TY - JOUR TI - Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface AU - Zhou, Yuan AU - Amom, Prativa AU - Reeder, Sarah H AU - Lee, Byung Ha AU - Helton, Adam AU - Dobritsa, Anna A A2 - McCormick, Sheila A2 - Kleine-Vehn, Jürgen A2 - McCormick, Sheila A2 - Kessler, Sharon A VL - 10 PY - 2021 DA - 2021/09/30 SP - e71061 C1 - eLife 2021;10:e71061 DO - 10.7554/eLife.71061 UR - https://doi.org/10.7554/eLife.71061 AB - Pollen apertures, the characteristic gaps in pollen wall exine, have emerged as a model for studying the formation of distinct plasma membrane domains. In each species, aperture number, position, and morphology are typically fixed; across species they vary widely. During pollen development, certain plasma membrane domains attract specific proteins and lipids and become protected from exine deposition, developing into apertures. However, how these aperture domains are selected is unknown. Here, we demonstrate that patterns of aperture domains in Arabidopsis are controlled by the members of the ancient ELMOD protein family, which, although important in animals, has not been studied in plants. We show that two members of this family, MACARON (MCR) and ELMOD_A, act upstream of the previously discovered aperture proteins and that their expression levels influence the number of aperture domains that form on the surface of developing pollen grains. We also show that a third ELMOD family member, ELMOD_E, can interfere with MCR and ELMOD_A activities, changing aperture morphology and producing new aperture patterns. Our findings reveal key players controlling early steps in aperture domain formation, identify residues important for their function, and open new avenues for investigating how diversity of aperture patterns in nature is achieved. KW - pollen KW - pollen aperture KW - membrane domain KW - pattern formation KW - ELMOD KW - MCR JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -