Exeter University sequencing service. Libraries were prepared from 1 µg of total RNA with the use of 
ScriptSeq v2 RNA-Seq Library Preparation Kit (Illumina) and the Globin-Zero Gold Kit (Epicentre) to 

https://doi.org/10.7554/eLife.70763


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Georgiadou, Dunican, et al. eLife 2022;11:e70763. DOI: https://doi.org/10.7554/eLife.70763 � 18 of 28

remove globin mRNA and ribosomal RNA. Prepared strand-specific libraries were sequenced using 
the 2×125 bp protocol on an Illumina HiSeq 2500 instrument.

Gene annotations
Human reference genome (hg38) was obtained from UCSC genome browser (http://genome.ucsc.​
edu/), mouse reference genome (mm10) was obtained from UCSC genome browser (http://genome.​
ucsc.edu/). Human gene annotation was obtained from GENCODE (release 22) (http://gencode-
genes.org/releases/), mouse gene annotation was obtained from GENCODE (release M16) (http://​
gencodegenes.org/releases/). The Plasmodium (P. berghei, P. chabaudi, and P. yoelii) genomes were 
obtained from PlasmoDB (release 24) (Aurrecoechea et al., 2009).

Mouse RNA-Seq quality control, mapping, and quantification
Quality control was carried out using fastqc (Andrew, 2010) and fastqscreen (Wingett and Andrews, 
2018). Adapters were trimmed using cutadapt (Martin, 2011). The read 1 (R1, -a) adapter is ​AGAT​
CGGA​AGAG​CACA​CGTCT, and the read 2 (R2, -A) adapter is ​AGAT​CGGA​AGAG​CGTC​GTGT​AGGG​
AAAG​AGTGT.

The trimmed reads were then mapped to the combined genomic index containing both mouse and 
the appropriate Plasmodium genome using the splice-aware STAR aligner (Dobin et al., 2013). Reads 
were extracted from the output BAM file to separate parasite-mapped reads from mouse-mapped 
reads. Reads mapping to both genomes were counted for each sample and removed. BAM files were 
sorted, read groups replaced with a single new read group, and all reads assigned to it. HTSeq-count 
(Anders et al., 2015) was used to count the reads mapped to exons with the parameter “-m union.” 
Only uniquely mapping reads were counted.

Confirmation of parasites species and strain
We confirmed the purity and identity of parasite strains by the unique mapping of non-mouse RNA 
reads from each infection to the respective parasite species genome using fastQ-screen. We then 
confirmed the presence of expected polymorphisms distinguishing between P. yoelii strains and 
between P. berghei strains by using the RNA-Seq data to identify distinctive single-nucleotide poly-
morphisms (SNPs).

For SNP identification, P. yoelii samples were mapped to the P. yoelii 17X (also called Py17XNL) 
genome and P. berghei samples were mapped to the PbANKA genome (extracted from PlasmoDB) 
using bwa-mem (Li, 2013), and sorted using samtools (Li et al., 2009).

The phenotypic differences between the two strains of P. yoelii are due to an SNP in the PyEBL gene 
(PY17X_1337400), changing a T (in the Py17XNL reference) to an A (in Py17XL) (Otsuki et al., 2009) 
at chromosomal location 1,704,423. The presence of the reference sequence in the P. yoelii 17XNL 
infection samples and mismatch at this location in P. yoelii 17XL infection samples was confirmed using 
Integrative Genomics Viewer (IGV) (Robinson et al., 2011; Supplementary file 1G).

In contrast to the P. yoelii strains, there are many SNPs that distinguish P. berghei ANKA from P. 
berghei NK65 (Akkaya et al., 2020). Four SNPs (in genes PbANKA_1331700, PbANKA_0515200.1, 
PbANKA_1414600, and PbANKA_1222100.1) were examined in IGV using the P. berghei ANKA 
genome as a reference, confirming the absence of mismatch in the P. berghei ANKA infection samples 
and the presence of the expected mismatches in the P. berghei NK65 infection samples (Supplemen-
tary file 1H).

Mouse differential gene expression analysis
The Ensembl gene ID versions were matched to their MGI gene symbols and Entrez IDs using biomaRt 
(annotation used: http://jul2018.archive.ensembl.org, mmusculus_gene_ensembl) (Durinck et  al., 
2009; Durinck et al., 2005). Genes for which this information was not available were excluded from 
the analysis. Of these, only genes with raw expression values of greater than 5 in at least three samples 
were taken forward. The raw expression counts can be found in Supplementary file 18.

The differential gene expression analysis was then performed using the R package edgeR. Raw read 
counts of each data set were normalized using a trimmed mean of M-values (TMM), which considers 
the library size and the RNA composition of the input data.

https://doi.org/10.7554/eLife.70763
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://gencodegenes.org/releases/
http://gencodegenes.org/releases/
http://gencodegenes.org/releases/
http://gencodegenes.org/releases/
http://jul2018.archive.ensembl.org


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Georgiadou, Dunican, et al. eLife 2022;11:e70763. DOI: https://doi.org/10.7554/eLife.70763 � 19 of 28

In order to account for variation between samples in the proportions of the major blood leukocyte 
populations (neutrophil, monocyte, CD4 T cell, and CD8 T cell), we used their proportions estimated 
by flow cytometry (Supplementary file 19) as covariates in edgeR, adjusting for their effect on whole 
blood gene expression. B cells were excluded from the design matrix of the differential expression 
analysis due to the proportions totaling 100%. Thus, the design matrix (with the intercept set to 0) 
consisted of each sample’s disease type (the mouse model plus if the sample was early or late in infec-
tion, i.e., P. yoelii 17XL_late) with the cell type proportions as covariates. Results of the differential 
expression analyses are presented in Supplementary file 12. Metadata matching each sample to their 
phenotype can be found in Supplementary file 20.

Analysis of the human RNA-Seq data set
For the comparison with RNA-Seq data from human hosts, data from our previously published 
Gambian child cohort were used (Lee et al., 2018b). This data set can be found in the ArrayExpress 
database (https://www.ebi.ac.uk/arrayexpress) using the accession number E-MTAB-6413 and meta-
data are also presented in Supplementary file 21. Differential expression analysis and adjustment for 
cell mixture were performed as previously described using CellCode and EdgeR (Lee et al., 2018b). 
Lists of differentially expressed genes are available in Supplementary file 14.

Analysis of microarray data sets
Expression values for three human microarray data sets were extracted from the GEO database 
(Idaghdour et al., 2012; Boldt et al., 2019; Milne et al., 2021; Supplementary file 1B). For the 
Boldt et al. study, background correction, normalization, and batch correction were performed on the 
raw expression values using the methods given in Supplementary file 1B. For the Idaghdour et al. 
study, the data was downloaded as pre-normalized expression values. For the Milne et al. CHMI data 
set, the raw cel files were downloaded from the GEO database.

For all three data sets, CellCODE (Chikina et al., 2015) was used to estimate the proportions of 
the major blood leukocyte subpopulations (neutrophils, monocytes, CD4 T cells, CD8 T cells, and 
B cells) in each of the samples for all three microarray data sets. This was based on reference gene 
expression profiles, Allantaz et al. GEO Accession: GSE28490 (Allantaz et al., 2012) the full signa-
ture data set derived from Allantaz et al., not just those used for these data sets, can be found in 
Supplementary file 22. Surrogate proportion variables for each leukocyte subpopulation were then 
used as covariates in differential gene expression pairwise analyses in Limma (Smyth, 2005; Supple-
mentary file 1B).

One sample (GSM848487) was removed from the Idaghdour et al. data set because the age of the 
subject was not available. The original study sampled a population with wide age range from different 
locations, so following the approach in the original study, differential expression analysis included age, 
location (Zinvie or Cotonou), and hemoglobin genotype (AA, AS, or AC), in addition to the leukocyte 
subpopulation surrogate proportion variables estimated from CellCODE (Chikina et al., 2015), as 
covariates for the pairwise differential expression analysis conducted using Limma.

For the Milne et al. CHMI data set, the samples from a Malaysian individual (who may have had 
previous malaria) were removed and paired samples from the remaining 14 subjects at day –1 (before 
infection) and day of diagnosis were used.

The lists of differentially expressed genes for these data sets are available in Supplementary file 6; 
Supplementary file 7, Supplementary file 10. For each microarray data set, differential expression 
analysis was also performed without adjustment for cell type proportions and are given in Supple-
mentary files 3-5.

Additionally, a microarray mouse P. chabaudi AS data set was also extracted from the GEO data-
base (Lin et al., 2017) and used to perform differential expression analysis between the early and late 
infection stages (Supplementary file 1B, no cell type mixture adjustment was performed). The results 
were compared to those of the early versus late stages of infection with P. chabaudi AS in the RNA-
Seq data set (without adjustment for cell type proportions, Supplementary file 2, Supplementary file 
7). Genes with an absolute logFC value of at least 1 in both comparisons were used for discordance-
concordance analysis as described below.

https://doi.org/10.7554/eLife.70763
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Identification of orthologous genes
A text file of all the orthologous (Ensembl 52) Homo sapiens (NCBI36) and Mus musculus genes was 
extracted from the Ensembl database and used as a reference (Supplementary file 8).

Comparative transcriptomics using principal component analysis
To use as much information as possible about changes in gene expression between conditions in 
human and mouse malaria data sets of varying size, we did not impose a p-value threshold but began 
by selecting all genes in the human differential expression analyses with absolute log-fold change 
greater than 1. We then selected those with 1:1 orthologs in mice, and used these genes for subse-
quent comparisons with gene expression in mice. There were no cutoffs applied based on the differ-
ences in expression between early and late-stage infection in mice. Therefore, our analyses assess the 
extent to which changes in mouse gene expression recapitulate those in humans, but do not address 
the reciprocal question of how well human gene expression recapitulates that in mice.

To compare patterns of gene expression associated with pathogenesis between species, without 
undue influence of species-specific variation in the baseline- or inducible-expression of each gene, 
we focused further analysis on the contrasts between comparable pairs of human and pairs of mouse 
infection states. Both human microarray UM versus healthy results were compared to the mouse early 
stage infection versus uninfected control results.

The human RNA-Seq (Lee et  al., 2018b) CM versus UM, HL versus UM, CH versus UM, and 
microarray (Boldt et al., 2019) CM versus UM and SA versus UM results were compared to mouse 
late stage versus early stage of infection results for each mouse model.

To allow comparison of the relative magnitudes of changes in gene expression between the human 
and mouse models, we developed a rank-based analysis of the changes in expression in each human 
and mouse pairwise comparison. Genes were ranked in descending order of absolute log-fold change, 
with ties given the same minimum rank. Each gene was then assigned a value of 100 divided by rank, 
which was then multiplied by the sign of the original log-fold change. For example, if the original log-
fold change was negative, the rank-standardized value would then be multiplied by –1. This approach 
means that the genes with greatest difference in expression between the conditions of interest within-
species have the biggest effect on the comparative transcriptomic analysis between species. These 
values are presented in Supplementary file 23 and were used as the input for subsequent PCA to 
highlight the differences and similarities between the mouse models and human disease comparisons 
in low-dimensional space. The PCAs were performed using the R-core function Prcomp() with default 
parameters and visualized using functions from the ggbiplot (Vu, 2021) and ggimage packages. The 
10 genes that contributed the most to principal components 1 and 2 (a subset of those given in 
Supplementary file 24) were collected using the factoextra (Kassambara and Mundt, 2021) and 
FactoMineR (Lê et al., 2008) packages, specifically the PCA() function, with ​scale.​unit set to FALSE to 
correspond to the default parameters of the Prcomp() function.

Discordance-concordance analysis
The percentage of concordantly and discordantly expressed genes in comparisons between mouse 
and human were calculated based on the log-fold change values of orthologous genes with an abso-
lute logFC value greater than 1 in the human differential expression analysis. In comparisons between 
human data sets, assessment was based on genes detected in both data sets with an absolute log-
fold change value greater than 1 in the human RNA-Seq data set. Gene expression was considered 
concordant if the direction of change in expression was the same between the comparator groups, 
and discordant if the direction of change in expression was opposite.

Gene ontology analysis
Lists of genes contributing greater than or equal to 0.1% to PC1 and/or PC2 were also extracted 
(Supplementary file 24). These were used as the genes of interest for GO term enrichment analysis 
performed using the goana.DGELRT() function (Package: Limma) (Smyth, 2005). The list of all the 1:1 
orthologs used as the input for the PCA were used as the background gene lists (Supplementary file 
25). Human gene IDs were fed to the GO term enrichment analysis. For each comparison in each data 
set, the Euclidean distances (Supplementary file 13) between each of the mouse models and the 
human data were calculated using standardized log-fold change values and the R-core dist() function.

https://doi.org/10.7554/eLife.70763
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Heatmaps
The 20 genes with the greatest absolute log-fold change value in each human disease comparison 
were used to construct illustrative heatmaps using the heatmap.2() function from the R package gplots 
(Gregory et al., 2021).

The log(FC) values of all genes or the top 10 contributing the most to PC1 or PC2 of the PCA plots 
were extracted for the human and each mouse comparison and used to generate additional heatmaps 
(Figure 2—figure supplements 1–4, Figure 3—figure supplements 1–6, Figure 4—figure supple-
ments 1–4). The heatmap.2() function was used to generate these plots. The sample rows of this plot 
are ordered according to increasing Euclidean distance from the human.

Statistical tests
GraphPad Prism 8 (GraphPad Software) was used for statistical analyses of lactate concentration in the 
different mouse models and erythrocyte counts from P. yoelii 17XL infected mice. One-way ANOVA 
test was used to compare the lactate concentration in mice uninfected or infected at different time 
points and post hoc Dunnett’s test for multiple comparisons. One-way ANOVA for repeated measures 
was used to analyze erythrocyte counts from P. yoelii 17XL infected mice. All tests were two-sided 
using a significance threshold of 5%.
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Georgiadou et al. 2021 Comparative 
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translationally relevant 
processes in mouse models 
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uk/​ena/​browser/​view/​
PRJEB43641

ENA, PRJEB43641
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Boldt et al. 2019 Whole blood transcriptome 
of childhood malaria

https://www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE1124

NCBI Gene Expression 
Omnibus, GSE1124

Idaghdour et al. 2012 The genomic architecture 
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transcriptional response to 
malaria infection

https://www.​ncbi.​
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query/​acc.​cgi?​acc=​
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NCBI Gene Expression 
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Lee et al. 2018 Dual RNA-seq of peripheral 
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NCBI Gene Expression 
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