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Abstract Lung cancer (LC) prognosis is closely linked to the stage of disease when diagnosed. 
We investigated the biomarker potential of serum RNAs for the early detection of LC in smokers 
at different prediagnostic time intervals and histological subtypes. In total, 1061 samples from 925 
individuals were analyzed. RNA sequencing with an average of 18 million reads per sample was 
performed. We generated machine learning models using normalized serum RNA levels and found 
that smokers later diagnosed with LC in 10 years can be robustly separated from healthy controls 
regardless of histology with an average area under the ROC curve (AUC) of 0.76 (95% CI, 0.68–0.83). 
Furthermore, the strongest models that took both time to diagnosis and histology into account 
successfully predicted non- small cell LC (NSCLC) between 6 and 8 years, with an AUC of 0.82 (95% 
CI, 0.76–0.88), and SCLC between 2 and 5 years, with an AUC of 0.89 (95% CI, 0.77–1.0), before 
diagnosis. The most important separators were microRNAs, miscellaneous RNAs, isomiRs, and 
tRNA- derived fragments. We have shown that LC can be detected years before diagnosis and mani-
festation of disease symptoms independently of histological subtype. However, the highest AUCs 
were achieved for specific subtypes and time intervals before diagnosis. The collection of models 
may therefore also predict the severity of cancer development and its histology. Our study demon-
strates that serum RNAs can be promising prediagnostic biomarkers in an LC screening setting, from 
early detection to risk assessment.

Editor's evaluation
This work has generated valuable data demonstrating the potential utility of serum RNA for lung 
cancer detection.

Introduction
Lung cancer (LC) continues to be the leading cause of cancer- related deaths despite declining smoking 
prevalence (Bray et al., 2018; Wild et al., 2020). Non- small- cell (NSCLC) and small- cell (SCLC) are 
the two major subtypes of LC. The symptoms generally occur at a late stage and the prognosis is 
poor. Stage at diagnosis typically determines patient survival (Aberle et al., 2011; Bach et al., 2012; 
Brustugun et al., 2018). Screening with low- dose computed tomography (LDCT) can be effective for 
early detection (Bach et al., 2012; Peled and Ilouze, 2015) and reduce LC mortality up to 20% in 
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high- risk groups (de Koning et al., 2020; Hanash et al., 2018; Seijo et al., 2019). However, LDCT has 
limitations such as high false- positive rates, risk of overdiagnosis, and high costs (Gopal et al., 2010; 
Peled and Ilouze, 2015). Annual CT scans also cause harmful radiation exposure (Bach et al., 2012; 
Hanash et al., 2018). Robust biomarkers can help stratify high- risk groups and increase accuracy in 
patient inclusion criteria for LDCT- based screening programs (Hanash et al., 2018).

Liquid biopsies quantifying molecular biomarkers in circulation, such as tumor- derived DNAs, 
proteins, and RNAs, can be used to detect cancer (Hanash et al., 2018; Ko et al., 2018; Sandfeld- 
Paulsen et al., 2016). MicroRNAs (miRNA), a class of ~21 nucleotide long short RNAs, have been 
widely investigated for their biomarker potential (Fehlmann et al., 2020; Keller and Meese, 2016; 
Pichler and Calin, 2015; Tian et al., 2019). They can be found both in serum (Keller and Meese, 
2016; Murillo et al., 2019; Umu et al., 2018) and in plasma (Freedman et al., 2016; Keller and 
Meese, 2016; Murillo et al., 2019) as cell- free circulating RNAs, which may originate from dying 
cells or be actively secreted (Zaporozhchenko et al., 2018). Some of them are bounded by proteins 
or confined in layered exosomes which can protect them from degradation (Fritz et  al., 2016). 
MiRNAs can function as tumor suppressors or oncomiRs and regulate tumor traits such as cell growth, 
angiogenesis, immune evasion, and metastasis (Pichler and Calin, 2015; Svoronos et  al., 2016). 
The search for RNA biomarkers is not limited to miRNAs. Aberrant expression of other RNA classes, 
such as protein coding mRNAs, tRNAs, piwi- interacting RNAs (piRNAs), and long- noncoding RNAs 
(lncRNAs), has been associated with cancer (Kim et al., 2017; Slack and Chinnaiyan, 2019). Despite 
the immense potential of cell- free RNAs, the promise of non- invasive RNA biomarkers of cancer has 
not yet been fulfilled.

One explanation of the lack of circulating RNAs used in clinical settings is our limited under-
standing of the prediagnostic dynamics of cell- free RNAs, since studies are usually based on samples 
at or after diagnosis. Carcinogenesis is a multistep process that turns cell functions from normal to 
malignant (Hanahan and Weinberg, 2000). It can cause temporal changes in RNA levels linked to 

Table 1. Clinical and histological characteristics of samples used in modeling.

Stage

Early (localized)

Locally 
Advanced 
(regional)

Advanced 
(distant) Unknown Controls

Histology

NSCLC 84 99 167 11 -

SCLC 9 35 76 4 -

Others 10 5 31 4 -

Sex

Male 78 104 178 12 185

Female 25 35 96 7 78

Age at donation, years

Mean (SD) 54.3 (7.33) 54.9 (9.08) 53.5 (8.25) 51.8 (6.53) 49.9 (10.9)

Age at diagnosis, years

Mean (SD) 59.8 (7.67) 60.6 (8.89) 59.4 (8.31) 58.6 (6.05) -

Prediagnostic sampling 
time, years

Mean (SD) 5.52 (2.81) 5.63 (2.79) 5.91 (2.66) 6.75 (2.18) -

Total samples 103 139 274 19 263

Individuals 79 102 189 16 263

Total individuals 645 (smokers*)

*See supplementary document for non- smokers (Supplementary file 1).

https://doi.org/10.7554/eLife.71035
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cellular processes driven by the hallmarks of cancer (Gutschner and Diederichs, 2012; Hanahan 
and Weinberg, 2000). We have shown that prediagnostic RNA levels in serum are highly dynamic in 
LC patients, which may signal early carcinogenesis (Umu et al., 2020). A similar result was observed 
in breast cancer (Lund et al., 2016) and testicular cancer patients (Burton et al., 2020). A lack of 
reproducibility among studies is also a problem, caused by technical and biological factors such as 
storage time, sampling procedure, age, sex, smoking history, etc. (Rounge et al., 2018). It is therefore 
important to control for these factors.

In the present study, our objective was to identify serum RNA- based biomarkers for early diag-
nosis of LC using prediagnostic samples. We identified the optimal machine learning (ML) algorithm 
for RNA biomarker modeling. Optimization of prediction models was done with an ML workflow, 
including cross- validation and testing, which was repeated five times to increase the generalizability 
of our results. We also investigated the biological relevance of the best RNA separators in the context 
of cancer biomarkers.

Results
Patient characteristics and RNA-seq profiles
In this study, we selected 400 patients with prediagnostic serum samples including multiple samples 
from the same patients. We also included 525 individuals as controls. After excluding failed or low 
input samples, we obtained RNA- seq data from 1061 serum samples. However, samples from indi-
viduals without any smoking history (i.e. never smokers) or missing information were excluded from 
initial analyses. This resulted in 535 cases and 263 control samples from 645 current or former smokers 
for modeling and testing (Table 1 and Figure 1A). Non- smokers consist of 7 cases and 256 control 
samples from 260 individuals (Supplementary file 1). We used non- smokers in a leave- out set only to 
test our final models and to calculate relative risk (RR).

After filtering out low- count transcripts, 3306 RNAs were selected as candidate features and used 
in the models: 202 miRNAs, 1137 isomiRs, 89 miscellaneous RNAs (miscRNAs), 380 piRNAs, 119 small 
nucleolar RNAs, 530 tRFs, 790 mRNAs, and 59 lncRNAs.

Figure 1. Consort diagram of the study and our model training and testing workflow. (A) The sample selection is summarized by the flow chart. 
Non- smokers were excluded from model building. (B) We randomly created five different training and testing datasets for each group (e.g. standard, 
histology- specific, or prediagnostic models).

https://doi.org/10.7554/eLife.71035
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ML algorithms can differentiate between prediagnostic cases and 
controls regardless of prediagnostic time
We first evaluated the classification performance of the ML algorithms in terms of average AUCs on 
test datasets, created by five random repeats as explained in Materials and methods.

All samples were included in algorithm evaluation regardless of their stage at diagnosis and predi-
agnostic time which were regarded as full- time standard models (Figure 2—figure supplement 1). 
The average AUC of all algorithms was 0.67 (95% CI, 0.66–0.69) for all histologies, 0.67 (95% CI, 
0.65–0.69) for NSCLC and 0.64 (95% CI, 0.62–0.66) for SCLC on the test datasets. The XGBoost algo-
rithm produced a higher AUC than the average, 0.71 (95% CI, 0.68–0.73). The XGBoost models also 

Figure 2. Each ROC curve is based on the prediction results of a randomly created testing dataset (in total five). Area under the ROC curve (AUC) values 
show the average of these predictions. The most important features of the classifiers were sorted on their average feature importance and are shown in 
the lower panels. A detailed list of biomarkers with their feature importance is available in supplementary (Supplementary file 2). We did not perform 
any feature selection while training these models (see also Figure 2—source data 1).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data of XGBoost ROC plots for Figure 2.

Figure supplement 1. Each boxplot shows performances of an algorithm measured by area under the ROC curves (AUCs).

Figure supplement 1—source data 1. Source data of boxplots for Figure 2—figure supplement 1.

Figure supplement 2. ROC curves of various types of models with/without serial samples.

Figure supplement 2—source data 1. Source data of ROC plots without multiple samples from same individuals (Figure 2—figure supplement 2).

https://doi.org/10.7554/eLife.71035
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performed better when the samples were stratified by histologies: NSCLC, 0.70 (95% CI, 0.65–0.75) 
and SCLC, 0.71 (95% CI, 0.68–0.74) (Figure 2).

Although the models of all algorithms had comparable performances in terms of average 
AUCs, they differ in terms of total number of non- zero features (i.e. different model complexity). 
For example, random forest (RF) selected more than 3000 non- zero features while the lasso 
model selected fewer than 25 features. However, the profiles of the top features, ranked in 
terms of feature importance, usually consisted of similar RNAs (e.g. miRNAs or tRFs).

Since XGBoost produced the most predictive full- time models, we used it for the remaining anal-
yses. We also investigated the best predictors of the XGBoost models and ranked them based on their 
importance (Supplementary file 2). The top three best features were an isomiR of hsa- miR- 486–5p 
(iso- 23- 8YUYFYKSY), piR- hsa- 28723, and INTS10 for all histologies; Y- RNA, piR- hsa- 28723, and GPB3 
for NSCLC; and tRF- BS68BFD2, RN7SL724P, and tRF- 947673FE5 for SCLC. An in- depth investigation 
of selected features by other algorithms also showed common RNAs. For example, Y- RNA and iso- 
23- 8YUYFYKSY isomiR were among the top predictors of the RF, elastic- net, the SGL, and the lasso 
models for NSCLC; tRF- BS68BFD2 for SCLC. We also performed KEGG pathway enrichment analysis 
based on the common miRNA, mRNA, and isomiR features. The results showed that many cancer- 
related pathways were significantly (p < 0.01) enriched such as MAPK signaling, mTOR signaling, and 
AMPK signaling.

We evaluated the classification performance of the XGBoost algorithm by selecting one 
sample per patient rather than using all samples from the same individuals. Our results showed 
comparable performance in terms of AUCs for all models (Figure 2—figure supplement 2). 
The SCLC models performed slightly worse than the others. This discrepancy can be explained 
by the relatively small sample size of this group. Therefore, we decided to use all samples from 
the same individuals.

MiscRNA- and miRNA-only models are more accurate than the others
We produced XGBoost models that included only a single RNA class (e.g. miRNA, isomiR, etc.) 
to further investigate important features/classes. This method showed that miscRNA- only and 
miRNA- only models achieved better classification performance than the other RNA classes 
regardless of histology and stage at diagnosis (Table 2). The best separators of these models 
included hsa- miR- 99a- 5p, hsa- miR- 1908–5p, hsa- miR- 3925–5p, and Y- RNA- related transcripts 

Table 2. Averages of area under the ROC curves (AUCs), accuracies (acc), sensitivities (sn), and specificities (sp) of the XGBoost 
algorithm models on test datasets when prediagnostic time was not included.

Histologies of model

  All (including others) NSCLC SCLC

Features included: AUC
Av. # of 
features*

Av. % of acc/
sn/sp AUC

Av. # of 
features

Av. % acc/
sn/sp AUC

Av. # of 
features

Av. % acc/
sn/sp

All RNAs
0.71 (95% CI, 
0.68–0.73) 301 69/73/62

0.70 (95% CI, 
0.65–0.75) 373 67/70/64

0.71 (95% CI, 
0.68–0.74) 213 70/69/71

Lasso- selected 
features

0.78 (95% CI, 
0.74–0.82) 149 73/75/71

0.78 (95% CI, 
0.75–0.82) 56 73/73/72

0.74 (95% CI, 
0.69–0.80) 58 72/61/83

Univariate 
significant features

0.70 (95% CI, 
0.66–0.73) 76 67/75/58

0.69 (95% CI, 
0.64–0.73) 51 67/71/64

0.70 (95% CI, 
0.65–0.76) 11 68/69/68

miRNA only
0.72 (95% CI, 
0.68–0.76) 168 69/76/61

0.73 (95% CI, 
0.70–0.75) 199 69/74/64

0.65 (95% CI, 
0.62–0.69) 20 67/74/60

isomiR only
0.70 (95% CI, 
0.65–0.74) 204 67/68/67

0.73 (95% CI, 
0.69–0.77) 215 71/75/66

0.65 (95% CI, 
0.60–0.70) 108 66/65/67

tRF only
0.69 (95% CI, 
0.65–0.73) 314 65/77/53

0.67 (95% CI, 
0.65–0.69) 314 66/64/67

0.68 (95% CI, 
0.65–0.71) 23 66/69/63

MiscRNA only
0.72 (95% CI, 
0.69–0.74) 83 69/73/65

0.68 (95% CI, 
0.63–0.74) 87 66/73/59

0.69 (95% CI, 
0.64–0.75) 76 70/78/61

*Average number of non- zero features selected by the models. Note: Detailed information on all selected features are in Supplementary file 2.

https://doi.org/10.7554/eLife.71035
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(i.e. RNY1P5 and RNY4P30). When we took histology into account, miRNAs and isomiRs for 
NSCLC and miscRNAs for SCLC produced better models (Table 2). The most important features 
of histology- dependent models included hsa- miR- 629–5p, hsa- miR- 99a- 5p, hsa- miR- 486–5p 
isomiR (iso- 23- 8YUYFYKSY), hsa- miR- 151a- 3p isomiR (iso- 22- B0NKZK1JN) for NSCLC; 7SL 
RNA- related transcripts and vault- RNA for SCLC (Supplementary file 2).

Feature selection improves model performance and reduces model 
complexity
Single RNA class models also implied that feature selection can further improve model 
performances. Thus, we tested two feature selection methods. The results showed that lasso 
feature selection improved AUC values and reduced complexity (Table 2). The most important 
features of lasso- selected models included hsa- miR- 423–5p isomiR (iso- 20- 5KP25HFF), GBP3, 
and piR- hsa- 28723 for all histologies; Y- RNA, hsa- miR- 423–5p isomiR (iso- 20- 5KP25HFF), and 
LINC01362 for NSCLC; HIST1H4E, PTCH2, and tRF- R29P4P9L5HJVE for SCLC (Supplementary 
file 2). Moreover, univariate significant feature selection greatly reduced model complexity 
with an acceptable performance (Table 2). For example, SCLC models only included 11 RNAs. 
The most important features were GBP3, LINC01362, and hsa- miR- 30a- 5p for all histologies; 
LINC01362, GBP3, and tRF- 9MV47P596V for NSCLC; piR- hsa- 7001 and tRF- 7343R × 6NMH3 
for SCLC (Supplementary file 2).

Figure 3. Sliding windows analysis showed better models which utilizes prediagnostic samples in specific time intervals such as small- cell lung cancer 
(SCLC) models, which were restricted to samples from 2 to 5 years prior to diagnosis (see the first and the second panel, red dots). Each color represents 
different histologies: black and red only have non- small cell lung cancer (NSCLC) and SCLC samples respectively while blue has all histologies including 
others (Figure 3—source data 1).

The online version of this article includes the following source data for figure 3:

Source data 1. Source data of all the panels for Figure 3.

https://doi.org/10.7554/eLife.71035
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Histology-specific prediagnostic models can improve prediction 
performance
We previously demonstrated that RNA levels are dynamic and histology- specific in prediagnostic 
samples (Umu et al., 2020). We therefore trained and tested models stratified by prediagnostic time 
which were selected by a sliding window approach as explained in Materials and methods.

The results showed that inclusion of prediagnostic time and histological subtype together creates 
better models for specific time intervals (Figure 3). For example, SCLC models restricted to samples 
from 2 to 5 years prior to diagnosis had an average AUC of 0.84 (95% CI, 0.77–0.9) (Figure 3). Another 
model of SCLC samples that only utilized miRNAs restricted to 3–5 years prior to diagnosis had an 
average AUC of 0.85 (95% CI, 0.76–0.93) on the test datasets. Both SCLC models selected the same 
miRNAs as their most important features such as hsa- miR- 30a- 5p, hsa- miR- 339–3p, hsa- miR- 215–5p. 
Besides miRNAs, an isomiR of hsa- miR- 451a and RN7SL181P were the most important features of 
prediagnostic SCLC models. Enrichment analysis of the most important features identified signaling 
pathways, such as MAPK, PI3K- Akt, RAS, and other pathways like choline metabolism, cellular senes-
cence, and PD- L1 expression and PD- 1 checkpoint. Similarly, NSCLC models restricted to 6–8 years 
prior to diagnosis had an average AUC of 0.81 (95% CI, 0.75–0.86). The most important RNAs of this 
period were tRF- YP9L0N4V3, an isomiR of hsa- miR- 484 (iso- 23- 8K4P8R8SDE) and tRF- 9MV47P596V. 
More than 70 pathways were enriched such as endocytosis, MAPK, RAS, choline metabolism, and 
neurotrophin signaling pathway.

Table 3. All selected features, performance, and relative risk (RR) of XGBoost models.

Models

  All* NSCLC SCLC

Features

iso- 20- 5KP25HFF
GBP3 hsa- miR- 30a- 5p
INTS10
LINC01362 piR- hsa- 28723
RNU1- 8P iso- 23- BQ8DQWM4Z
CTD- 3252C9.4
DST
HBA2
HIST2H2AC hsa- miR- 99b- 3p
LATS1 piR- hsa- 28391 piR- 
hsa- 28394
RN7SL181P
RN7SL8P
RNU2- 27P iso- 23- 8YUYFYKSY
TLN1 tRF- V47P59D9 
tRF- 86V8WPMN1EJ3 
tRF- 6SXMSL73VL4Y tRF- 
QKF1R3WE8RO8IS

LINC01362
Y- RNA iso- 23- B0NKZ01J0D 
iso- 22- MKJIJLJ2Q iso- 21- 
N2NBQRZ00
GBP3 iso- 20- RNUW92OI
GNAS hsa- miR- 30a- 3p
NHSL2 piR- hsa- 28488
RC3H2
RN7SL181P
RNU2- 19P
RNY4P27 iso- 23–909 U247N04
tRF- I89NJ4S2 tRF- 
9MV47P596VE tRF- 
86J8WPMN1EJ3 tRF- 
86V8WPMN1EJ3 tRF- 
Q1Q89P9L8422E

AC113404.1
C6orf223
HIST1H4E hsa- miR- 
30a- 5p hsa- miR- 
574–5p
ODC1
PTCH2
PTMA
RN7SL181P tRF- 22- 
947673FE5
AKAP9
MIGA1
RAP1B
RN7SL724P
RUFY2 iso- 23- 
X3749W540L 
tRF- BS68BFD2 tRF- 
R29P4P9L5HJVE tRF- 
ZRS3S3R × 8HYVD

Total features 25 21 19

Total test samples (total 
leave- out size) (non- 
smokers) 640 (535) (263) 465 (360) (262) 444 (395) (256)

AUC on test (95% CI)
(only smokers**) 0.76 (0.68–0.83) 0.78 (0.70–0.85) 0.88 (0.83–0.94)

AUC on test (95% CI)
(both smokers and non- 
smokers**) 0.68 (0.63–0.72) 0.68 (0.63–0.73) 0.84 (0.79–0.9)

RR on test (95% CI)
(only smokers**) 2.37 (1.54–3.7) p = 1.15 × 10–7 2.36 (1.52–3.66) p = 2.83 × 10–6

2.48 (2.06–3) p = 3.32 
× 10–9

RR on test (95% CI)
(both smokers and non- 
smokers**) 1.84 (1.7–2.01) p = 1.25 × 10–6 1.52 (1.27–1.83) p = 2.67 × 10–5

2.04 (1.85–2.25) p = 8.8 
× 10–8

*Including other histologies. ** includes samples previously not used (leave- out samples).

https://doi.org/10.7554/eLife.71035
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As an alternative to sliding windows, we also performed a fixed window approach and trained 
models using samples from up to 2 years (0–2), up to 5 years (0–5), and up to 8 years (0–8) before diag-
nosis. The results showed slight improvement in model performance compared to full- time models 
(see Supplementary file 3). However, sliding windows models performed better on specific time 
intervals.

Frequent features can create simple and accurate models
We created models by compiling the best features from the full- time models. Our results showed 
improved prediction performance for these models despite inclusion of leave- out datasets into the 
test set (see Materials and methods). In the test datasets including only smokers, AUC for all histol-
ogies was 0.76 (95% CI, 0.68–0.83); NSCLC model was 0.78 (95% CI, 0.70–0.85); SCLC model was 
0.88 (95% CI, 0.83–0.94) (Table 3). However, when non- smokers were also included in the test set, the 
model performance dropped to 0.68 (0.63–0.72) for all histologies and 0.68 (0.63–0.73) for NSCLC. 
Remarkably, the SCLC model still had AUC of 0.84 (0.79–0.9) when including non- smokers.

The RRs and their associated p- values on the test dataset, with and without non- smokers, are 
reported in Table 3. A positive test in smokers suggests more than two times higher risk of getting 
LC diagnosis in future.

We also investigated the prediagnostic models, using the ML workflow, and selected two pairs 
of models for NSCLC and SCLC, which showed high performance before and after 5 years prior to 
diagnosis (see Supplementary file 4). We found that NSCLC models restricted to 0–2 and 6–8 years 
before diagnosis had an average AUCs of 0.89 (95% CI, 0.84–0.96) and 0.82 (95% CI, 0.76–0.88), 
respectively; SCLC models restricted to 2–5 and 8–10 years before diagnosis had an average AUCs of 
0.89 (95% CI, 0.77–1.0) and 0.83 (95%, 0.69–0.97), respectively. We reported other model metrics and 
the best features in the supplementary document (Supplementary file 4).

Discussion
In this study, we showed that ML models of prediagnostic serum RNA levels can be used to predict 
LC years before diagnosis and manifestation of disease symptoms. Our models achieved clinically 
relevant performance in terms of AUC, accuracy, sensitivity, and specificity (Tables  2 and 3). The 
model performance was further increased for specific prediagnostic time windows and histologies 
making it feasible to develop them as biomarkers for LC screening (Figure 3). A collection of the 

Figure 4. Suggested clinical uses of RNA biomarkers in lung cancer (LC) screening. A positive test from full- time models shows elevated risk (at least 
two times). They can detect cancer- related RNA signals up to 10 years before diagnosis. Prediagnostic models have higher accuracy, sensitivity, and 
specificity which can potentially assist full- time models and improve specificity (Supplementary file 4).

The online version of this article includes the following source data for figure 4:

Source data 1. Suggested clinical uses of RNA biomarkers in lung cancer (LC) screening.

https://doi.org/10.7554/eLife.71035
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best models (and predictors) (Table 3 and Supplementary file 4) can predict risk for developing LC, 
which histologies to look for and indicate the level of cancer progression. The time window of the 
high- performance models may be a first indication of how often to screen for LC (Figure 4). Our study 
is unique in including serum samples collected up to 10 years prior to LC diagnosis and a large set of 
control samples.

We previously reported that prediagnostic circulating RNA signals are highly dynamic in LC 
patients and they can be histology and stage dependent (Umu et al., 2020). In the present study, ML 
models using all samples regardless of stage, histology, or prediagnostic time successfully separated 
LC patients from controls. All the tested algorithms consistently produced acceptable AUC values 
(Figure 2A). The best algorithm, XGBoost, resulted in an average accuracy of 69% without feature 
selection. An analysis of the features showed a large panel of selected RNAs: more than 300 out of 
available 3306 (with no feature selection implemented). This may be interpreted as a general shift 
in the levels of RNAs during cancer development, consistent with our previous study that showed 
hundreds of RNAs were differentially expressed up to 10 years before diagnosis (Umu et al., 2020).

We found that some features were considerably more important (and frequent) separators than 
others with or without feature selection. The list includes piRNAs (e.g. piR- hsa- 28723), miRNAs 
(e.g. hsa- miR- 574–5p, hsa- miR- 30a- 5p, hsa- miR- 106b- 5p), isomiRs (e.g. isomiR of hsa- miR- 423–5p 
(iso- 20- 5KP25HFF), hsa- miR- 486–5p (iso- 23- 8YUYFYKSY)), and miscRNAs (e.g. RN7SL181P). Some 
of them were particularly interesting since they were associated with cancer or proposed as cancer 
biomarkers. Hsa- miR- 30a- 5p is a tumor suppressor and downregulated in LC tissues (Yanaihara et al., 
2006). It regulates oncogenes such as RAB38 and RAB27B (The RNAcentral Consortium, 2019). 
Another notable example is hsa- miR- 574–5p which promotes metastasis in NSCLC by targeting PCP2 
in tumor tissues (Zhou et al., 2016) and has been proposed as an early stage NSCLC serum biomarker 
(Foss et al., 2011). Hsa- miR- 574–5p was among the most important features in lasso- selected and 
miRNA- only histology- specific SCLC models. It was also one of the most important features in our 
histology- specific NSCLC models. There were also isomiRs among the most important features such 
as hsa- miR- 486–5p canonical form, which was the best separator for all histologies. Hsa- miR- 486–5p 
targets PIK3R1 to suppress cell growth. Its overexpression inhibits cell proliferation and invasion and 
it was significantly downregulated in both tissue and serum (Tian et al., 2019). Hsa- miR- 486–5p was 
proposed as a diagnostic and prognostic biomarker for NSCLC (ElKhouly et al., 2020; Tian et al., 
2019).

Besides miRNAs and isomiRs, RNAs of other classes were noteworthy and linked to carcinogenesis. 
For example, 7SL, a member of miscRNAs, is upregulated in tumor cells. It binds to TP53 mRNA at 
the 3'UTR region and downregulates its expression (Abdelmohsen et al., 2014). 7SL- related tran-
scripts (e.g. RN7SL181P) were among the most important separators in the cell histology, NSCLC- and 
SCLC- specific models. Another example is Y- RNA and we found that Y- RNA and related genes (e.g. 
RNY4P30) were among the most important features for NSCLC models. Y- RNA was also chosen as 
an important feature by the lasso- selected NSCLC models. Y- RNA- derived small RNAs function as 
tumor suppressors in NSCLC. They inhibit cell proliferation and were proposed as circulating RNA 
biomarkers since they were upregulated in NSCLC EVs (Li et al., 2018).

Inclusion of both prediagnostic time and histology produced better models in certain time windows 
(e.g. 2–5 years before diagnosis for SCLC) (Figure 3). This can be explained by the dynamic nature of 
prediagnostic RNA levels (Lund et al., 2016; Umu et al., 2020). Important features of these models 
can also be linked to early carcinogenesis and some were specific to these models. For example, hsa- 
miR- 339–3p was among the most important features of SCLC prediagnostic models. Hsa- miR- 339–3p 
is a tumor suppressor and was proposed as a serum biomarker of LC (Yu et al., 2019). We retrained 
some of these prediagnostic models using the most frequent features and achieved higher prediction 
performance than the full- time models in specific time intervals. We reported these models in supple-
mentary (Supplementary file 3).

The most important features of histology- specific models also showed associations with 
carcinogenesis- related KEGG pathways, which were common or specific to histology. The common 
ones include well- known signaling (e.g. RAS, PI3K- Akt, MAPK, ErbB) and cancer- related pathways 
(e.g. proteoglycans in cancer and pathways in cancer). Choline metabolism in cancer pathway was 
one of the common ones and enriched in some histology- specific prediagnostic models. Altered 
choline profiles are characteristics of tumor tissues (Glunde et al., 2006). Moreover, a lipidome serum 
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profiling study on early stage NSCLC patients proposed choline- containing phospholipids as potential 
LC biomarkers (Klupczynska et al., 2019). Enrichment of choline metabolism pathway years before 
diagnosis (i.e. NSCLC 6–8 and SCLC 2–5) supports this conclusion. We also reported enrichment of 
this pathway for all histologies before diagnosis in our previous study (Umu et al., 2020).

A strength of our study is the large sample size from prediagnostic cases and a large control group 
from cancer- free individuals from the same cohort. We have detailed information on histological 
subtype and stage at diagnosis from the Cancer Registry of Norway (CRN) and smoking history from 
survey data. We also accounted for other potential confounders (i.e. age, sex, and blood donor group 
[BDg]) (Rounge et al., 2018). Some of our potential biomarkers (e.g. hsa- miR- 30a- 5p, sa- miR- 339–3p, 
7SL) were already associated with carcinogenesis or proposed as biomarkers, which shows consistent 
results with current literature. Further, we found potential biomarkers from overlooked RNA classes 
which add important new knowledge into the field. We shared the average feature importance of all 
RNAs as supplementary tables (Supplementary file 2). We investigated performance of different algo-
rithms which showed consistent results in terms of AUCs and features. We compiled shortlists from 
the most important features and tested their performance in a leave- out dataset on both smokers and 
non- smokers. We also found that smokers with a positive test had more than two times higher risk of 
getting LC diagnosis in future (Table 3).

There are some weaknesses in our study that we need to address. First, an independent cohort 
should replicate our results. However, only a few cohorts include prediagnostic samples that can be 
used for discovery and validation. We tried to overcome this issue by using training- testing repeats for 
assessing generalisability. We also reported our results with and without feature selection since some 
feature selection methods (e.g. lasso and univariate) can cause overfitting. Second, using more than 
one sample from the same individual can potentially cause overfitting. However, we did not detect 
any effect related to this issue (Figure 2—figure supplement 2). Third, our study focused only on 
smokers (since case samples are mostly smokers). However, our results show acceptable performance 
when including non- smokers as a test dataset as well. Fourth, reuse of the same data for frequent 
biomarker models (as reported in Table 3) can also result in overfitting. We tried to overcome this 
issue by including a leave- out dataset (which was never used) into the test set and reported perfor-
mance. Lastly, since our samples are long- term stored, some unstable RNA molecules may have been 
degraded over the years, though we have already shown that this effect is negligible (Umu et al., 
2018). Yet, we matched cases and controls for BDg which includes the effect of storage time (see 
Materials and methods).

In LC screening programs, RNA biomarkers can be used as a tool of initial assessment or combined 
with LDCT for early detection (Hanash et al., 2018). We found that smokers with a positive test had 
higher risk of getting LC diagnosis in future (Table 3). We also found that our biomarkers can be 
potentially used on non- smokers, especially SCLC biomarkers. However, we do not have enough 
non- smoker cases to further validate this interpretation. The dynamic nature of the prediagnostic 
signal for cancer may pose challenges for the performance of modeling and biomarker development. 
However, using a set of models specific for histology and time might provide additional information 
useful in evaluating LC risk (Figure 4). Our proposed use of RNA biomarkers starts with risk assess-
ment using standard full- time models which can be used for an initial assessment in smokers when the 
disease is undetectable. A positive signal (i.e. high probability of being in LC group) classifies those 
individuals into an elevated risk group. Since prediagnostic models have a 2- year peak performance, 
every second- year testing with these models can provide confirmation of preneoplasia or an early 
stage tumor for individuals with elevated risk and selection criteria for CT monitoring. Prediagnostic 
models had higher overall specificity (more than 80%) which can help to determine future diagnosis 
histology. However, it requires further research. We selected two sets of histology- specific diagnostic 
models for early/late NSCLC and SCLC diagnosis and reported these in the supplementary document 
(Supplementary file 4). RNA biomarkers can prevent unnecessary use of LDCT while improving the 
chance of an early diagnosis of LC in an early stage. This hypothesis can be investigated in screening 
programs for validation.

Conclusion
We have shown that LC can be detected in both smokers and non- smokers years before diagnosis and 
the manifestation of symptoms regardless of histological subtype. We also proposed a model on how 
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RNA biomarkers can be utilized in clinical settings. Our top performing models can produce AUCs up 
to 0.9 before diagnosis suggesting a great potential for LC early prediction.

Materials and methods
Study population and data sources
We used the population- based Janus Serum Bank (JSB) cohort containing prediagnostic serum 
samples (Langseth et al., 2017). The study participants were identified by linking the JSB to the 
CRN. We restricted our analyses to patients later diagnosed with LC up to 10 years after blood 
donation and control samples from individuals cancer- free (except non- melanoma skin cancer) 
at least 10  years after sample collection. We matched cases and controls on confounders (see 
Bioinformatics analyses). Smoking, collected from health survey data, was classified as current, 
former, or never smokers (Hjerkind et al., 2017). Since we have previously shown that smoking 
significantly affects RNA expression levels, we only included smokers (i.e. current and former) in 
the initial analyses and model building. However, non- smokers and samples not included by the 
frequency matching were used as an additional independent leave- out dataset to assess the level 
of overfitting.

Tumor staging
Detailed cancer information was selected from the CRN that has systematically collected mandatory 
notification on cancer occurrence for the Norwegian population since 1952 (Larsen et  al., 2009). 
The cases were classified into histological subtypes: NSCLC, SCLC, and others, the latter referring to 
other less defined or multiple histologies. Stage at diagnosis was encoded with the TNM system: early 
(localized – stage I), locally advanced (regional – stages II and III), advanced or metastatic (distant – 
stage IV), and unknown (Cancer Registry of Norway, 2020).

Laboratory processing
We extracted RNA from 400  µL serum using phenol- chloroform and miRNeasy Serum/Plasma kit 
(Qiagen, Valencia, CA). We performed size selection using a 3% Agarose Gel Cassette (Cat. No 
CSD3010) on a Pippin Prep (Sage Science) with a cut size optimized to cover RNA molecules from 17 
to 47 nt in length. Libraries were prepared with the NEBNext Small RNA kit (NEB, Ipswich, MA) and 
sequenced on a HiSeq 2500 platform to on average 18 million sequences per sample (Illumina, San 
Diego, CA).

Bioinformatic analyses
Our bioinformatics workflow includes quality control, adapter trimming, read mapping, read counting, 
and creation of count tables. We used a large annotation dataset containing several RNA classes 
available in serum (Umu et al., 2018), including miRBase (v22.1) for miRNAs (Kozomara et al., 2019), 
piRBase (v1.0) for piRNAs (Zhang et  al., 2014), and the GENCODE (v26) for other RNA classes 
(Harrow et  al., 2012). We used the AdapterRemoval tool for adapter trimming (Schubert et  al., 
2016) and Bowtie2 (Langmead and Salzberg, 2012) for mapping reads to the human genome (hg38) 
with an average mapping ratio of 70%. The SeqBuster tool was used for miRNA annotation counts 
and isomiR calling (Pantano et al., 2010). We filtered out the RNAs with fewer than five reads in less 
than 80% of the samples. All isomiRs passed the expression were regarded as bona fide isomiRs. We 
used DESeq2’s (Love et al., 2014) variance stabilizing normalization function to normalize identified 
RNA counts. The optmatch (v0.9–11) R package (Hansen and Klopfer, 2006) selected appropriately 
matched controls while building models. Therefore, we matched LC samples and controls on sex, 
age at donation, and BDg. BDg is a technical cofounder combining the effect of sample treatment at 
donation and storage time (Rounge et al., 2018). We used R function kegga from the limma package 
for KEGG pathway enrichment analysis of selected RNA features if they are miRNA, isomiR, or mRNA. 
The miRNA and isomiR targets were extracted from MIRDB (v5.0) predictions (Wong and Wang, 
2015) (score cutoff >60). p- Values were adjusted using false discovery rate (FDR) (using p.adjust func-
tion of R).
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ML classification algorithms and training/testing workflow
High dimensionality is often a problem in modeling RNA- seq data. Our preliminary analysis showed 
that ML algorithms with regularization produced successful models. Therefore, we selected five ML 
algorithms to create our initial models: lasso, elastic- net, sparse group lasso (SGL), RF, and extreme 
gradient boosting (XGBoost) algorithms. We used fivefold cross- validation (if available) to tune hyper-
parameters for model training. For the SGL models, RNAs were classified by type.

R implementations of these algorithms were used: caret (v6.0–84) and glmnet (v2.0–18) packages 
for elastic- net and the lasso, sglfast (v0.10) and msgl (v2.3.9) for the SGL models and xgboost (v1.0.0.2) 
for XGBoost. Classifications were performed according to histology and time to diagnosis (for details 
see next paragraph) using an automated ML workflow. In the ML workflow the datasets were split 
into training (70%) and test (30%) (Figure 1B). We repeated this step five times using designated 
seed numbers to select five different training and test datasets which were balanced for case/control 
numbers and also matched for confounders (i.e. sex, age, and BDg). Model optimization including 
hyperparameter tuning was done by a grid search approach followed by fivefold cross- validation 
using the training sets. The test datasets were only used for testing to overcome overfitting and assess 
true performance. The performance of the classifiers were mainly evaluated by area under the ROC 
curves (AUC)s. We also calculated accuracy, sensitivity, and specificity. Confidence interval calculations 
were done using metrics of test datasets.

Histology and prediagnostic models
We refer to models for all histologies, NSCLC and SCLC that do not take time to diagnose into 
account as standard full- time models (Figure 1B). Prediagnostic models were created using a sliding 
windows approach and a fixed- time approach to find optimal time to diagnose intervals. We first 
selected three different window sizes, 2, 3, and 4 years, which were moved over the 10 years prior to 
diagnosis time. We then built models based on samples captured by these sliding windows. Fixed- 
time windows were 0–2, 0–5, and 0–8 years before diagnosis. We used the workflow described above 
to train and test both standard and prediagnostic models.

Feature selection methods
We implemented feature selection methods to improve model performances, including single- RNA 
class, lasso selection, and significant selection. In the single- RNA class method, we dropped all RNA 
types except one. In lasso selection, all non- zero features selected by the lasso classification models 
were pooled. Next, we retrained new classification models which were restricted to use only these 
features. In significance selection, an univariate regression analysis was done per feature and signifi-
cant features (multiple testing adjusted) were used to train classification models.

Frequent feature models, independent leave-out test, and RR 
calculations
We created models for each histology which utilize the most frequent features identified in the 
standard full- time models. To assess overfitting and to get a better estimate of these model perfor-
mances, we split the datasets into training (80%) and test (20%) sets. To the test sets we also added 
non- smokers and samples from smokers, but not previously used in frequency matching (number of 
samples reported in Table 3). Both unmatchable samples and non- smokers were never used for model 
building and evaluation which we refer to as leave- out sets. We did not repeat this analysis five times 
as in the automated ML workflow. RRs were calculated using the test sets. The optimal threshold was 
identified in cross- validation. We used the R packages cutpointr (v1.0.1) and epitools (v0.5–10.1) to 
calculate RRs.
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bioinformatics workflow files can be accessed from our GitHub repo (https://github.com/sinanugur/ 
LCscripts, Umu, 2022 copy archived at swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4).

Acknowledgements
This work was supported by The Norwegian Research Council’s Programme ‘Human Biobanks and 
Health Data [229621 /H10, 248791 /H10]. Disclosure of invention was accepted by the technology 
transfer office, Invent2 (DOFI: 19010). We would like to acknowledge Cecilie Bucher- Johannessen, 
Marianne Lauritzen, Magnus Leithaug for performing lab and coordination tasks. We also acknowl-
edge Matthew D Whitaker and Marc Chadeau- Hyam from Imperial College London for discussions on 
ML model training and testing. We acknowledge the Norwegian Institute of Public Health for access 
to survey data in this study. The sequencing service was provided by the Norwegian Sequencing 
Centre (https://www.sequencing.uio.no), a national technology platform hosted by Oslo University 
Hospital and the University of Oslo supported by the Research Council of Norway and the South-
eastern Regional Health Authority.

Additional information

Funding

Funder Grant reference number Author

The Research Council of 
Norway

Human Biobanks and 
Health Data [229621/H10]

Hilde Langseth
Trine B Rounge

The Research Council of 
Norway

Human Biobanks and 
Health Data [248791/H10]

Hilde Langseth
Trine B Rounge

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Sinan U Umu, Formal analysis, Investigation, Methodology, Software, Writing – original draft; Hilde 
Langseth, Conceptualization, Funding acquisition, Project administration, Writing - review and 
editing; Verena Zuber, Methodology, Writing - review and editing; Åslaug Helland, Writing - review 
and editing; Robert Lyle, Resources, Writing - review and editing; Trine B Rounge, Conceptualization, 
Funding acquisition, Project administration, Writing – original draft, Writing - review and editing

Author ORCIDs
Sinan U Umu    http://orcid.org/0000-0001-8081-7819
Trine B Rounge    http://orcid.org/0000-0003-2677-2722

Ethics
Human subjects: This study was approved by the Norwegian Regional Committee for medical and 
health research ethics (REC no: 19892 previous 2016/1290) and was based on broad consent from 
participants in the Janus cohort. The work has been carried out in compliance with the standards set 
by the Declaration of Helsinki.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.71035.sa1
Author response https://doi.org/10.7554/eLife.71035.sa2

Additional files
Supplementary files
•  Supplementary file 1. Clinical and histological characteristics of non- smoker samples of leave- out 
dataset.

•  Supplementary file 2. Detailed feature importance tables for all trained models.

https://doi.org/10.7554/eLife.71035
https://github.com/sinanugur/LCscripts
https://github.com/sinanugur/LCscripts
https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e46ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4
https://www.sequencing.uio.no
http://orcid.org/0000-0001-8081-7819
http://orcid.org/0000-0003-2677-2722
https://doi.org/10.7554/eLife.71035.sa1
https://doi.org/10.7554/eLife.71035.sa2


 Research article      Cancer Biology

Umu et al. eLife 2022;11:e71035. DOI: https:// doi. org/ 10. 7554/ eLife. 71035  14 of 16

•  Supplementary file 3. Fixed- time model performance on different histologies.

•  Supplementary file 4. Selected prediagnostic models, metrics, and their feature importance tables.

•  Transparent reporting form 

Data availability
The datasets generated for this manuscript are not readily available because of the principles and 
conditions set out in articles 6 (1) (e) and 9 (2) (j) of the General Data Protection Regulation (GDPR). 
National legal basis as per the Regulations on population- based health surveys and ethical approval 
from the Norwegian Regional Committee for Medical and Health Research Ethics (REC) is also required. 
Requests to access the datasets should be directed to the corresponding authors with a project 
proposal. Please refer to our project website for the latest information on data sharing ( kreftregisteret. 
no/ en/ janusrna). Our scripts, plot data, and bioinformatics workflow files can be accessed from our 
Github repo (https://github.com/sinanugur/LCscripts copy archived at swh:1:rev:26bccc86a551f7128
4559db11bb74230f5d00cc4).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Umu SU 2021 Lung Cancer analyses 
scripts

https:// github. com/ 
sinanugur/ LCscripts

GitHub, 439cf34

References
Abdelmohsen K, Panda AC, Kang MJ, Guo R, Kim J, Grammatikakis I, Yoon JH, Dudekula DB, Noh JH, Yang X, 

Martindale JL, Gorospe M. 2014. 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids 
Research 42:10099–10111. DOI: https://doi.org/10.1093/nar/gku686, PMID: 25123665

Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, Gareen IF, Gatsonis C, Goldin J, 
Gohagan JK, Hillman B, Jaffe C, Kramer BS, Lynch D, Marcus PM, Schnall M, Sullivan DC, Sullivan D, Zylak CJ, 
National Lung Screening Trial Research Team. 2011. The National Lung Screening Trial: overview and study 
design. Radiology 258:243–253. DOI: https://doi.org/10.1148/radiol.10091808, PMID: 21045183

Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, Byers T, Colditz GA, Gould MK, Jett JR, 
Sabichi AL, Smith- Bindman R, Wood DE, Qaseem A, Detterbeck FC. 2012. Benefits and harms of CT screening 
for lung cancer: a systematic review. JAMA 307:2418–2429. DOI: https://doi.org/10.1001/jama.2012.5521, 
PMID: 22610500

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 68:394–424. DOI: https:// 
doi.org/10.3322/caac.21492, PMID: 30207593

Brustugun OT, Grønberg BH, Fjellbirkeland L, Helbekkmo N, Aanerud M, Grimsrud TK, Helland Å, Møller B, 
Nilssen Y, Strand TE, Solberg SK. 2018. Substantial nation- wide improvement in lung cancer relative survival in 
Norway from 2000 to 2016. Lung Cancer (Amsterdam, Netherlands) 122:138–145. DOI: https://doi.org/10. 
1016/j.lungcan.2018.06.003, PMID: 30032822

Burton J, Umu SU, Langseth H, Grotmol T, Grimsrud TK, Haugen TB, Rounge TB. 2020. Serum RNA Profiling in 
the 10- Years Period Prior to Diagnosis of Testicular Germ Cell Tumor. Frontiers in Oncology 10:77. DOI: https:// 
doi.org/10.3389/fonc.2020.574977

Cancer Registry of Norway. 2020. Cancer in Norway 2019. Cancer Incidence, Mortality, Survival and Prevalence 
in Norway.

de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers J- WJ, 
Weenink C, Yousaf- Khan U, Horeweg N, van ’t Westeinde S, Prokop M, Mali WP, Mohamed Hoesein FAA, 
van Ooijen PMA, Aerts JGJV, den Bakker MA, Thunnissen E, Verschakelen J, Vliegenthart R, et al. 2020. 
Reduced Lung- Cancer Mortality with Volume CT Screening in a Randomized Trial. New England Journal of 
Medicine 382:503–513. DOI: https://doi.org/10.1056/NEJMoa1911793, PMID: 31995683

ElKhouly AM, Youness RA, Gad MZ. 2020. MicroRNA- 486- 5p and microRNA- 486- 3p: Multifaceted pleiotropic 
mediators in oncological and non- oncological conditions. Non- Coding RNA Research 5:11–21. DOI: https:// 
doi.org/10.1016/j.ncrna.2020.01.001, PMID: 31993547

Fehlmann T, Kahraman M, Ludwig N, Backes C, Galata V, Keller V, Geffers L, Mercaldo N, Hornung D, Weis T, 
Kayvanpour E, Abu- Halima M, Deuschle C, Schulte C, Suenkel U, von Thaler AK, Maetzler W, Herr C, 
Fähndrich S, Vogelmeier C, et al. 2020. Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer 
Detection in Symptomatic Patients. JAMA Oncology 6:714. DOI: https://doi.org/10.1001/jamaoncol.2020. 
0001, PMID: 32134442

Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ. 2011. miR- 1254 and miR- 574- 5p: serum- based 
microRNA biomarkers for early- stage non- small cell lung cancer. Journal of Thoracic Oncology 6:482–488. DOI: 
https://doi.org/10.1097/JTO.0b013e318208c785, PMID: 21258252

https://doi.org/10.7554/eLife.71035
https://github.com/sinanugur/LCscripts
https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e46ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4
https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e46ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4
https://github.com/sinanugur/LCscripts
https://github.com/sinanugur/LCscripts
https://doi.org/10.1093/nar/gku686
http://www.ncbi.nlm.nih.gov/pubmed/25123665
https://doi.org/10.1148/radiol.10091808
http://www.ncbi.nlm.nih.gov/pubmed/21045183
https://doi.org/10.1001/jama.2012.5521
http://www.ncbi.nlm.nih.gov/pubmed/22610500
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
https://doi.org/10.1016/j.lungcan.2018.06.003
https://doi.org/10.1016/j.lungcan.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/30032822
https://doi.org/10.3389/fonc.2020.574977
https://doi.org/10.3389/fonc.2020.574977
https://doi.org/10.1056/NEJMoa1911793
http://www.ncbi.nlm.nih.gov/pubmed/31995683
https://doi.org/10.1016/j.ncrna.2020.01.001
https://doi.org/10.1016/j.ncrna.2020.01.001
http://www.ncbi.nlm.nih.gov/pubmed/31993547
https://doi.org/10.1001/jamaoncol.2020.0001
https://doi.org/10.1001/jamaoncol.2020.0001
http://www.ncbi.nlm.nih.gov/pubmed/32134442
https://doi.org/10.1097/JTO.0b013e318208c785
http://www.ncbi.nlm.nih.gov/pubmed/21258252


 Research article      Cancer Biology

Umu et al. eLife 2022;11:e71035. DOI: https:// doi. org/ 10. 7554/ eLife. 71035  15 of 16

Freedman JE, Gerstein M, Mick E, Rozowsky J, Levy D, Kitchen R, Das S, Shah R, Danielson K, Beaulieu L, 
Navarro FCP, Wang Y, Galeev TR, Holman A, Kwong RY, Murthy V, Tanriverdi SE, Koupenova- Zamor M, 
Mikhalev E, Tanriverdi K. 2016. Diverse human extracellular RNAs are widely detected in human plasma. Nature 
Communications 7:11106. DOI: https://doi.org/10.1038/ncomms11106, PMID: 27112789

Fritz JV, Heintz- Buschart A, Ghosal A, Wampach L, Etheridge A, Galas D, Wilmes P. 2016. Sources and Functions 
of Extracellular Small RNAs in Human Circulation. Annual Review of Nutrition 36:301–336. DOI: https://doi.org/ 
10.1146/annurev-nutr-071715-050711, PMID: 27215587

Glunde K, Jacobs MA, Bhujwalla ZM. 2006. Choline metabolism in cancer: implications for diagnosis and 
therapy. Expert Review of Molecular Diagnostics 6:821–829. DOI: https://doi.org/10.1586/14737159.6.6.821, 
PMID: 17140369

Gopal M, Abdullah SE, Grady JJ, Goodwin JS. 2010. Screening for lung cancer with low- dose computed 
tomography: a systematic review and meta- analysis of the baseline findings of randomized controlled trials. 
Journal of Thoracic Oncology 5:1233–1239. DOI: https://doi.org/10.1097/JTO.0b013e3181e0b977, PMID: 
20548246

Gutschner T, Diederichs S. 2012. The hallmarks of cancer: a long non- coding RNA point of view. RNA Biology 
9:703–719. DOI: https://doi.org/10.4161/rna.20481, PMID: 22664915

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70. DOI: https://doi.org/10.1016/s0092- 
8674(00)81683-9, PMID: 10647931

Hanash SM, Ostrin EJ, Fahrmann JF. 2018. Blood based biomarkers beyond genomics for lung cancer 
screening. Translational Lung Cancer Research 7:327–335. DOI: https://doi.org/10.21037/tlcr.2018.05.13, 
PMID: 30050770

Hansen BB, Klopfer SO. 2006. Optimal Full Matching and Related Designs via Network Flows. Journal of 
Computational and Graphical Statistics 15:609–627. DOI: https://doi.org/10.1198/106186006X137047

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, 
Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, Despacio- Reyes G, 
Saunders G, Steward C, et al. 2012. GENCODE: the reference human genome annotation for The ENCODE 
Project. Genome Research 22:1760–1774. DOI: https://doi.org/10.1101/gr.135350.111, PMID: 22955987

Hjerkind KV, Gislefoss RE, Tretli S, Nystad W, Bjørge T, Engeland A, Meyer HE, Holvik K, Ursin G, Langseth H. 
2017. Cohort Profile Update: The Janus Serum Bank Cohort in Norway. International Journal of Epidemiology 
46:1101–1102f. DOI: https://doi.org/10.1093/ije/dyw302, PMID: 28087783

Keller A, Meese E. 2016. Can circulating miRNAs live up to the promise of being minimal invasive biomarkers in 
clinical settings? Wiley Interdisciplinary Reviews. RNA 7:148–156. DOI: https://doi.org/10.1002/wrna.1320, 
PMID: 26670867

Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. 2017. RNA in extracellular vesicles. Wiley 
Interdisciplinary Reviews. RNA 8:1413. DOI: https://doi.org/10.1002/wrna.1413, PMID: 28130830

Klupczynska A, Plewa S, Kasprzyk M, Dyszkiewicz W, Kokot ZJ, Matysiak J. 2019. Serum lipidome screening in 
patients with stage I non- small cell lung cancer. Clinical and Experimental Medicine 19:505–513. DOI: https:// 
doi.org/10.1007/s10238-019-00566-7, PMID: 31264112

Ko J, Baldassano SN, Loh PL, Kording K, Litt B, Issadore D. 2018. Machine learning to detect signatures of 
disease in liquid biopsies - a user’s guide. Lab on a Chip 18:395–405. DOI: https://doi.org/10.1039/c7lc00955k, 
PMID: 29192299

Kozomara A, Birgaoanu M, Griffiths- Jones S. 2019. miRBase: from microRNA sequences to function. Nucleic 
Acids Research 47:D155–D162. DOI: https://doi.org/10.1093/nar/gky1141, PMID: 30423142

Langmead B, Salzberg SL. 2012. Fast gapped- read alignment with Bowtie 2. Nature Methods 9:357–359. DOI: 
https://doi.org/10.1038/nmeth.1923, PMID: 22388286

Langseth H, Gislefoss RE, Martinsen JI, Dillner J, Ursin G. 2017. Cohort Profile: The Janus Serum Bank Cohort in 
Norway. International Journal of Epidemiology 46:403–404g. DOI: https://doi.org/10.1093/ije/dyw027, PMID: 
27063606

Larsen IK, Småstuen M, Johannesen TB, Langmark F, Parkin DM, Bray F, Møller B. 2009. Data quality at the 
Cancer Registry of Norway: an overview of comparability, completeness, validity and timeliness. European 
Journal of Cancer (Oxford, England 45:1218–1231. DOI: https://doi.org/10.1016/j.ejca.2008.10.037, PMID: 
19091545

Li C, Qin F, Hu F, Xu H, Sun G, Han G, Wang T, Guo M. 2018. Characterization and selective incorporation of 
small non- coding RNAs in non- small cell lung cancer extracellular vesicles. Cell & Bioscience 8:202. DOI: 
https://doi.org/10.1186/s13578-018-0202-x, PMID: 29344346

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA- seq data with 
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Lund E, Holden L, Bøvelstad H, Plancade S, Mode N, Günther CC, Nuel G, Thalabard JC, Holden M. 2016. A 
new statistical method for curve group analysis of longitudinal gene expression data illustrated for breast 
cancer in the NOWAC postgenome cohort as a proof of principle. BMC Medical Research Methodology 16:28. 
DOI: https://doi.org/10.1186/s12874-016-0129-z, PMID: 26944545

Murillo OD, Thistlethwaite W, Rozowsky J, Subramanian SL, Lucero R, Shah N, Jackson AR, Srinivasan S, 
Chung A, Laurent CD, Kitchen RR, Galeev T, Warrell J, Diao JA, Welsh JA, Hanspers K, Riutta A, 
Burgstaller- Muehlbacher S, Shah RV, Yeri A, et al. 2019. exRNA Atlas Analysis Reveals Distinct Extracellular RNA 
Cargo Types and Their Carriers Present across Human Biofluids. Cell 177:463–477. DOI: https://doi.org/10. 
1016/j.cell.2019.02.018, PMID: 30951672

https://doi.org/10.7554/eLife.71035
https://doi.org/10.1038/ncomms11106
http://www.ncbi.nlm.nih.gov/pubmed/27112789
https://doi.org/10.1146/annurev-nutr-071715-050711
https://doi.org/10.1146/annurev-nutr-071715-050711
http://www.ncbi.nlm.nih.gov/pubmed/27215587
https://doi.org/10.1586/14737159.6.6.821
http://www.ncbi.nlm.nih.gov/pubmed/17140369
https://doi.org/10.1097/JTO.0b013e3181e0b977
http://www.ncbi.nlm.nih.gov/pubmed/20548246
https://doi.org/10.4161/rna.20481
http://www.ncbi.nlm.nih.gov/pubmed/22664915
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/s0092-8674(00)81683-9
http://www.ncbi.nlm.nih.gov/pubmed/10647931
https://doi.org/10.21037/tlcr.2018.05.13
http://www.ncbi.nlm.nih.gov/pubmed/30050770
https://doi.org/10.1198/106186006X137047
https://doi.org/10.1101/gr.135350.111
http://www.ncbi.nlm.nih.gov/pubmed/22955987
https://doi.org/10.1093/ije/dyw302
http://www.ncbi.nlm.nih.gov/pubmed/28087783
https://doi.org/10.1002/wrna.1320
http://www.ncbi.nlm.nih.gov/pubmed/26670867
https://doi.org/10.1002/wrna.1413
http://www.ncbi.nlm.nih.gov/pubmed/28130830
https://doi.org/10.1007/s10238-019-00566-7
https://doi.org/10.1007/s10238-019-00566-7
http://www.ncbi.nlm.nih.gov/pubmed/31264112
https://doi.org/10.1039/c7lc00955k
http://www.ncbi.nlm.nih.gov/pubmed/29192299
https://doi.org/10.1093/nar/gky1141
http://www.ncbi.nlm.nih.gov/pubmed/30423142
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1093/ije/dyw027
http://www.ncbi.nlm.nih.gov/pubmed/27063606
https://doi.org/10.1016/j.ejca.2008.10.037
http://www.ncbi.nlm.nih.gov/pubmed/19091545
https://doi.org/10.1186/s13578-018-0202-x
http://www.ncbi.nlm.nih.gov/pubmed/29344346
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1186/s12874-016-0129-z
http://www.ncbi.nlm.nih.gov/pubmed/26944545
https://doi.org/10.1016/j.cell.2019.02.018
https://doi.org/10.1016/j.cell.2019.02.018
http://www.ncbi.nlm.nih.gov/pubmed/30951672


 Research article      Cancer Biology

Umu et al. eLife 2022;11:e71035. DOI: https:// doi. org/ 10. 7554/ eLife. 71035  16 of 16

Pantano L, Estivill X, Martí E. 2010. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs 
datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Research 38:e34. 
DOI: https://doi.org/10.1093/nar/gkp1127, PMID: 20008100

Peled N, Ilouze M. 2015. Screening for Lung Cancer: What Comes Next? Journal of Clinical Oncology 33:3847–
3848. DOI: https://doi.org/10.1200/JCO.2015.63.1713, PMID: 26304887

Pichler M, Calin GA. 2015. MicroRNAs in cancer: from developmental genes in worms to their clinical application 
in patients. British Journal of Cancer 113:569–573. DOI: https://doi.org/10.1038/bjc.2015.253, PMID: 
26158421

Rounge TB, Umu SU, Keller A, Meese E, Ursin G, Tretli S, Lyle R, Langseth H. 2018. Circulating small non- coding 
RNAs associated with age, sex, smoking, body mass and physical activity. Scientific Reports 8:1760. DOI: 
https://doi.org/10.1038/s41598-018-35974-4, PMID: 30518766

Sandfeld- Paulsen B, Jakobsen KR, Bæk R, Folkersen BH, Rasmussen TR, Meldgaard P, Varming K, 
Jørgensen MM, Sorensen BS. 2016. Exosomal Proteins as Diagnostic Biomarkers in Lung Cancer. Journal of 
Thoracic Oncology 11:1701–1710. DOI: https://doi.org/10.1016/j.jtho.2016.05.034, PMID: 27343445

Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read 
merging. BMC Research Notes 9:88. DOI: https://doi.org/10.1186/s13104-016-1900-2, PMID: 26868221

Seijo LM, Peled N, Ajona D, Boeri M, Field JK, Sozzi G, Pio R, Zulueta JJ, Spira A, Massion PP, Mazzone PJ, 
Montuenga LM. 2019. Biomarkers in Lung Cancer Screening: Achievements, Promises, and Challenges. Journal 
of Thoracic Oncology 14:343–357. DOI: https://doi.org/10.1016/j.jtho.2018.11.023, PMID: 30529598

Slack FJ, Chinnaiyan AM. 2019. The Role of Non- coding RNAs in Oncology. Cell 179:1033–1055. DOI: https:// 
doi.org/10.1016/j.cell.2019.10.017, PMID: 31730848

Svoronos AA, Engelman DM, Slack FJ. 2016. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in 
Cancer. Cancer Research 76:3666–3670. DOI: https://doi.org/10.1158/0008-5472.CAN-16-0359

The RNAcentral Consortium. 2019. RNAcentral: a hub of information for non- coding RNA sequences. Nucleic 
Acids Research 47:D1250–D1251. DOI: https://doi.org/10.1093/nar/gky1206, PMID: 30535383

Tian F, Wang J, Ouyang T, Lu N, Lu J, Shen Y, Bai Y, Xie X, Ge Q. 2019. MiR- 486- 5p Serves as a Good Biomarker 
in Nonsmall Cell Lung Cancer and Suppresses Cell Growth With the Involvement of a Target PIK3R1. Frontiers 
in Genetics 10:688. DOI: https://doi.org/10.3389/fgene.2019.00688, PMID: 31402930

Umu SU, Langseth H, Bucher- Johannessen C, Fromm B, Keller A, Meese E, Lauritzen M, Leithaug M, Lyle R, 
Rounge TB. 2018. A comprehensive profile of circulating RNAs in human serum. RNA Biology 15:242–250. 
DOI: https://doi.org/10.1080/15476286.2017.1403003, PMID: 29219730

Umu SU, Langseth H, Keller A, Meese E, Helland Å, Lyle R, Rounge TB. 2020. A 10- year prediagnostic follow- up 
study shows that serum RNA signals are highly dynamic in lung carcinogenesis. Molecular Oncology 14:235–
247. DOI: https://doi.org/10.1002/1878-0261.12620, PMID: 31851411

Umu SU. 2022. Lung Cancer analyses scripts. swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4. 
Software Heritage. https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e4 
6ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d 
4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4

Wild CP, Weiderpass W, Stewart BW. 2020. World Cancer Report: Cancer Research for Cancer Prevention. 
International Agency for Research on Cancer.

Wong N, Wang X. 2015. miRDB: an online resource for microRNA target prediction and functional annotations. 
Nucleic Acids Research 43:D146–D152. DOI: https://doi.org/10.1093/nar/gku1104, PMID: 25378301

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, 
Calin GA, Liu CG, Croce CM, Harris CC. 2006. Unique microRNA molecular profiles in lung cancer diagnosis 
and prognosis. Cancer Cell 9:189–198. DOI: https://doi.org/10.1016/j.ccr.2006.01.025, PMID: 16530703

Yu H, Guan Z, Cuk K, Zhang Y, Brenner H. 2019. Circulating MicroRNA Biomarkers for Lung Cancer Detection in 
East Asian Populations. Cancers 11:E415. DOI: https://doi.org/10.3390/cancers11030415, PMID: 30909610

Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. 2018. The potential of circulating cell- free RNA 
as a cancer biomarker: challenges and opportunities. Expert Review of Molecular Diagnostics 18:133–145. 
DOI: https://doi.org/10.1080/14737159.2018.1425143, PMID: 29307231

Zhang P, Si X, Skogerbø G, Wang J, Cui D, Li Y, Sun X, Liu L, Sun B, Chen R, He S, Huang DW. 2014. piRBase: a 
web resource assisting piRNA functional study. Database 2014:bau110. DOI: https://doi.org/10.1093/ 
database/bau110, PMID: 25425034

Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, Liu L, Dong X, Zhang S, Wu G. 2016. MicroRNA- 574- 5p promotes 
metastasis of non- small cell lung cancer by targeting PTPRU. Scientific Reports 6:35714. DOI: https://doi.org/ 
10.1038/srep35714, PMID: 27761023

https://doi.org/10.7554/eLife.71035
https://doi.org/10.1093/nar/gkp1127
http://www.ncbi.nlm.nih.gov/pubmed/20008100
https://doi.org/10.1200/JCO.2015.63.1713
http://www.ncbi.nlm.nih.gov/pubmed/26304887
https://doi.org/10.1038/bjc.2015.253
http://www.ncbi.nlm.nih.gov/pubmed/26158421
https://doi.org/10.1038/s41598-018-35974-4
http://www.ncbi.nlm.nih.gov/pubmed/30518766
https://doi.org/10.1016/j.jtho.2016.05.034
http://www.ncbi.nlm.nih.gov/pubmed/27343445
https://doi.org/10.1186/s13104-016-1900-2
http://www.ncbi.nlm.nih.gov/pubmed/26868221
https://doi.org/10.1016/j.jtho.2018.11.023
http://www.ncbi.nlm.nih.gov/pubmed/30529598
https://doi.org/10.1016/j.cell.2019.10.017
https://doi.org/10.1016/j.cell.2019.10.017
http://www.ncbi.nlm.nih.gov/pubmed/31730848
https://doi.org/10.1158/0008-5472.CAN-16-0359
https://doi.org/10.1093/nar/gky1206
http://www.ncbi.nlm.nih.gov/pubmed/30535383
https://doi.org/10.3389/fgene.2019.00688
http://www.ncbi.nlm.nih.gov/pubmed/31402930
https://doi.org/10.1080/15476286.2017.1403003
http://www.ncbi.nlm.nih.gov/pubmed/29219730
https://doi.org/10.1002/1878-0261.12620
http://www.ncbi.nlm.nih.gov/pubmed/31851411
https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e46ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4
https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e46ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4
https://archive.softwareheritage.org/swh:1:dir:62b9e6930e4f16836b154a2460f520e46ecbffb5;origin=https://github.com/sinanugur/LCscripts;visit=swh:1:snp:1139c6fad9157c4e31343701b37afe0d4aef57dc;anchor=swh:1:rev:26bccc86a551f71284559db11bb74230f5d00cc4
https://doi.org/10.1093/nar/gku1104
http://www.ncbi.nlm.nih.gov/pubmed/25378301
https://doi.org/10.1016/j.ccr.2006.01.025
http://www.ncbi.nlm.nih.gov/pubmed/16530703
https://doi.org/10.3390/cancers11030415
http://www.ncbi.nlm.nih.gov/pubmed/30909610
https://doi.org/10.1080/14737159.2018.1425143
http://www.ncbi.nlm.nih.gov/pubmed/29307231
https://doi.org/10.1093/database/bau110
https://doi.org/10.1093/database/bau110
http://www.ncbi.nlm.nih.gov/pubmed/25425034
https://doi.org/10.1038/srep35714
https://doi.org/10.1038/srep35714
http://www.ncbi.nlm.nih.gov/pubmed/27761023

	Serum RNAs can predict lung cancer up to 10 years prior to diagnosis
	Editor's evaluation
	Introduction
	Results
	Patient characteristics and RNA-seq profiles
	ML algorithms can differentiate between prediagnostic cases and controls regardless of prediagnostic time
	MiscRNA- and miRNA-only models are more accurate than the others
	Feature selection improves model performance and reduces model complexity
	Histology-specific prediagnostic models can improve prediction performance
	Frequent features can create simple and accurate models

	Discussion
	Conclusion

	Materials and methods
	Study population and data sources
	Tumor staging
	Laboratory processing
	Bioinformatic analyses
	ML classification algorithms and training/testing workflow
	Histology and prediagnostic models
	Feature selection methods
	Frequent feature models, independent leave-out test, and RR calculations
	Data accessibility

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


