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Abstract The spatial organization of gut microbiota influences both microbial abundances and

host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale

structure remain unclear. To this end, we studied experimentally and theoretically the formation of

three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal

transport and access to the epithelium. Inspired by models of structure formation in soft materials,

we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-

scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in

the larval zebrafish gut, we find a common family of size distributions that decay approximately as

power laws with exponents close to �2, becoming shallower for large clusters in a strain-

dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type

process in which bacteria grow within clusters and can escape from them, coupled to an

aggregation process that tends to condense the system toward a single massive cluster,

reminiscent of gel formation. Together, these results point to the existence of general, biophysical

principles governing the spatial organization of the gut microbiome that may be useful for inferring

fast-timescale dynamics that are experimentally inaccessible.

Introduction
The bacteria inhabiting the gastrointestinal tracts of humans and other animals make up some of the

densest and most diverse microbial ecosystems on Earth (Lloyd-Price et al., 2017; Sender et al.,

2016). In both macroecological contexts and non-gut microbial ecosystems, spatial organization is

well known to impact both intra- and inter-species interactions (McNally et al., 2017; Tilman and

Kareiva, 2018; Weiner et al., 2019). This general principle is likely to apply in the intestine as well,

and the spatial structure of the gut microbiome is increasingly proposed as an important factor influ-

encing both microbial population dynamics and health-relevant host processes (Tropini et al., 2017;

Donaldson et al., 2016). Moreover, recent work has uncovered strong and specific consequences of

spatial organization in the gut, such as proximity of bacteria to the epithelial boundary determining

the strength of host-microbe interactions (Vaishnava et al., 2011; Wiles et al., 2020), and antibi-

otic-induced changes in aggregation causing large declines in gut bacterial abundance

(Schlomann et al., 2019). Despite its importance, the physical organization of bacteria within the

intestine remains poorly understood, in terms of both in vivo data that characterize spatial structure

and quantitative models that explain the mechanisms by which structure arises.

Recent advances in the ability to image gut microbial communities in model animals have begun

to reveal features of bacterial spatial organization common to multiple host species. Bacteria in the

gut exist predominantly in the form of three-dimensional, multicellular aggregates, likely encased in

mucus, whose sizes can span several orders of magnitude. Such aggregates have been observed in

mice (Moor et al., 2017), fruit flies (Koyama et al., 2020), and zebrafish (Jemielita et al., 2014;

Schlomann et al., 2018; Wiles et al., 2016; Schlomann et al., 2019; Wiles et al., 2020), as well as
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in human fecal samples (van der Waaij et al., 1996). However, an understanding of the processes

that generate these structures is lacking.

The statistical distribution of object sizes can provide powerful insights into underlying generative

mechanisms, a perspective that has long been applied to datasets as diverse as galaxy cluster sizes

(Hansen et al., 2005), droplet sizes in emulsions (Lifshitz and Slyozov, 1961), allele frequency distri-

butions in population genetics (Neher and Hallatschek, 2013), immune receptor repertoires

(Nourmohammad et al., 2019), species abundance distributions in ecology (Hubbell, 1997), protein

aggregates within cells (Greenfield et al., 2009), and linear chains of bacteria generated by anti-

body binding (Bansept et al., 2019). A classic example of the understanding provided by examining

size distributions comes from the study of gels. In polymer solutions, random thermal motion

opposes the adhesion of molecules, resulting in cluster size distributions dominated by monomers

and small clusters. Gels form as adhesion strength increases, and monomers stick to one another

strongly enough to overcome thermal motion and form a giant connected cluster that spans the size

of the system. This large-scale connectivity gives gels their familiar stiffness as seen, for example, in

the wobbling of a set custard. Theoretical tools from statistical mechanics and the study of phase

transitions relate the cluster size distribution to the inter-monomer attraction strength and the tem-

perature (Krapivsky et al., 2010). In addition to providing an example of the utility of analyzing size

distributions, gels in particular are a ubiquitous state of matter in living systems whose physical prop-

erties influence a wide range of activities such as protection at intestinal mucosal barriers

(Datta et al., 2016) and transport of molecules through amyloid plaques (Woodard et al., 2014).

Motivated by these analogies, we sought to understand the distribution of three-dimensional

bacterial cluster sizes in the living vertebrate gut, aiming especially to construct a quantitative theory

that connects bacterial-scale dynamics to global size distributions. Such a model could be used to

infer dynamical information in systems that are not amenable to direct observation, such as the

human gut. Identifying key processes that are conserved across animal hosts would further our ability

to translate findings in model organisms to human health-related problems. At a finer level, vali-

dated mathematical models could be used to infer model parameters of specific bacterial species of

interest, for example pathogenic invaders or deliberately introduced probiotic species, by measuring

their cluster size distribution.

We analyzed bacterial cluster sizes obtained from recent imaging-based studies of the larval

zebrafish intestine (Schlomann et al., 2018; Schlomann et al., 2019; Wiles et al., 2020). As detailed

eLife digest The human gut is home to vast numbers of bacteria that grow, compete and

cooperate in a dynamic, densely packed space. The spatial arrangement of organisms – for example,

if they are clumped together or broadly dispersed – plays a major role in all ecosystems; but how

bacteria are organized in the human gut remains mysterious and difficult to investigate.

Zebrafish larvae provide a powerful tool for studying microbes in the gut, as they are optically

transparent and anatomically similar to other vertebrates, including humans. Furthermore, zebrafish

can be easily manipulated so that one species of bacteria can be studied at a time.

To investigate whether individual bacterial species are arranged in similar ways, Scholmann and

Parthasarathy exposed zebrafish with no gut bacteria to one of eight different strains. Each species

was then monitored using three-dimensional microscopy to see how the population shaped itself

into clusters (or colonies).

Schlomann and Parthasarathy used this data to build a mathematical model that can predict the

size of the clusters formed by different gut bacteria. This revealed that the spatial arrangement of

each species depended on the same biological processes: bacterial growth, aggregation and

fragmentation of clusters, and expulsion from the gut.

These new details about how bacteria are organized in zebrafish may help scientists learn more

about gut health in humans. Although it is not possible to peer into the human gut and watch how

bacteria behave, scientists could use the same analysis method to study the size of bacterial colonies

in fecal samples. This may provide further clues about how microbes are spatially arranged in the

human gut and the biological processes underlying this formation.
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below, we find a common family of cluster size distributions with bacterial species-specific features.

We show that these distributions arise naturally in a minimal model of bacterial dynamics that is sup-

ported by direct observation. The core mechanism of this model involves growth together with a

fragmentation process in which single cells leave larger aggregates. Strikingly, this process can be

mapped exactly onto population genetics models of mutation, with cluster size analogous to allele

frequency and single-cell fragmentation analogous to mutation. The combination of growth and

fragmentation generates size distributions with power law tails, consistent with the data. This pro-

cess also maps onto classic network models of preferential attachment (Barabasi and Albert, 1999).

Further, we show that cluster aggregation can generate an overabundance of large clusters through

a process analogous to the sol-gel transition in polymer and colloidal systems, leading to plateaus in

the size distribution that are observed in the data. These features of the size distribution are robust

to the inclusion of a finite carrying capacity that limits growth and cluster loss due to expulsion from

the intestine. In summary, we find that gut microbiota can be described mathematically as ’living

gels’, combining the statistical features of evolutionary dynamics with those of soft materials. Based

on the generality of our model and our observations across several different bacterial species, we

predict that this family of size distributions is universal across animal hosts, and we provide sugges-

tions for testing this prediction in various systems.

Results

Different bacterial species share a common family of broad cluster size
distributions in the larval zebrafish intestine
We combined and analyzed previously generated datasets of gut bacterial cluster sizes in larval

zebrafish (Schlomann et al., 2018; Wiles et al., 2020). In these experiments, zebrafish were reared

devoid of any microbes, that is ‘germ-free’, and then mono-associated with a single, fluorescently

labeled bacterial strain (Figure 1A). After a 24 hr colonization period the complete intestines of live

hosts were imaged with light sheet fluorescence microscopy (Keller et al., 2008; Parthasara-

thy, 2018; Figure 1B). Bacteria were identified in the images (Figure 1C) using a previously

described image analysis pipeline (Jemielita et al., 2014; Schlomann et al., 2018). Single bacterial

cells and multicellular aggregates were identified separately, and then the number of cells per multi-

cellular aggregate was estimated by dividing the total fluorescence intensity of the aggregate by the

mean intensity of single cells (Materials and methods).

In total, we characterized eight different bacterial strains, summarized in Table 1. Six of the

strains were isolated from healthy zebrafish (Stephens et al., 2016) and then engineered to express

monocolonization light sheet microscopy image analysis

germ-free fish

+ bacteria

+24 hr 

A B C

single cells

small clusters

large cluster

100 m

Figure 1. Overview of experimental methods. Larval zebrafish were derived germ-free and then monoassociated with single bacterial species (left).

After 24 hr of colonization, images spanning the entire gut were acquired with light sheet fluorescence microscopy (middle). An example image of the

anterior intestine is shown on the right, with instances of single cells and multicellular aggregates marked. The image is a maximum intensity projection

of a 3D image stack. The approximate boundary of the gut is outlined in orange. Sizes of bacterial clusters were estimated with image analysis by

separately identifying single cells and multicellular aggregates, and then normalizing the fluorescence intensity of aggregates by the mean single cell

fluorescence.
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fluorescent proteins (Wiles et al., 2018), and two are genetically engineered knockout mutants of

Vibrio ZWU0020, defective in motility (specifically, knockout of the two-gene operon encoding the

polar flagellar motor, pomAB, referred to as ‘Dmot’) and chemotaxis (specifically, knockout of the

histidine kinase cheA2, referred to as ‘Dche’), as described in reference (Wiles et al., 2020). The par-

ent strain of these mutants, Vibrio ZWU0020, scarcely forms aggregates at all, existing primarily as

single, highly motile cells (Wiles et al., 2016; Schlomann et al., 2019; Wiles et al., 2020), and so

was excluded from this analysis. All strains are of the phylum Proteobacteria (Wiles et al., 2018). A

table of all cluster sizes by sample is included in Figure 2—source data 1.

We calculated for each bacterial strain the reverse cumulative distribution of cluster sizes,

Pðsize>nÞ , denoting the probability that an intestinal aggregate will contain more than n bacterial

cells. We computed Pðsize>nÞ separately for each animal (Figure 2, small circles) and also pooled

the sizes from different animals colonized by the same bacterial strain (Figure 2, large circles). There

is substantial variation across fish, but the pooled distributions exhibit a well-defined average of the

individual distributions. We also computed binned probability densities (Figure 2—figure supple-

ment 1), which show similar patterns, but focus our discussion on the cumulative distribution to cir-

cumvent technical issues related to bin sizes.

We find broad distributions of Pðsize>nÞ across all strains (Figure 2, bottom right panel). For com-

parison, for each strain we overlay a dashed line representing the power law distribution

Pðsize>nÞ~ n�1. This Pðsize>nÞ is equivalent to a probability density of pðnÞ~ n�2 since the latter is pro-

portional to the derivative of the former. Each strain’s cumulative distribution follows a similar

power-law-like decay at low n, with an apparent exponent in the vicinity of -1, and then becomes

shallower in a strain-dependent manner. For example, Aeromonas ZOR0002 has a quite straight dis-

tribution on a log-log plot (Figure 2, top row, middle column), while the distribution of Enterobacter

ZOR0014 exhibits a plateau-like feature at large sizes (Figure 2, top row, right column). The mutant

strains Vibrio ZWU0020 Dche and Dmot follow qualitatively similar distributions to the native strains

(Figure 2, bottom row, left and middle columns).

We performed a sensitivity analysis and found that these two key features of the measured distri-

butions—an initial power law-like decay with cumulative distribution exponent close to -1 and a

strain-dependent plateau at large sizes—are robust to measurement error in enumeration of cluster

sizes. For the initial decay of the distribution, the largest source of error is the misidentification of

auto-fluorescent background as single cells. To assess the impact of our single-cell count uncertainty

on the distribution, we fit a power law model to clusters sizes up to 100 cells two times: once includ-

ing single cells and once considering only cells of size in the range 2–100 (Supplementary file 1,

Materials and methods). In both fits we find cumulative distribution exponents consistent with �1 for

most strains. The average exponent tended to decrease mildly when single cells were excluded from

the fit (the distribution decayed more slowly), consistent with an over-estimation of the number of

single cells, but the shifts were all within uncertainties. Estimates of distribution exponents from

Table 1. Summary of cluster data by bacterial strain.

Each row corresponds to one of the bacterial strains included in this study. Entries include strain

name, total number of fish colonized with that strain, total number of clusters identified across all fish,

and the original publication that the data was pulled from.

Bacterial strain Number of fish Number of clusters Source publication

Aeromonas ZOR0001 6 445 Schlomann et al., 2018

Aeromonas ZOR0002 6 1901 Schlomann et al., 2018

Enterobacter ZOR0014 18 3597 Schlomann et al., 2018;
Schlomann et al., 2019

Plesiomonas ZOR0011 3 223 Schlomann et al., 2018

Pseudomonas ZWU0006 6 133 Schlomann et al., 2018

Vibrio ZOR0036 6 2430 Schlomann et al., 2018

Vibrio ZWU0020 Dmot 11 5888 Wiles et al., 2020

Vibrio ZWU0020 Dche 11 3551 Wiles et al., 2020
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Figure 2. Different bacterial species exhibit similar cluster size distributions. Reverse cumulative distributions, the probability that the cluster size is

greater than n as a function of n, for eight bacterial strains in larval zebrafish intestines. Small circles connected by lines represent the distributions

constructed from individual fish. Large circles are from pooled data from all fish. The dashed line represents Pðsize>nÞ~ n�1 and is a guide to the eye.

Bottom right panel shows the pooled distributions for each strain as solid lines.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Spreadsheet with all cluster sizes by strain.

Figure supplement 1. Cluster size distributions as probability densities.

Figure supplement 2. Images of individual z-slices showing mild heterogeneity of fluorescence intensity within aggregates.
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small sizes can easily be biased (Clauset et al., 2009), so we performed our sensitivity analysis with

two different methods: a linear fit to logPðsize>nÞ vs. log n, and maximum likelihood estimation

(Materials and methods). The maximum likelihood estimate gave higher values than line-fitting, but

the shifts upon removing single cells were within uncertainties for both methods.

For the large-size plateau, the existence of dim cells in the center of the aggregate, perhaps due

to a state of low metabolic activity, would lead to an underestimate of total cluster size. Underesti-

mating the size of large clusters would then result in a less extreme plateau; the plateaus we observe

are therefore a lower bound. In cross-sections of large aggregates, we observe mostly homoge-

neous fluorescence, suggesting that this effect is mild, although small dark regions do occur (Fig-

ure 2—figure supplement 2). Whether these dark regions correspond to dead or inactive bacteria,

mucus, or empty space, is not clear, although we note that small clumps of dead bacteria have been

observed in expelled clusters via live/dead staining (Schlomann et al., 2019). Regardless of their ori-

gin, we conclude that these mild heterogeneities are unlikely to significantly alter the behavior of the

size distributions, which span 4 orders of magnitude.

In summary, we find that different bacterial strains, which exhibit a variety of swimming and stick-

ing behaviors (Wiles et al., 2018; Schlomann et al., 2018), abundances (Schlomann et al., 2018;

Wiles et al., 2020), and population dynamics (Wiles et al., 2016; Schlomann et al., 2019;

Wiles et al., 2020), share a common family of cluster size distributions. This observation suggests

that generic processes, rather than strain-specific ones, determine gut bacterial cluster sizes. Nota-

bly, these distributions are extremely broad, inconsistent with the exponential-tailed distributions

found for linear chains of bacteria (Bansept et al., 2019). We next sought to understand the kinetics

that give rise to our measured cluster size distributions.

A growth-fragmentation process generates power-law distributions
Previous time-lapse imaging of bacteria in the zebrafish intestine revealed four core processes that

can alter bacterial cluster sizes: (1) clusters can increase in size due to cell division, a process we refer

to as ‘growth’; (2) clusters can decrease in size as single bacteria escape from them, a process we

refer to as ‘fragmentation’ and believe to be linked to cell division at the surface; (3) clusters can

increase in size by joining with another cluster during intestinal mixing, a process we refer to as

‘aggregation’; and (4) clusters can be removed from the system by transiting along and out of the

intestine, a process we refer to as ‘expulsion’. The breakup of large clusters into medium ones

appears to be rare in our system, so we ignore this process. The single cell fragmentation process

we describe conserves cell number and is analogous to the ‘chipping’ kernel that has been used to

describe the breaking off of monomers from the ends of linear polymers (Krapivsky and Redner,

1996).

To understand how each of these process affect the distribution of cluster sizes, we used mathe-

matical modeling. We attempted to construct a simple model that encoded these processes and

retained salient biological and physical features. In our model, the relevant variable is a list of all clus-

ter sizes, or equivalently, a list of the number of clusters of each size. Clusters can change size

according to four reactions that correspond to each of the four processes listed above. There is no

explicit spatial dependence in this model, but aspects of spatial structure, such as the fact that some

cells in a cluster are confined to the center while others are on the surface, can be modeled by

choosing how the rates of reactions depend on cluster size, as discussed below. We assume, how-

ever, that growth rates are the same for all cells within a cluster. Growth rates have been measured

for seven strains to date and fall in the range of 0.3 to 0.8 hr-1 (Jemielita et al., 2014; Wiles et al.,

2016; Schlomann et al., 2019; Wiles et al., 2020); we use an intermediate value of 0.5 hr-1 in all

simulations below. In large systems, it is often valid to ignore fluctuations, in which case the model

can be summarized by a single, deterministic equation for the likelihood of clusters of each size, for

which analytic results are possible in some cases. In contrast, for small systems, which includes our

experiments, random fluctuations will likely be relevant, and so we turn to computer simulations that

capture stochastic dynamics.

We previously showed that a version of this model with all parameters measured (i.e., no remain-

ing free parameters) generates a size distribution consistent with that of Enterobacter ZOR0014

(Schlomann et al., 2019). However, it was not clear which processes generated which features of
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the distribution, or how generalizable the model was. Therefore, we studied this model in more

detail, starting from a simplified version and iteratively adding complexity.

The observation that all distributions appeared to be organized around Pðsize>nÞ~ n�1 inspired us

to consider connections to a classic populations genetics model that has this form for the distribu-

tion of allele frequencies, known as the Yule-Simons process (Yule, 1925; Simon, 1955; Altan-

Bonnet et al., 2020; Neher and Hallatschek, 2013). An exponentially growing population subject

to random neutral mutations that occur with probability � will amass an allele frequency distribution

that follows Pðfrequency>xÞ ~ x�
1

1�� for large sizes, with the limit to Pðfrequency>xÞ~ x�1 for rare muta-

tion. This heavy-tailed distribution reflects ‘jackpot’ events in which mutants that appear early rise to

large frequencies through exponential growth. As long as mutation is rare compared to replication,

this process robustly generates distributions Pðsize>nÞ~ n�1, without the need for fine tuning of the

microscopic details. We therefore saw it as an attractive hypothesis for generating similar size distri-

butions across diverse bacterial species.

Analogously, the size of mutant clones maps onto the size of a bacterial cluster, and the mutation

process that generates new clones maps onto the fragmentation process that generates new clusters

(Figure 3A). In situations where all cells in a cluster have the same probability of fragmenting, this

analogy is exact and the same distribution emerges (Appendix). However, gut bacterial clusters are

three-dimensional and likely encased in mucus (van der Waaij et al., 1996), so spatial structure likely

influences fragmentation rates. We hypothesized that this spatial structure could be a mechanism for

generating distributions shallower than Pðsize>nÞ~ n�1 that we observe in the data for large sizes

(Figure 2) but that cannot be produced by the standard Yule-Simons mechanism. Therefore, we

modified the Yule-Simons process by decoupling the growth and fragmentation processes and

invoking a fragmentation rate, Fn, that scales as a power of the cluster size, Fn ~bn
nF (Figure 3B). A

value of nF ¼ 1 corresponds to the well-mixed limit of the Yule-Simons process. A value of nF ¼ 2=3

corresponds to only bacteria on the surface of clusters being able to fragment. An extreme value of

nF ¼ 0 means that all clusters have the same rate of fragmenting, regardless of their size, and can be

thought of as representing a chain of cells where only the cells at ends of the chain can break off.

In stochastic simulations of this model (Materials and methods) we find broad, power-law-like dis-

tributions for each value of nF (Figure 3C), but no signature of a shallow plateau at larger sizes. We

define m as the exponent of the probability distribution, pðnÞ ~ n��, such that the cumulative distribu-

tion function has the form Pðsize>nÞ~ n��þ1 (the latter is proportional to the integral of the former).

Following established methods, we fit a power law, Pðsize>nÞ ~ n��þ1 for n>nmin to simulation outputs

using maximum likelihood estimation (Clauset et al., 2009) and examined the dependence on frag-

mentation rate. Faster fragmentation results in larger values of m, reflecting steeper distributions,

with the dependence being superlinear for nF ¼ 1, approximately linear for nF ¼ 2=3, and sublinear

for nF ¼ 0 (Figure 3D, circles). Increasing values of nF also appeared to have increasing minimum val-

ues of m, corresponding to rare fragmentation.

The minimum value of the distribution exponent can be computed by considering, for example,

the total rate of fragmentation events. Denoting the total number of clusters by M and the number

of clusters of size n by cn, the rate of cluster production follows _M »b
P

n n
nFcn (Appendix). Assuming

a power-law solution cn ~ n
�� and approximating the sum by an integral, we see that the rate of clus-

ter production is finite only if

�>nF þ 1; (1)

consistent with simulations. Therefore, spatial structure—modeled by decreasing nF—is indeed a

mechanism to generate distributions shallower than Pðsize>nÞ~n�1. A heuristic argument for the rate

dependence of the exponents in the long time, large size limit is provided in the Appendix, with the

results summarized in Table 2 and plotted as solid lines in Figure 3D. The analytic results agree rea-

sonably well with simulations, with deviations becoming prominent as b=r»1.

In summary, we identified a minimal growth-fragmentation process that generates power-law dis-

tributions with tuneable exponents in the experimentally observed range. However, this model does

not include other features known to occur in the experimental system, including a finite carrying

capacity that limits growth, cluster aggregation, and cluster expulsion, which may alter the asymp-

totic distributions. Moreover, this model fails to capture the large-size behavior of many of the
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experimental distributions, which exhibit a plateau (Figure 2). Therefore, we investigated extensions

of the model.
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Figure 3. A minimal model inspired by evolutionary dynamics generates power law distributions. (A) Fragmentation is analogous to mutation and we

can construct a genealogy that mirrors the physical structure of the clusters. (B) Summary of a growth/fragmentation process that includes the effect of

spatially confined clusters. (C) Examples of reverse cumulative size distributions obtained from stochastic simulations of the model for different values of

the fragmentation exponent, nF . The tails of the distribution are approximately power laws, defined as Pðsize>nÞ~ n��þ1. Parameters: r = 0.5 hr-1,

b ¼ 0:4; 0:2; 0:167 hr-1, for nF ¼ 0, 2/3, 1, respectively, time t ¼ 24 hr, and the system was initialized with 10 single cells. (D) Dependence of the resulting

distribution exponent, m, on ratio of fragmentation to aggregation rate (b=r) and fragmentation exponent (nF ). Markers show mean and standard

deviation across 100 simulations. Solid lines are approximate analytic results (Table 2). Parameters: same as (C) with b varying.

The online version of this article includes the following source data for figure 3:

Source data 1. Results of power-law fits to simulated distributions.
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Size-dependent aggregation enhances the abundance of large clusters
We explored a number of potential mechanisms for generating plateaus in the size distribution at

large cluster sizes. As shown below, several plausible models fail to produce this feature. It emerges,

however, from the incorporation of size-dependent aggregation rates.

First we tested whether finite time effects could introduce plateaus to the distributions of the

minimal growth-fragmentation model, since our power-law solutions are only valid asymptotically.

Indeed, stochastic simulations with nF ¼ 1 and rare fragmentation (r ¼ 0:5 hr-1, b ¼ 0:05 hr-1) showed

that for systems initialized with 10 single cells (a reasonable comparison with initial colonization in

the experiments Wiles et al., 2016), slight curvature appears in the distribution that weakens with

time but is still detectable at 24 hr (Figure 4—figure supplement 1, circles). We confirmed that this

effect was solely due to dynamics and not to any finite system effect by numerically integrating the

master equation for this model, which describes the deterministic dynamics of an infinite system yet

agrees with the stochastic simulation results (Figure 4—figure supplement 1, lines;

Materials and methods). However, the curvature observed at finite times is substantially smaller than

what occurs for some of the strains, such as Enterobacter ZOR0014 and Vibrio ZOR0036, so we

believe it is not the dominant effect.

We next asked whether including additional processes to the model could produce the plateau

effect, focusing on stationary distributions. As discussed above, populations in the larval zebrafish

gut are known to reach carrying capacities that halt growth (Jemielita et al., 2014). Since we believe

fragmentation is tied to growth, we modeled this as the fragmentation rate being slowed as the

total number of cells, N, approaches carrying capacity, K, in the same way as the growth rate:

r ! rð1� N=KÞ and b ! bð1� N=KÞ. Carrying capacities have been estimated to range from 103-

106 cells, depending on the bacterial strain (Jemielita et al., 2014; Wiles et al., 2016;

Schlomann et al., 2018; Wiles et al., 2020).

With this addition to the model, fragmentation halts in the steady state. However, in the larval

zebrafish gut it has been well-documented that large bacterial aggregates are quasi-stochastically

expelled out the intestine, after which exponential growth by the remaining cells is restarted

(Wiles et al., 2016). We modeled expulsion by having clusters removed from the system altogether

at a size-dependent rate En ¼ lnnE . It is unclear what value of the exponent nE best describes the

experimental system, but previous studies measured expulsion rates for the largest clusters, typically

of order K ~ 10
3 cells, in the range of 0.07 to 0.11 hr-1 (Wiles et al., 2016; Schlomann et al., 2019).

Therefore, we co-varied nE and l such that lKnE
~ 10

�1 hr-1. Combining finite carrying capacity and

expulsion leads to a non-trivial stationary distribution of the model that lacks a plateau for nE ¼ 0, 1/

3, or 2/3 (Figure 4—figure supplement 2).

Finally, we considered the effect of cluster aggregation, which has been directly observed in live

imaging experiments (Schlomann et al., 2019). We model aggregation with pairwise interactions

where clusters come together and form a single cluster with size equal to the sum of the individual

sizes. The aggregation rate is allowed to be size-dependent with the homogenous kernel

Anm ¼ aðnmÞnA . As with expulsion, it is not clear which exponent value is the most realistic. Accurate

measurements of aggregation rates are lacking, but we estimate bounds to be between 1 and 100

total aggregation events per hour for a typical population (Materials and methods), so we consider

only pairs of a and nA that match these bounds. Further, an important theoretical distinction is that

in purely aggregating systems, models with nA � 1=2 exhibit a finite-time singularity corresponding

to a gelation transition, at which point the distribution acquires a power-law tail, while distributions

have exponential tails when nA<1=2 (Krapivsky et al., 2010). We considered both regimes.

Table 2. Analytic results for the minimal growth-fragmentation process.

Distribution exponent, m, as a function of fragmentation exponent, nF , fragmentation rate, b, and

growth rate, r, as plotted in Figure 3D. Results are expected to be valid for long times (t ! ¥), large

sizes (n ! ¥), and slow fragmentation (b=r<1). See Appendix for details.

nF ¼ 1 nF ¼ 2=3 nF ¼ 0

distribution exponent, m 1þ 1

1�b=r
5

3
þ b

r 1þ b=r
1þb=r
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C finite system effects

A

(n+1) F(1-N/K)

fragmentation

n E

expulsion

growth

rn(1-N/K)

aggregation

(nm) A

generalized model

B size-dependent aggregation

Figure 4. Size-dependent aggregation introduces a plateau in the size distribution. (A) Schematic of the generalized model. Parameters summarized in

Table 3. (B) Reverse cumulative distributions obtained from simulations for different values of nA (left, middle, right) and a (different colored lines within

each panel). Increasing aggregation produces a plateau if the aggregation depends strongly enough on cluster size. (C) The plateau arises only in

stochastic simulation of finite systems with size-dependent aggregation. Solid lines are stochastic simulations, dashed lines are the result of numerically

Figure 4 continued on next page
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We added aggregation to our growth-driven process and arrived at the general model described

in Figure 4A. Parameters are also summarized in Table 3. Strikingly, we found that increasing aggre-

gation rate produces the large-size plateau seen in our data, but only when aggregation rate scales

sufficiently quickly with cluster size (Figure 4B, right, nA = 2/3) and not when aggregation is size-

independent (Figure 4B, left, nA ¼ 0). A mild effect is observed for nA ¼ 1=3 (Figure 4B, middle).

The largest plateau (Figure 4B, nA ¼ 2=3, highest curve) corresponds to 15 ± 3 (mean ± std. dev)

total aggregation events per hour. This value is consistent with our rough experimental bounds of 1–

100 hr-1.

We further found that this plateau effect is intrinsic to finite systems (Figure 4C). For the most

aggregated cases in Figure 4B, we numerically solved the corresponding master equation, repre-

senting the deterministic dynamics of an infinite system, and found that the plateau did not occur.

Master equation and stochastic simulation solutions agree for nA ¼ 0, but for larger values of nA, the

two solutions only agree in the small size regime. At large sizes, stochastic simulations produce an

overabundance of large clusters compared to the master equation solution. This result indicates that

in a finite system, strong aggregation can deplete small clusters, condensing them into a small num-

ber of large clusters on the order of the system-size.

This overall process is reminiscent of the gelation transition in soft materials. Stochastic dynamics

of finite systems of purely aggregating particles at the gelation transition also produces distributions

with plateaus, but with an initial decay given approximately by a power law with � ¼ 5=2 (Figure 4—

figure supplement 3, see also Matsoukas, 2015). Combined with a growth/fragmentation/expul-

sion process, we found that size-dependent aggregation produces a distribution that initially decays

in a power-law-like manner with tunable exponents and then exhibits a tuneable plateau, as we

observe in the experimental data.

Figure 4 continued

integrating the master equation. Parameters: r = 0.5 hr-1, nF ¼ 2=3, b ¼ 0:5 hr-1, nE ¼ 1=3, l ¼ 0:01 hr-1, K ¼ 10
3, and the number of simulation was

replicates = 150 per parameter set. For each value of nA, we considered a values of 0 (no aggregation) and then varied a logarithmically, with the

following (min, max) values for log10 a: (�4,–2) for nA ¼ 0, (�4.5,–2.5) for nA ¼ 1=3, and (�5,–3) for nA ¼ 2=3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Distributions of growth/fragmentation process at short times.

Figure supplement 2. Distributions for a process with density-dependent growth, fragmentation, and expulsion.

Figure supplement 3. Distributions for a model with only aggregation and nA ¼ 1.

Table 3. Summary of model variables and parameters.

Variable/parameter Description

n Cluster size (number of cells)

pðnÞ Probability of cluster size, n

Pðsize>nÞ Cumulative probability; probability of size being larger than n

m Exponent of power law; pðnÞ~ n��, Pðsize>nÞ ~ n��þ1

r Cell division rate

K Carrying capacity; maximum number of cells

b Fragmentation rate

nF Fragmentation exponent; clusters of size n fragment with rate bnnF

a Aggregation rate

nA Aggregation exponent; clusters of sizes n and m aggregate with rate aðnmÞnA

l Expulsion rate

nE Expulsion exponent; clusters of size n are expelled with rate lnnE
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Discussion
We analyzed image-derived measurements of bacterial cluster sizes from larval zebrafish intestines

and discovered a common family of size distributions shared across bacterial species. These distribu-

tions are extremely broad, exhibiting a power-law-like decay at small sizes that becomes shallower

at large sizes in a strain-specific manner. We then demonstrated how these distributions emerge nat-

urally from realistic kinetics: growth and single-cell fragmentation together generate power-law dis-

tributions, analogous to the distribution of neutral alleles in expanding populations, while size-

dependent aggregation leads to a plateau representing the depletion of mid-sized clusters in favor

for a single large one. In summary, we found that gut bacterial clusters are well-described by a

model that combines the features of evolutionary dynamics in growing populations with those of

inanimate systems of aggregating particles; intestinal bacteria form a ‘living gel’.

Gels are characterized by the emergence of a massive connected cluster that is on the order of

the system size. In the larval zebrafish intestine, we often find for some bacterial species that the

majority of the cells in the gut are contained within a single cluster, similar to a gel-like state. While

growth by cell division generates large clusters, it is the aggregation process that leads to system-

sized clusters being over-represented. This enhancement of massive clusters manifests as a plateau

in the size distribution and is reminiscent of a true gelation phase transition. In our model, the promi-

nence of this plateau appears to follow the same trend as in non-living, purely aggregating systems:

the plateau depends strongly on the aggregation exponent that dictates the size-dependence of

aggregation, with exponents larger than 1=2 leading to strong plateaus and exponents less than 1=2

leading to weak or no plateaus.

How this strong size-dependence in aggregation emerges in the intestine is unclear, although we

hypothesize that active mixing by intestinal contractions, which can in fact merge multiple clusters at

once (Schlomann et al., 2019), is an important driver. We envision that the exponents for aggrega-

tion and also for fragmentation are likely generic, set by physical aspects of the intestine and the

geometry of clusters, while the rates of these processes are bacterial-species dependent. In our sys-

tem, we predict that differences in aggregation and/or fragmentation rates between strains underly

the differences in measured size distributions. Further, it is possible that individual bacteria can tune

these rates by altering their behavior, for example, modulating swimming motility (Wiles et al.,

2020), in response to environmental cues. Quantitatively understanding how the combination of

intestinal fluid mechanics and bacterial behaviors determine aggregation and fragmentation rates

would be a fruitful avenue of future research. More abstractly, active growth combined with different

aggregation processes, for example the fractal structures of diffusion-limited aggregation, may lead

to different families of size distributions that would be interesting to explore.

On the experimental front, direct measurements of aggregation and fragmentation rates from

time-lapse imaging would be an extremely useful next step. However, these measurements are tech-

nically challenging. Even by eye, unambiguously identifying that a single bacterium fragmented out

of a larger aggregate, and did not simply float into the field of view, requires faster imaging speeds

than we can currently obtain. Sparse, two-color labeling may improve reliability of detection, but

would decrease the frequency of observing an event. Automatic identification of fragmentation

events in time-lapse movies is a daunting task, but recent computational advances, for example

using convolutional neural networks to automatically identify cell division events in mouse embryos

(McDole et al., 2018), may provide a good starting point. Aggregation is easier to observe by eye,

but its automatic identification presents similar challenges in analysis.

Given the general and minimal nature of the model’s assumptions, we predict that the form of

the cluster size distributions we described here is common to the intestines of animals, including

humans. This prediction of generality could be tested in a variety of systems using existing methods.

In fruit flies, live imaging protocols have been developed that have revealed the presence of three-

dimensional gut bacterial clusters highly reminiscent of what we observe in zebrafish, particularly in

the midgut (Koyama et al., 2020). Quantifying the sizes of these clusters would allow further tests

of our model.

In mice, substantial progress has been made in imaging histological slices of the intestine with

the luminal contents preserved (Tropini et al., 2017). Intestinal contents are very dense in the distal

mouse colon, however, and it is not clear how one should define cluster size. Other intestinal regions

are likely more amenable to cluster analysis. Moreover, with species-specific labeling, it is possible
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to measure the distribution of clonal regions in these dense areas (Mark Welch et al., 2017). One

could imagine then comparing these data to a spatially-explicit, multispecies extension of the model

we studied here.

Our model could also be tested indirectly for humans and other animals incompatible with direct

imaging by way of fecal samples. Two decades ago, bacterial clusters spanning three orders of mag-

nitude in volume were observed in gently dissociated fecal samples stained for mucus, but precise

quantification of size statistics was not reported (van der Waaij et al., 1996). Repeating these meas-

urements with quantification, from for example imaging or flow cytometry, would also provide a test

of our model, albeit on the microbiome as a whole rather than a single species at a time. The inter-

pretation therefore would be of an effective species with kinetic rates representing average rates of

different species.

To close, we emphasize that the degree of bacterial clustering in the gut is an important parame-

ter for both microbial population dynamics and host-bacteria interactions. More aggregation leads

to larger fluctuations in abundance due to the expulsion of big clusters, and also thereby increase

the likelihood of extinction (Schlomann et al., 2019; Schlomann and moments, 2018). Further,

aggregation within the intestinal lumen can reduce access to the epithelium and reduce pro-inflam-

matory signaling (Wiles et al., 2020). Therefore, measurements of cluster sizes may be an important

biomarker for microbiota-related health issues, and inference of dynamics from size statistics using

models like this one could aid the development of therapeutics.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Software, algorithm Analysis code This study see Materials and methods, Simulations

Other Cluster size data Schlomann and
moments, 2018

Other Cluster size data Schlomann et al.,
2019

Other Cluster size data Wiles et al., 2020

Data
We assembled data on gut bacterial cluster sizes from three different studies on larval zebrafish

(Schlomann et al., 2018; Wiles et al., 2020). Size data from Schlomann et al., 2018 and

Schlomann et al., 2019 were taken directly from the supplementary data files associated with those

publications. The raw size data from Wiles et al., 2020 was not included in its associated supple-

mentary data file, but summary statistics such as planktonic fraction were. All sizes were rounded up

to the nearest integer.

Details of experimental procedures can be found in the original papers. In brief, as described in

Figure 1, animals were reared germ-free, mono-associated with a single bacterial strain, each carry-

ing a chromosomal GFP tag, and then imaged 24 hr later using a custom-built light sheet fluores-

cence microscope (Jemielita et al., 2014). The gut is imaged in four tiled sub-regions that are

registered via cross-correlation and manual adjustment. Imaging a full gut volume ( » 1200 mm � 300

mm � 150 mm) with 1 mm slices takes approximately 45 s. Laser power (5 mW) and exposure time (30

ms) were identical for all experiments.

The image analysis pipeline used to enumerate bacterial cluster sizes is also described in detail in

the original publications and in reference (Jemielita et al., 2014). In brief, single cells (small objects)

and multicellular aggregates (large objects) are identified separately. The number of cells per aggre-

gate is then estimated as the total fluorescence intensity of the aggregate divided by the mean fluo-

rescence intensity of a single cell. Small objects are identified in three dimensions with a

combination of difference-of-gaussians and wavelet filters (Olivo-Marin, 2002) and then culled using

a support vector machine classifier and manual curation. Large objects are segmented in maximum

intensity projections using a graph-cut algorithm (Boykov and Kolmogorov, 2004) seeded by either

Schlomann and Parthasarathy. eLife 2021;10:e71105. DOI: https://doi.org/10.7554/eLife.71105 13 of 22

Research article Microbiology and Infectious Disease Physics of Living Systems

https://doi.org/10.7554/eLife.71105


an intensity- or gradient-thresholded mask. The total intensity of an aggregate is computed by

extending the two-dimensional mask in the z-direction and summing fluorescence intensities above a

threshold calculated from the boundary of the mask, with pixels detected as part of single cells

removed. The boundary of the gut is manually outlined prior to image analysis and used to exclude

extra-intestinal fluorescence.

Size distribution
For the experimental data, reverse cumulative distributions were computed as

Pðsize>nÞ ¼
number of clusters with size>n

total number of clusters
: (2)

In combining data from different samples colonized with the same strain, we pooled together all

sizes and computed the distribution in the same way. For simulations with large numbers clusters,

we computed this distribution iteratively, looping through each simulation replicate and indepen-

dently updating (number clusters with size >n) and (total number of clusters), and normalizing at the

end.

For the binned probability densities in Figure 2—figure supplement 1, data were similarly

pooled across samples and then sorted into logarithmically spaced bins of log10 width = 0.4.

Estimates on bounds of agg rates
We estimated approximate bounds on the rate of total aggregation events as follows. For the maxi-

mum rate, we note that a typical population contains approximately 200 clusters (mean ± std. dev of

244 ± 182). In the absence of other processes, condensing this system into one cluster would require

100 aggregation events. Populations consisting of almost entirely one large cluster are rare but have

been documented (Schlomann et al., 2018). Therefore, we estimate that this complete condensa-

tion can occur no more than once an hour, leading to an upper bound on the total rate of aggrega-

tion events of 100 per hour.

For the minimum rate, we start with the observation that aggregation has been directly observed

between small clusters and also between small clusters and a single large cluster during a large

expulsion event (Schlomann et al., 2019). Considering just the latter process, we know that large

expulsion events happen roughly once every 10 hr. If approximately 10 small clusters are grouped

into the large cluster during transit out of the gut, that would correspond 10 total aggregation

events in 10 hr, or, 1 per hour, which we take as a lower bound.

Simulations
We used three different numerical approaches for studying the models discussed here. The minimal

growth-fragmentation process in Figure 3 was simulated with a Poisson tau-leaping algorithm Gilles-

pie, 2001 with a simple fixed tau value of t ¼ 0:1 hr. At each time step, the number of growth and

fragmentation events was drawn from a Poisson distribution with the rates given in Figure 3B along

with the constraint that clusters must be of size two or larger to fragment.

For the full model including aggregation and expulsion, we used Gillespie’s algorithm Gilles-

pie, 1977 for fragmentation, aggregation, and expulsion events, while growth was updated deter-

ministically according to a continuous logistic growth law approximated by an Euler step with

dt ¼ minðt ; 0:1hrÞ, where t here refers to the time to next reaction. For the Gillespie steps, if the

time to next reaction exceeded the doubling time, ðln 2Þ=r, the growth steps were performed and

then the propensity functions were re-calculated.

Finally, we compared these stochastic simulations to a model in the thermodynamic limit where

individual clusters are replaced with cluster densities that evolve deterministically, which is referred

to as a master equation (Krapivsky et al., 2010). The master equation for the general model reads

_cn ¼
a
2

P

n

m¼1

½ðn�mÞðmÞ�nAcn�mcm�annAcn
P

m

mnAcm

þr 1� N
K

� �

ðn� 1Þcn�1 � ncn½ � �lnnEcn

þb 1� N
K

� �

ðnþ 1ÞnF cnþ1 � nnFcn þ dn;1
P

m

mnF cm

� �

:
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This set of equations was solved numerically on a bounded size grid using an Euler method with

step size dt¼ 0:0001 hr. Models that include a carrying capacity, K, are already defined on a finite

domain of integers ranging from one to K and the master equation is naturally represented by a set

of K ordinary differential equations. For models without a carrying capacity, we introduced a maxi-

mum size given by the average population size at the last time point, nmax ¼ expðrtmaxÞ (rounded up

to the nearest integer), and used reflecting boundary conditions at nmax.

A distribution was deemed stationary if it was visibly unchanged after an additional 50% of simu-

lation time.

MATLAB code for simulating these models and plotting data can be found at https://github.com/

rplab/cluster_kinetics (copy archived at swh:1:rev:

f55a54a9c88e4fb8376dfc91e25ac4383c4240ae, Schlomann, 2021).

Estimating distribution exponents
For the simulated distributions in Figure 3 we estimated a power law exponent using the maximum

likelihood-based method described in Clauset et al., 2009 and the plfit.m code supplied therein.

This model includes a minimum size as a free parameter that dictates when the power-law tail

begins. The minimum size is chosen to minimize the Kolmogorov-Smirnov distance between the

data and model distributions for sizes greater than the minimum size. Best fit values of the exponent

and minimum size are included in Figure 3—source data 1.

For the experimentally measured distributions, we used both maximum likelihood estimation and

linear fitting to the log-transformed cumulative distribution to calculate exponents.
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Appendix 1

Analytic calculations for growth-fragmentation processes
We consider a model with only growth and fragmentation processes and make heuristic arguments

for the form of the asymptotic size distribution. In particular, we are interested in how the exponent

of the resulting power law tails depends on the growth and fragmentation rates. We derive here the

results listed in Table 2 of the main text.

Model summary

Clusters grow according to

n! nþ 1with rate rn; (3)

and they fragment according to

nþ 1! n with rate bnnF for n>1: (4)

The cell lost during fragmentation becomes its own cluster of size one.

We now consider the deterministic dynamics of a large system. Putting these reactions together,

we can write the master equation for the density of cells of size n, cn:

_cn ¼ b ðnþ 1ÞnF cnþ1� nnFcn þ dn;1
X

m

mcm

 !

þ r ðn� 1Þcn�1 � ncnð Þ: (5)

In what follows we will use the terms ‘‘density’’ and ‘‘total number’’ interchangeably, measuring

volume in units of our system size (i.e., number of cells per gut). The first moment of this equation

gives the total number of cells,

_N ¼ rN: (6)

The zeroth moment gives the total number of clusters,

_M ¼ b
X

¥

n¼1

nnF cn � c1

 !

: (7)

Here, the c1 term reflects the fact that in this model, cells must have size 2 or greater to

fragment.

Finally, in a continuum picture, the size of a particular cluster is described by

_n¼ rn�bnnF (8)

A well-known heuristic derivation of the stationary distribution of this type of process is based on

the relationship between the number of clusters, M ¼
P

n cn, and the total number of cells,

N ¼
P

n ncn. The key to this derivation is to recognize that MðtÞ acts as a proxy for the rank of the

cluster that arises at time t: for the jth cluster to arise, there are j� 1 clusters that have a larger size,

since the relative ordering of cluster sizes is preserved during exponential growth. For large sizes,

when cluster rank is expressed as a function of cluster size it becomes proportional to the reverse

cumulative distribution function, from which we obtain the density.

It turns out that the differences in behaviors of exponents measured in simulations for different

values of nF can be understood by considering the importance of two terms in particular: the c1
term in the equation for M, and the bnnF term in the equation for n.

Case 1: nF ¼ 1

The total number of cells follows simple exponential growth, NðtÞ ~ expðrtÞ. For nF ¼ 1, the total

number of clusters is governed by the equation

_M ¼ bðN� c1Þ; (9)

where the c1 term arises in our model because clusters can only fragment if they have size � 2. At
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long times, however, we expect c1 �N and we therefore ignore this term, leading to

MðtÞ~ ðb=rÞexpðrtÞ~NðtÞ. A cluster that arises at time t0 will at a later time t have a size

nðt; t0Þ ¼ eðr�bÞðt�t0Þ: (10)

Ignoring overall t dependence, we can express this size as a function of the rank of this cluster,

n~M�ð1�b=rÞ: (11)

Inverting this relationship, and invoking the proportionality between M and the reverse cumula-

tive distribution, Pðsize>nÞ, results in

Pðsize>nÞ~M~n
� 1

1�b=r; (12)

and differentiating produces the expected result

cn ~n
� 1þ 1

1�b=r

� �

; (13)

where cn is normalized by
P

cn ¼M. This result matches the traditional Yule-Simons process, where

each organism divides at rate r and then mutates with probability �, with �¼ b=r.

Case 2: 0<nF<1

In this case, when considering the equation for the size of a particular cluster,

_n¼ rn�bnnF ; (14)

for nF<1 we ignore the second term on the right hand side. This term represents loss due to frag-

mentation, can be ignored for large sizes. Specifically, we consider sizes greater than a critical size,

nc ¼ ðb=rÞ1=ð1�nFÞ, below which clusters will shrink. Ignoring this term, the size of a particular clusters

that arose at time t0 is given by

nðtÞ ¼ erðt�t0Þ: (15)

The total number of clusters follows

_M ¼ b
X

¥

n¼1

nnF cn � c1

 !

: (16)

Like above with nF ¼ 1, we ignore the c1 term. Unlike for nF ¼ 1, we don’t have a closed equation

for the fractional moment
P

¥

n¼1
nnFcn. Therefore, we take the approach of making a power law

ansatz

cn �
1

Z
n�� (17)

with normalization

1

Z

X

n

n�� ¼M; (18)

and then solve for the exponent m self-consitently First, we approximate the sums by integrals and

arrive at an equation for M

_M ¼ b
�� 1

�� nF � 1

� �

M: (19)

Then we follow the same logic as for the nF ¼ 1 case. Solving for MðtÞ, we get

MðtÞ~exp b
�� 1

�� nF � 1

� �

t

� �

: (20)

Combining terms into
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hð�Þ � b
�� 1

�� nF � 1

� �

; (21)

we then relate the size of a cluster that arose at time t0 to the rank of that cluster,Mðt0Þ,

n~M
�r

h (22)

from which we compute the scaling behavior of cn,

cn ~n
� h

r
þ1ð Þ: (23)

Equating this expression with the original ansatz, we arrive at a self-consistency equation for m

�¼
b

r

�� 1

�� nF � 1

� �

þ 1; (24)

which we solve to obtain an exponent linear in the rates,

�¼ nF þ 1þ
b

r
: (25)

This result is plotted in Figure 3D of the main text with nF ¼ 2=3 and agrees reasonably well with

simulations.

Case 3: nF ¼ 0

For nF ¼ 0, the equation for M simplifies to

_M ¼ bðM� c1Þ: (26)

The simulation results in Figure 3D indicate that the relationship between m and b=r is no longer

linear, which we expect to be due to the c1 term reducing the propensity for fragmentation. That

this single-cell effect is relevant for nF ¼ 0 makes sense because we expect most clusters to be of

order 1, which would make c1 of order M . To account for this term explicitly, we make the same

power law ansatz as before,

cn �Mð�� 1Þn�� (27)

and then extrapolate down to n¼ 1 to estimate c1,

c1 ¼Mð�� 1Þ: (28)

This extrapolation is purely a convenient approximation, as the distribution is likely not a true

power law down to sizes of Oð1Þ. With this ansatz, the equation for M reads

_M ¼ bð�� 1Þ
1

�� 1
� 1

� �

M: (29)

Combining terms we can define

h� bð�� 1Þ
1

�� 1
� 1

� �

(30)

and write

_M � hð�ÞM: (31)

Then, following the same protocol as above, we can relate the frequency of a cluster to its rank,

n~M
�r

h (32)

from which we compute the scaling behavior of cn,
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cn ~n
� h

r
þ1ð Þ: (33)

Equating this result with the original ansatz, we get the self-consistency equation

�¼
b

r
ð�� 1Þ

1

�� 1
� 1

� �

þ 1: (34)

Solving this equation we get

�¼ 1þ
b=r

1þb=r
: (35)

This result is plotted in Figure 3D of the main text and agrees reasonably well with simulations,

with notable deviations occurring once b=r»1.

Discussion

In this model growth and fragmentation are treated as separate processes. This choice is convenient

in the context of the full model including aggregation because classic reversible aggregation models

(Krapivsky et al., 2010) are contained within this general framework when growth and expulsion

rates are set to zero, and also because fragmentation conserves total cell number. As a consequence

of this choice, single cells are forbidden from fragmenting and don’t contribute to the total rate of

fragmentation events. This feature differs from common evolutionary variants of this model for asex-

ual populations, where growth and mutation are linked. In those models, all organisms divide and in

each division have a probability of mutating (analogous to fragmenting in our model), so the rate of

mutant production scales with the total population, including singletons. This is mostly a minor dif-

ference, but, as we showed, it does lead to different behaviors of the resulting distribution expo-

nents in the limit of fast fragmentation.

We showed that we can account for this effect when it is important (in the case nF ¼ 0), but we

cannot say when it will be important. That is because this effect depends on the number of single

cells, which lies outside the regime of our large-size asymptotics that underly the continuum approxi-

mation. Ultimately the effect depends on how large the the number of single cells, c1, is compared

to the fractional moment
P

n n
nFcn. If the distribution has a significant shoulder, than c1 may be

smaller than the extrapolation of the power-law form down to n ¼ 1. In that case, the single-cell

effect may be less important than this extrapolation would predict it to be.
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