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Abstract Individuals infected with the SARS-CoV-2 virus present with a wide variety of symp-
toms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed 
a genetic haplotype on chromosome 3 that entered the human population via introgression from 
Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, 
the specific variants along this introgressed haplotype that contribute to this risk and the biological 
mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplo-
type for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do 
this by first exploring their impact on the regulation of genes involved in COVID-19 infection using 
a variety of population genetics and functional genomics tools. We then perform a locus-specific 
massively parallel reporter assay to individually assess the regulatory potential of each allele on the 
haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked 
genetic variants to identify four introgressed alleles that are strong functional candidates for driving 
the association between this locus and severe COVID-19. Using reporter assays in the presence/
absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These vari-
ants likely drive the locus’ impact on severity by modulating the regulation of two critical chemokine 
receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations 
into the interaction between host genomics and COVID-19 outcomes.

Editor's evaluation
A genetic haplotype on chromosome 3 that entered the human lineage from mating with Nean-
derthals has previously been implicated as a strong genetic risk factor for severe COVID-19 
outcomes. This study uses population genetics and functional genomics tools along with experi-
mental assays to assess the genetic variants in these regions for their likelihood of driving the severe 
COVID-19 phenotype. They ultimately identify 4 (out of about 600) variants as strong functional 
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candidates. This study is a valuable contribution to the interaction between host genomics and 
COVID-19 outcomes and provides compelling evidence allowing for more targeted future functional 
investigations.

Introduction
Since its emergence in late 2019, SARS-CoV-2 has infected more than 160 million people worldwide 
and claimed more than 3 million lives (WHO, 2021). The variance in patient outcomes is extreme, 
ranging from no ascertainable symptoms in some cases to fatal respiratory failure in others (Vetter 
et al., 2020). This wide range of patient outcomes is due in part to comorbidities; however, prior 
health conditions do not explain the full range of outcomes (Zhou et al., 2020). Therefore, efforts 
have been made to assess a potential genetic component. Repeatedly, a region on chromosome 3 
encompassing a cluster of chemokine receptor genes has been reported as having a strong associ-
ation with an increase in COVID-19 severity in Europeans, with the strongest reported risk variant 
conferring an odds ratio of 1.88 for requiring hospitalization (p=2.7*10–49, COVID-19 Host Genetics 
Initiative, 2021).

Zeberg and Pääbo, 2020 identified that the strongest COVID-19 severity locus was introgressed 
by Neanderthals, with a core introgressed haplotype spanning  ~49  kb from chr3:45,859,651–
45,909,024 (hg 19) including rs35044562, reported as one of the leading variants of the association 
(COVID-19 Host Genetics Initiative, 2020) and a broader, extended haplotype with reduced linkage 
spanning ~333 kb from chr3:45,843,315–46,177,096. Subsequently, this locus was fine-mapped to 
two independent risk signals, one which is confirmed to fall within the Neanderthal haplotype and 
tagged by a set of strongly linked SNPs including rs35044562 and rs10490770, while the other, led by 
rs2271616, falls just upstream (COVID-19 Host Genetics Initiative, 2021; Kousathanas et al., 2022). 
The core haplotype is at highest frequency in South Asian populations (30%), as well as at appreciable 
frequency in Europe (8%) and the Americas (4%), yet it is virtually absent in East Asia. The stark differ-
ence in frequency between South Asian and East Asian populations implies that the haplotype may 
have been positively selected in South Asian populations, for which there is support (Racimo et al., 
2014; Jagoda et al., 2018; Browning et al., 2018) and/or subject to purifying selection in East Asian 
populations. However, the specific phenotypic consequences of this haplotype leading to its potential 
adaptive effect as well as its effect on COVID-19 severity remain unknown. Moreover, the potential 
causal drivers of the selective pressure, as well as COVID-19 severity remain unstudied.

Here, we identify putative functional variants within this haplotype that may be driving its associ-
ation with COVID-19 severity. To do so, we first examine the haplotype in the context of a broader 
introgressed segment. We then identify loci within the introgressed segment that are associated with 
levels of gene expression (eQTLs) in vivo. We next compare the eQTL effects of these variants with 
differentially expressed genes in COVID-19 and related infection datasets to identify which response 
genes for these eQTLs are potentially relevant to the COVID-19 phenotype. We follow this compu-
tational approach with a high-throughput functional Massively Parallel Reporter Assay (MPRA) and 
identify 20 variants along the introgressed segment that directly modulate reporter gene expression. 
We intersect these 20 variants with a host of molecular and phenotypic datasets to further refine 
them to 4 which display the strongest evidence of contributing to the genetic association with severe 
COVID-19 at this locus. We then investigated these four variants (eight alleles) using reporter assays 
in the context of the promoter of their most likely endogenous target gene (CCR1 or CCR5), and in 
the presence/absence of replicating SARS-CoV-2, revealing evidence of important functionality. These 
tested variants primarily modulate expression through their potential effects on CCR1 and CCR5 cis-
regulation and are strong candidate variants that should be investigated with future targeted func-
tional experiments. An overview of this experimental workflow is shown in Figure 1.

Results
Genome-wide scans for Neanderthal introgression
We carried out two genome-wide searches for introgressed loci in a European population for which 
we also had available eQTL data using Sprime (Browning et  al., 2018) and U and Q95 (Racimo 
et al., 2014) methods. We used 423 Estonian whole genome samples (Pankratov et al., 2020) that 

https://doi.org/10.7554/eLife.71235


 Short report﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Jagoda, Marnetto et al. eLife 2023;12:e71235. DOI: https://doi.org/10.7554/eLife.71235 � 3 of 25

Figure 1. Overview of experimental workflow from whole genome scans for Neanderthal introgression to variant section for the MPRA and SARS-CoV-2 
infection reporter assay experiments.

https://doi.org/10.7554/eLife.71235
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constitute a well-studied representative sample of the broader Estonian population as sampled by 
the Estonian Biobank (EGCUT) (Leitsalu et al., 2015). These samples also have available whole blood 
RNA-sequence data which contributed to eQTLGen, a broad whole blood eQTL analysis study (Võsa 
et al., 2018). By utilizing genomes that were part of the eQTL study population, we can be assured 
that the associations between alleles and gene expression is accurate, as differential linkage disequi-
librium (LD) between alleles in different populations can decrease the efficacy of using eQTL data from 
one population on another.

We initially conducted the Sprime scan (Browning et al., 2018) using the 423 Estonians as the 
ingroup population along with 36 African samples from the Simons Genome Diversity Project (SGDP) 
with no evidence of European admixture (Mallick et al., 2016) as an outgroup (Supplementary file 
1a). From this scan, we identified 175,550 likely archaically introgressed alleles across 1,678 segments 
(Supplementary file 1b). Following Browning et al., 2018, we then identified segments as confi-
dently introgressed from Neanderthals if they had at least 30 putatively archaically introgressed alleles 
with a match rate to the Vindija Neanderthal genome (Prüfer et al., 2017) greater than 0.6 and a 
match rate with the Denisovan genome (Meyer et al., 2012) less than 0.4 (Browning et al., 2018). In 
total, we identified 693 such segments (Supplementary file 1c), including the segment containing the 
COVID-19 severity haplotype on chromosome 3 (see above).

We next used the U and Q95 scan, which specifically identifies regions of introgression showing 
evidence of positive selection (Racimo et al., 2017). Using Africans from the 1000 genomes project 
as an outgroup (Auton et al., 2015), we found 493 such regions (Supplementary file 1d). We did not 
detect the introgressed COVID-19 severity haplotype in our population via this method. This suggests 
that the COVID-19 severity associated segment, while likely introgressed from Neanderthals based 
on its detection in our Sprime scan and via the work of others (Zeberg and Pääbo, 2020), was not 
under positive selection in the Estonian population. This is consistent with the previously reported 
lower frequency (8%) of the haplotype in Europeans relative to South Asian populations in which the 
haplotype is at higher frequency (30%) (Zeberg and Pääbo, 2020). However, U and Q95 scans do 
detect this region in South Asian populations (Racimo et al., 2017; Jagoda et al., 2018), supporting 
positive selection on this haplotype in South Asian, but not European populations.

We next examined which alleles in these putatively Neanderthal introgressed regions detected 
using these two genome-wide scans also are cis- and trans-eQTLs in the eQTLGen whole blood 
dataset (Võsa et al., 2018). From the U and Q95 data, we identified 684 cis-eQTLs across 250 40 kb 
windows (Supplementary file 1e). There were no trans-eQTLs detected in this set. From the Sprime 
data, we found 27,342 cis-eQTLs from 318 segments along with four trans-eQTLs from three segments 
(Supplementary file 1f and Supplementary file 1g).

Refinement of the severe COVID-19 associated introgressed segment
In our Sprime scan, we identified an introgressed region containing the haplotype defined by 
Zeberg and Pääbo, 2020 as both introgressed and associated with increased risk of COVID-19-
severity. The overall introgressed region as detected in our Estonian population spans ~811 kb from 
chr3:45,843,242–46,654,616, encompasses 16 genes (Figure 2A), and ranks in the top 2% (ranked 
21/1677) of Sprime detected segments based on likelihood of introgression and in the top 5% 
(58/1677) of Sprime segments based on length. Its extreme length provides additional support for 
the fact that it is introgressed and not likely a product of incomplete lineage sorting, which is detected 
as seemingly introgressed tracts of significantly shorter length (Huerta-Sánchez et al., 2014).

To examine how the introgressed segment may be affecting COVID-19 severity, we began by 
examining the LD structure within the segment and identified four major blocks defined as minimum 
pairwise LD between Sprime-identified variants within a block (min r2=0.34) (Figure  2—figure 
supplement 1). (Please note, Figure 2 includes SNPs linked to Sprime variants whereas here we are 
exclusively discussing SNPs directly identified in the Sprime scan). We labeled these blocks as ‘A’ 
from rs13071258 to rs13068572 (chr3:45,843,242–46177096), ‘B’ from rs17282391 to rs149588566 
(chr3:46,179,481–46,289,403), ‘C’ rs71327065 to rs79556692 (chr3:46,483,630–46,585,769), and ‘D’ 
from rs73069984 to rs73075571 (chr3:46593568–46649711) (Figure 2A; Figure 2—figure supple-
ment 1). All Sprime alleles in the A block are significantly (p<5*10–8) associated with increased risk for 
COVID-19 severity (COVID-19 Host Genetics Initiative, 2021), with the median p-value being 2.32 
* 10–26 and median effect size being 0.42 (Figure 2B). The B block also harbors many alleles (81.2%) 
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Figure 2. Computational intersections between MPRA emVars and functional genomics datasets across the severe COVID-19 risk locus. (a) Gene 
locations across the locus along with boundaries of the four LD blocks (A–D), borders extended to encompass all SNPs in LD (r2 > 0.3) tested with 
MPRA. (b) Severe COVID-19 GWAS effect sizes from release 5 of the COVID-19 Host Initiative dataset (2021), with strongest genome-wide p-values 
in yellow spanning the A and B blocks. See key for other color definitions. Dots and diamonds across the panels indicate respectively SNPs identified 

Figure 2 continued on next page
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significantly associated with COVID-19 severity, with the median p-value being 1.94*10–9 and median 
effect size being 0.28 (Figure 2B). In the C and D block, no alleles are significantly associated with 
COVID-19 severity, suggesting that the most likely causal variants for the COVID-19 severity associa-
tion are found within the A or B blocks (Figure 2B).

All the 361 Sprime-identified introgressed variants act as eQTLs in the whole blood (Võsa et al., 
2018) including for many genes that are relevant to COVID-19 infection. Strikingly, of the four trans-
eQTLs identified genome-wide in our Sprime scan regions in Estonians, two were located on the 
introgressed COVID-19 severity haplotype. These two variants, rs13063635 and rs13098911, have 11 
and 33 response genes, respectively (Supplementary file 1g). We examined whether these response 
genes have any relevance to COVID-19 infection and found that 3 (27%) and 13 (39%) of the response 
genes for rs13063635 and rs13098911, respectively, are differentially expressed in at least one exper-
iment in which a lung related cell-line or tissue was infected with COVID-19 or other related infections 
(Supplementary file 1h and Supplementary file 1i). These results suggest that these two trans-
eQTLs may affect the lung response to COVID-19 in a way that could contribute to differential severity 
in host response. Furthermore, all 361 variants, including the two trans-eQTLs, act as cis-eQTLs in 
whole blood, altering the expression of 14 response genes: CCR1, CCR2, CCR3, CCR5, CCR9, CCRL2, 
CXCR6, FLT1P1, LRRC2, LZTFL1, RP11-24F11.2, SACM1L, SCAP, and TMIE. Of these genes, 7 are 
chemokine receptor genes (CCR1, CCR2, CCR3, CCR5, CCR9, CCRL2, and CXCR6), which are likely 
linked to the segment’s association with COVID-19 severity.

Recent work has focused on pinpointing which of the aforementioned genes mediate(s) this risk 
signal, identifying CXCR6 (Schmiedel et al., 2021; Pairo-Castineira et al., 2021; Kasela et al., 2021, 
COVID-19 Host Genetics Initiative, 2021), CCR9 (Schmiedel et  al., 2021; Kousathanas et  al., 
2022), SLC6A20 (Kasela et  al., 2021, COVID-19 Host Genetics Initiative, 2021; Kousathanas 
et al., 2022), FYCO1 (Schmiedel et al., 2021), LZFL1 (Kousathanas et al., 2022), and CCR2 and 
CCR3 (Pairo-Castineira et  al., 2021) through bayesian fine-mapping, colocalization analyses, and 
transcriptome-wide association (TWAS). Although these studies focused on genes physically closer 
to the lead risk variant (rs10490770), epigenomic dissection and functional mapping also implicated 
CCR1,2,3,5 genes (Stikker et al., 2022) which are farther but still deeply embedded in the intro-
gressed haplotype. The association between COVID-19 phenotypes and CCR1 and CCR5 in particular 
also finds support from expression studies where elevated CCR1 expression in neutrophils and macro-
phages has been detected in patients with critical COVID-19 illness (Chua et al., 2020), in biopsied 
lung tissues from COVID-19 infected patients (Supplementary file 1h and Supplementary file 1i), 
as well as in Calu3 cells directly infected with COVID-19 (Supplementary file 1h and Supplementary 
file 1i). Likewise, elevated CCR5 expression has been detected in macrophages of patients with crit-
ical COVID-19 illness (Chua et al., 2020). Notably, some ligands for CCR1 and CCR5 (CCL15, CCL2, 
and CCL3) also show over-expression in these patients (Chua et al., 2020). CCRL2, LZTFL1, SCAP, 
and SACM1L are also differentially expressed in at least one experiment that measures differential 
expression of genes in lung tissues and related cell lines infected with COVID-19 or other viruses that 
stimulate similar immune responses (Supplementary file 1h and Supplementary file 1i).

directly by Sprime (dots) and SNPs in linkage disequilibrium (r2 >0.3) with them (diamonds). (c) eQTL effect sizes across the locus (blue for CCR1, green 
for CCR5) in whole blood from eQTLGen (Võsa et al., 2018) across the locus. Note the strong down- versus up-regulation of CCR1 for variants in the 
A versus B blocks, respectively. Grey SNPs are not eQTLs for any of the two genes or were absent from the eQTL study. Asterisks denote trans-eQTLs. 
(d) Chromatin-based functional annotations across the locus consisting of Hi-C contacts with CCR1 and CCR5 in Spleen, Thymus, or LCL (Jung et al., 
2019) and candidate cis-regulatory elements from Moore et al., 2020. (e) -Log p-values for emVars identified using MPRA across the locus. Grey 
SNPs failed the test for activity in either the archaic or non-archaic form. Vertical lines connect the four putative causal emVars and the most cited tag 
SNP rs10490770 to functional genomics and genetics data. The four putatively causal variants are unique in having significant hits across all functional 
genomics and genetics tests.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Linkage Disequilibrium (LD) between Sprime identified introgressed variants within the segment (chr3:45,843,242–46,654,616) 
containing the COVID-19 associated haplotype.

Figure supplement 2. On the top panel we show UCSC Browser tracks for a 61 k region (chr3:45,849,651–45,911,089, hg19) encompassing the leading 
SNPs on the 3p21.31 COVID-19-risk-associated locus.

Figure 2 continued
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Intriguingly, when considering the effect of the cis-eQTLs for CCR1 across the entire segment, we 
find that the majority of alleles along the introgressed haplotype within the A block are associated 
with its down-regulation (average Z score = –12.3) (Figure 2C). On the other hand, the majority of 
alleles within the B and C blocks are associated with CCR1 up-regulation (average Z scores = 7.1 and 
10.2, respectively) (Figure 2C). It is important to note that these eQTL effects are determined based 
on whole blood from non-infected, healthy patients (Võsa et  al., 2018). When considered in the 
context that severe COVID-19 phenotype is characterized by increased expression of CCR1 (Chua 
et al., 2020), these risk-associated alleles having different directions of effect suggest that a complex 
change to the CCR1 regulatory landscape driven by alleles across the introgressed segment may 
be contributing to the disease phenotype. When we consider CCR5 expression, it shows a more 
consistent pattern in which the majority of alleles within the A-C blocks are associated with its down-
regulation. This result is interesting as CCR5 expression in patients with severe COVID-19 illness is 
higher than those with more moderate cases (Chua et  al., 2020). However, given the strong LD 
within each of these segments, discerning the direct connection between one or more alleles driving 
these regulatory changes and the molecular and phenotypic signatures of severe COVID-19 remains 
difficult.

MPRA variant selection and study design
To independently assess the regulatory impact of the alleles on this COVID-19 risk haplotype, we 
employed a Massively Parallel Reporter Assay (MPRA) to investigate which alleles on the introgressed 
haplotype directly affect gene expression. Alleles which have the ability to modulate gene expres-
sion in this reporter assay are candidate putatively functional alleles that may drive the association 
with COVID-19 severity by altering the expression of genes that facilitate the biological response to 
COVID-19. To ensure that we tested any potential risk variants on the haplotype, we included in the 
MPRA all variants directly identified in the Sprime scan as being within the introgressed COVID-19 
severity associated segment (361), along with any allele linked (r2 >0.3) to one of these Sprime alleles 
in the Estonian population (140 alleles) or any 1000 Genomes (Auton et al., 2015) European (150 
alleles) or South Asian population (197 alleles). Therefore, here we are testing not only alleles on the 
introgressed haplotype that have a confirmed Neanderthal-specific origin, but also alleles along the 
introgressed haplotype that were either already present in the human population when the haplotype 
was introgressed, or arose anew in humans (i.e., human-derived alleles) on the introgressed haplotype 
following its introgression. After filtering for SNPs falling within simple repeat regions (Benson, 1999), 
which are not compatible with MPRA (Tewhey et al., 2016), we identified a total of 613 experimental 
variants. Of these variants, 293 are significantly (p<5*10–8) associated with COVID-19 severity and 
another 15 approach significance (p<5*10–6), whereas 118 were not tested in the original GWAS (The 
COVID-19 Host Genetics Initiative Release 5) (Figure 2B).

We conducted this assay in K562 cells, a leukemia cell line that displays multipotent hematopoietic 
biology, which allows for comparison between the MPRA data and the eQTLs identified on whole 
blood samples (see above). Furthermore, K562 cells can be induced into immune cell fates highly 
relevant to the COVID-19 severity phenotypes including monocyte, macrophage, and neutrophils 
(Tabilio et al., 1983; Sutherland et al., 1986; Butler and Hirano, 2014). Moreover, as K562 cells 
robustly grow and are transfectable using MPRA reagents, they permit the rapid, repeated acquisition 
of large numbers of cells, as observed in prior MPRAs (Ulirsch et al., 2016; Ernst et al., 2016). Finally, 
the availability of other published datasets generated on K562 cells (e.g., chromatin ChIP-seq data), 
allows for comparison between MPRA results, which are episomal in nature, and the endogenous 
behavior of the genome in the same cell type. However, we do note that MPRA results will also be 
limited as they will not directly reflect the response of alleles in the endogenous genome and within 
the in vivo tissues in which the COVID-19 response occurs. We therefore also integrated the MPRA 
results with datasets derived on endogenous immune tissues/cells to help improve our ability to iden-
tify biologically relevant candidate driver variants.

MPRA reveals 20 expression modulating variants (emVars)
We built the MPRA library following Tehwey and colleagues (2016) and performed four replicates 
of the experiment in K562 cells (Methods). We observed that normalized transcript counts between 
replicates were highly correlated (Pearson’s R>0.999 p=p-value<2.2e-16) (Figure 3A). As with other 

https://doi.org/10.7554/eLife.71235
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MPRA studies (Tewhey et al., 2016; Uebbing et al., 2021), transcript counts in the cDNA samples 
are significantly correlated with, but not completely explained by sequence representation in the DNA 
plasmid pool (correlation between means: Pearson’s R=0.24 p=2.2e-16; Spearman’s ρ=0.912 p-value 
<2.2e-16) (Figure 3B), suggesting that while some sequences do not have an effect on transcription, 
other do. The expression of positive control sequences in this experiment was significantly correlated 
with their expression in the source MPRA (Pearson’s R=0.59, p=0.0058) (Figure 3C). Any deviation 
between positive control sequence activity in this assay and the source MPRA for the two control 
sets is likely due to additional regulatory information in this assay for which the tested sequences are 
270 bp compared with 170 bp in the source MPRA. Moreover, for our positive control set we observed 

Figure 3. MPRA results show reproducibility and accuracy. (a) Log normalized counts for each tested sequence in replicate 1 compared with the 
replicate 2 of the MPRA. Pearson’s R and Spearman’s ρ are extremely high and significant across pairwise replicate comparisons of all four replicates 
(R>0.99 p-value <2.2 *10–16; ρ=0.98 p-value <2.2 *10–16). (b) Log normalized sequence counts for each tested in the plasmid DNA averaged across the 
four replicates compared with log normalized average sequence counts in the cDNA averaged across the four replicates. As with other MPRA studies 
(Tewhey et al., 2016; Uebbing et al., 2021), there is a significant correlation but the plasmid counts do not fully explain the cDNA counts (Pearson’s 
R=0.24 p-value <2.2 *10–16; Spearman’s ρ=0.92 p-value <2.2 *10–16), suggesting that some of the sequences have an effect on transcription. Sequences 
determined to be significantly active in the MPRA (methods) are colored in red, non-significant points are black. (c) Activity log fold change (LFC 
cDNA:pDNA) of positive control sequences in the source MPRA (Jagoda et al., 2021) and in this MPRA. The significant correlation (Pearson’s R=0.57 
p-value = 0.006; Spearman’s ρ=0.51 p-value 0.016) suggests that the activity results in this MPRA are accurate. (d) Fraction of sequences tested showing 
significant activity (LFC cDNA:pDNA corrected p-value >0.01). 95% of positive control sequences tested and 0.14% of negative control sequences 
tested show activity once again suggesting accuracy in the MPRA results. 53% of experimental sequences show significant activity.

https://doi.org/10.7554/eLife.71235
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that 95% of control sequences displayed activity, whereas only 14% of the negative control sequences 
displayed activity (Figure 3D).

Of the 613 experimental (1,226 alleles) tested variants, 327 (53%) were within sequences found to 
have detected effects on reporter gene expression (i.e., they are considered ‘active’ or cis-regulatory 
elements [CREs]) in the context of either the allele on the introgressed haplotype or via its alternative 
variant (Figure 3D) (Supplementary file 1j). Consistent with other MPRA studies (Tewhey et al., 2016; 
Ulirsch et al., 2016; Uebbing et al., 2021), most active sequences showed relatively small effects, 
with only 17.1% of active sequences showing a log fold change (LFC) greater than 2 (Figure 4A). To 
confirm that these active CRE sequences reflect endogenous K562 biology, we compared the distri-
bution of active CREs with K562 chromatin state data (Ernst and Kellis, 2017; Sloan et al., 2016). 
We observed that active CREs are significantly enriched relative to non-active sequences for falling 
with K562 DNase I Hypersensitivity Sites (DHS) and within poised promoters (OR: 8.05, p=0.023) 
(Figure 4B). They are also borderline significantly depleted of falling within heterochromatin (OR: 
0.73, p=0.072) (Figure 4B).

We next defined as ‘expression modulating variants’ (emVars) those variants exhibiting a signifi-
cant difference of expression between their two allelic versions using a multiple hypothesis corrected 

Figure 4. Properties of MPRA-identified active sequences and expression modulating variants. (a) Log Fold Change of the cDNA count compared 
to the plasmid DNA for each sequence and the -log10 associated multiple hypothesis corrected p-value. Active sequences are those with a corrected 
p-value <0.01; this threshold is denoted with a blue dashed line. The larger plot has a y-axis limit of 20; the inset on the right shows the full spread of 
the data with the light red shaded box denoting the area shown in the larger figure to the left. (b,d) Enrichment of active sequences in K562 genomic 
features relative to non-active sequences (b) or sequences with emVars relative to sequences without emVars (d). Genomic features indicated with a 
number represent chromatin states in K562 cells as defined by Ernst and Kellis, 2017. DHS and H3K27ac derive from ENCODE (Butler and Hirano, 
2014). Enrichments are reported as Fisher’s odds ratios with lines indicating confidence intervals. Significant enrichments (p<0.05) are colored in red. 
Missing chromatin states had no overlap with either active sequences (b) or those containing emVars (d). (c) Log Fold Change between active sequences 
with the allele on the introgressed haplotype compared with the sequence containing the other allele. Expression modulating variants (emVars) are 
those whose LFC for this measure is significant with a corrected p-value <0.01; this threshold is denoted with a blue dashed line.

https://doi.org/10.7554/eLife.71235
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p-value less than 0.01. Using this approach, we identified 20 emVars among the 613 variants we tested 
(Table 1, Figure 2E, Figure 3B). Consistent with previous MPRA studies (Tewhey et al., 2016; Ulirsch 
et al., 2016), the effect sizes of most emVars detected here are relatively modest, with only 1 emVar 
having an absolute LFC greater than 2 (Table 1, Figure 4C). Because the sample size is quite small (20), 
CREs containing emVars do not show significant enrichment within any endogenous K562 functional 
annotations. However, compared with tested sequences that do not contain emVars, CREs containing 
these emVars trend toward being over-represented within poised promoters, weak enhancers, DHS, 
insulators, repressive marks, and for depletion in heterochromatin regions (See Figure 4D).

Evaluation of emVars with other functional data reveals four putatively 
causal variants
We next examined the 20 emVars for additional evidence of a role in the regulatory mechanisms 
potentially linked with COVID-19 response. Particularly, we looked for emVars that are (1) signifi-
cantly (p<5*10–8) associated with COVID-19 severity, (2) are eQTLs for a gene with strong evidence 
of relating to the severe COVID-19 phenotype, (3) are within a chromosomal region that physically 
interacts with the promoter of the COVID-19 associated gene in an immune cell line, according to 
Hi-C data, and (4) are within chromatin regions that have epigenomic marks consistent with acting as 
CREs in human immune cells (see ‘emVar prioritization’ section of Methods for full details).

Of the 20 emVars, we found four that meet all of these criteria (Table 1, Figure 2). Based on the 
combination of eQTL and Hi-C data, the variant rs35454877 is most likely implicated in the down-
regulation of CCR5, while variants rs71327024, rs71327057, and rs34041956 appear to be involved in 
the regulation of CCR1. Of these, rs35454877 and rs71327024 fall within the LD Block A, which shows 
the strongest GWAS associations for COVID-19 severity and are 195 kb and 275 kb downstream of 
rs10490770, the most cited tag SNP for this GWAS signal (COVID-19 Host Genetics Initiative, 2021; 
Schmiedel et  al., 2021). Furthermore, data from other GWAS studies shows that these four vari-
ants are significantly (p<5*10–8) associated with other phenotypes that could relate to the COVID-19 
severity phenotype including: ‘Monocyte count’, ‘Granulocyte percentage of myeloid white cells’, 
and ‘Monocyte percentage of white cells’ (Astle et al., 2016). Finally, all four SNPs above fall within 
ChIP-seq peaks for at least one transcription factor (TF) (Supplementary file 1k), with rs71327024 
and rs35454877 overlapping peaks for as many as 89 and 36 different TFs, respectively (ENCODE TF 
ChIPseq NarrowPeaks from K562, GM12878 cell lines); among others, peaks for IKZF1, a key lympho-
cyte regulator (Sellars et al., 2011), are found overlapping all four SNPs. Nevertheless, we did not 
find that these SNPs alter TF binding affinity for any of the corresponding binding motifs analyzed 
(Supplementary file 1l). On the other hand, this analysis highlighted rs17713054, a SNP belonging to 
the top GWAS peak, where the archaic allele increases the binding affinity for CEBPB, a TF involved in 
Interleukin-mediated signaling (Poli, 1998). CEBPB was also independently shown to bind this region, 
a well-marked regulatory element, in two lung-derived cell lines (A549,IMR-90), see Figure 2—figure 
supplement 2. While rs17713054 was not classified as emVar in our experimental setting, further 
investigation on the role of this variant in modulating the response to SARS-CoV-2 is warranted.

Functional reporter analyses of top 4 emVars reveals causal variant 
activity in the presence of SARS-CoV-2
Chromatin Capture and eQTL data across various cell types led us to associate each of the four 
emVars to one of two target chemokine receptor genes, CCR1 and CCR5 (Table 1). We next sought to 
more directly connect these variants to expression of these two genes in the context of cells infected 
with SARS-CoV-2. Therefore, we designed a green fluorescent protein (GFP)-based reporter assay in 
which each allelic regulatory sequence (introgressed or non-introgressed emVar variant plus adjacent 
oligo-sequence) was cloned upstream of the promoter of the putative target gene (either CCR1 or 
CCR5) and the coding sequence of GFP (Figure 5A). We transfected each reporter construct into 
human lung epithelial (A549) cells that were engineered to express the receptor of SARS-CoV-2, 
angiotensin-converting enzyme 2 (ACE2; Blanco-Melo et al., 2020; LeBlanc and Colpitts, 2022). 
Mock transfected or transfected A549-ACE2 cells were then mock infected or infected with SARS-
CoV-2 (see Methods; Figure 5A, Figure 5—figure supplement 1).

In the mock infected condition (i.e., absence of SARS-CoV-2), we found that construct pairs at 
emVar rs71327024 and at emVar rs35454877 exhibited statistically significant expression differences 

https://doi.org/10.7554/eLife.71235
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between introgressed and non-introgressed alleles in A549-ACE2 cells, with higher levels driven by 
the introgressed alleles (i.e., above the dashed line at 1 in Figure 5B). Of the two, the response at 
emVar rs35454877 was the strongest, and was driven by increased activity by the introgressed allele. 
These findings in A549-ACE2 cells support our findings using MPRA, which was conducted using a 
minimal promoter in K562 cells.

However, in the presence of the SARS-CoV-2, we observed slightly different patterns (Figure 5B). 
Upon infection, we found that rs71327024 continued to be a significant emVar, with the introgressed 
allele driving 1.12 times more expression of GFP from the CCR1 promoter than the non-introgressed 
allele. While we did not observe expression modulation for emVar rs304041956 in the mock infected 
state, we did now observe a modest effect size with the non-introgressed allele driving slightly more 
expression than the introgressed allele (0.9FC Introgressed: Non-introgressed). Interestingly, for 
emVar rs35454877, our strongest response eQTL in the mock infected state, we now observe no 
response between alleles, the marked drop resulting from the substantial decrease in the activity 
of the introgressed allele upon viral infection. This finding could indicate that the heightened effect 
of the introgressed allele in more normal (mock infected) settings is actively down-regulated in the 
context of viral infection settings (see Discussion).

Discussion
We re-examined a previously identified adaptively introgressed segment in Eurasians within the 
context of the genome-wide signatures of introgression. We identified 613 variants within the intro-
gressed region (chr3:45,843,242–46,654,616) and these were tested for whether they are potential 
drivers of the association this region exhibits with increased COVID-19 severity. Using MPRA, we 
tested these variants in a multipotent immune-related cancer cell line and narrowed down the list to 
20 emVars where the expression level driven by the allele on the introgressed haplotype was signifi-
cantly different from the expression driven by the other allele. We did not find support in the MPRA 

Figure 5. Activity of four emVars in SARS-CoV-2 infected and uninfected A549-ACE2 cells using real-time PCR (qRTPCR). (a, top) Diagram of construct 
design and experimental transfection setup. (a, bottom) Constructs tested using in vitro transfection in A549-ACE2 cells whose results are shown in 
(b) in color-coded fashion. (b) Box-whisker plot graph depicting the transcript level of GFP expression driven by the introgressed allele normalized by 
the non-introgressed allele for each emVar in mock infection (i.e., absense of SARS-CoV-2) (left, solid color boxes) vs SARS-CoV-2 infected (right, empty 
color boxes) cells. The ‘*’ depicts significant changes using Wilcoxon statistical test that had a p-value of <0.05 (n=3 per condition). (c) Bar plots showing 
the infection ratio for each construct.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Transcript levels of experimental and control plasmids in the presence and absence of SARS-CoV-2 infection. 
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for the expression modulation potential of rs10490770 (COVID-19 Host Genetics Initiative, 2021), 
rs35044562 (Zeberg and Pääbo, 2020), or rs11385942 (Ellinghaus et al., 2020), variants previously 
reported as tagging GWAS signals for COVID-19 severity. These variants may therefore be likely only 
tagging rather than causative, albeit functional experimentation in other cell lines and conditions 
may show otherwise. By further mining our MPRA results in concert with datasets on the epigenomic 
and transcriptional environment of immune cells from other functional genomics sources, here we 
highlight four emVars that have particularly strong evidence of acting as putatively causal variants and 
whose archaic alleles are strongly implicated with CCR1 (rs71327024, rs71327057, rs34041956) and 
CCR5 (rs35454877) regulation.

We next tested these four emVars in reporter assays in a lung cell line (A549-ACE2) capable of 
expressing ACE2, the receptor for SARS-CoV-2, and in the presence and absence of SARS-CoV-2. 
This allowed us to gain insight into how these emVars modulate target gene expression in a rele-
vant COVID-19 cell type and infection state. Using this approach we whittled-down these emVars to 
three whose behavior changes in response to infection. Two emVars, emVar rs34041956 and emVar 
rs71327024, exhibited expression modulation between introgressed and non-introgressed variants 
in response to infection by the virus. While rs34041956 showed a very modest effect size, the intro-
gressed allele at rs71327024 drove 1.12 times more expression of GFP driven by the CCR1 promoter 
than the non-introgressed allele. Given that a consistent molecular symptom of severe COVID-19 
response is elevated cytokine levels, particularly elevated CCR1, this variant is a prime causal variant 
for the association between this genetic haplotype and severe COVID-19.

Strikingly, one emVar, rs35454877 which had exhibited the strongest expression modulation in the 
absence of the virus, did not show allelic modulation upon infection. During infection, the introgressed 
allele at rs35454877 showed markedly reduced CCR5 promoter driven reporter expression relative to 
the non-infection condition. Although this allele does not show modulation during infection, the 1.7x 
increase in GFP expression with a CCR5 promoter that this allele drives in the non-infected state may 
translate to a baseline higher level of CCR5 in individuals with this allele. Upon infection, the enhancer 
with the introgressed allele was severely down-regulated, to the level of the non-introgressed allele. 
Although the transcriptional down-regulation occurs during infection, these individuals still will likely 
have an elevated level of the CCR5 receptor protein at least initially, which may increase their risk of 
a hyperactive cytokine response. The down-regulation is possibly an attempt to reduce this risk, but 
it may not act quickly enough. This resting state difference in CCR5 protein levels should be explored 
as a potential predictor of COVID-19 infection severity.

We caution that while our experimental design was optimized for detecting cis-eQTLs variants 
effects and within a multi-potent immune-related cancer cell line, other longer range interactions 
between genomic regions and in other cell types may also be mediating severe COVID-19 response. 
For example, when comparing the response genes of the two identified trans-eQTLs in the intro-
gressed haplotype to RNA-seq studies testing COVID-19 infection in lung cell lines and tissues 
(Supplementary file 1h and Supplementary file 1i), 5 (45%) and 14 (41.2%) of the response genes 
for the two trans-eQTLs in this locus rs13063635 and rs13098911, respectively, were detected as 
differentially expressed in at least one in vitro experiment, although neither of these variants were 
detected as emVars in this MPRA. We also stress that our SARS-CoV-2 viral transfection reporter 
experiments represent only one clinically relevant context and that other emVars whose activity does 
increase upon infection may also be relevant. Therefore, we also urge additional functional studies 
to consider the effects of these trans-eQTLs and, in general, to replicate our findings on cis-eQTLS in 
other lung epithelial and other cell types from which some of the expression evidence we here build 
on are derived.

While our study provides strong experimental support for at least four archaic variants, and notably 
strong functional support for three variants (rs34041956, rs71327024, rs35454877) in the presence of 
viral transfection, at the introgressed locus, a deeper understanding of the regulatory architecture and 
the direction of the effect of these alleles in both the healthy and infected state and across different 
cell types needs further clarification. For example, in the severe COVID-19 phenotype, CCR1 and 
CCR5 are upregulated relative to their expression levels in moderate cases of the disease (Chua et al., 
2020) and we saw evidence of upreglation by introgressed alleles in our mock infection experiment 
as well. However, in our MPRA experiments in K562 cells the three top candidate emVars acting as 
regulators of CCR1 all showed down-regulation. Furthermore, alleles in Block A of the introgressed 
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haplotype, which exhibit the strongest GWAS associations with COVID-19 severity, all act as down-
regulating eQTLs for CCR1 in healthy whole blood samples. We hypothesize that this difference 
between the direction of effect of the alleles in healthy whole blood in vivo and K562 reporter assay in 
vitro episomal condition relative to in the A549-ACE2 disease state, reflects both differential regula-
tion of these genes in different cell types and upon infection, and possibly that these alleles contribute 
to the risk of severe COVID-19 by destabilizing the regulatory mechanism of CCR1 and CCR5, such 
that they have decreased expression in some cell types and conditions, but are hyper-expressed in 
others. Additional work needs to be done to further explore this potential mechanism as well as to 
uncover the molecular factors instrumental to it. Indeed, although hypothesizing a role for transcrip-
tion factors IKZF1 or CEBPB (possibly interacting with another SNP at the locus), our TF binding site 
analysis could not identify a potential binding-altering mechanism for these variants.

In light of the efforts of multiple groups devoted to narrowing down the genes mediating the 
COVID-19 severity association, we conclude that several genes at this locus on chromosome 3, 
including CCR1 and CCR5, display promising evidence for having a role in the underlying biological 
mechanisms. The involvement of most of them in the chemokine signaling pathway, and the evidence 
of coregulation provided by eQTL, epigenetic, and expression analyses, bring support to the hypoth-
esis that the COVID-19 response is modulated in a concerted way.

Methods
Introgression scans
Sprime
We downloaded the Sprime software from https://faculty.washington.edu/browning/sprime.jar and 
ran it using java-v1.8.0_40. We used 423 Estonians as the ingroup population along with 36 African 
samples from the Simons Genome Diversity Project (SGDP) with no evidence of European admixture 
(Mallick et al., 2016) as an outgroup (Supplementary file 1a). Following Browning et al., 2018, we 
then summed the number of Sprime alleles per segment, and for segments greater than or equal to 
30 alleles, we calculated the match rate to the Vindija Neanderthal genome (Prüfer et al., 2017) and 
the Denisovan genome (Meyer et al., 2012). Segments with greater than 0.6 match rate to the Nean-
derthal genome and less than 0.4 match rate to the Denisovan genome, were considered introgressed 
by Neanderthals. In total, we identified 693 such segments (Supplementary file 1c), including the 
segment containing the COVID-19 severity haplotype on chromosome 3 (see above).

U and Q95
Concerning U and Q95, following Racimo et al., 2017, for every 40 kb window within the genome, 
we calculated the U score as the number of SNPs per 40 kb window which had <1% frequency in a 
combined panel of African (AFR) individuals from the 1000 Genomes project (Auton et al., 2015) 
that show no major evidence of European admixture (Supplementary file 1a), had >20% frequency 
in 423 Estonians, and are homozygous in the Vindija Neanderthal genome (Prüfer et al., 2017). We 
also calculated the Q95 score as the 95% quantile frequency of the derived alleles in the Estonian set 
that are homozygous for the Vindija Neanderthal allele and are at <1% in the African set. We finally 
determined the top scoring windows to be those that are in the top 99th percentile of windows in 
terms of both U and Q95 scores (FDR 0–5.5%; Racimo et al., 2017).

GWAS data
GWAS data was downloaded from release 5 from the COVID-19 Host Genetics Institute (COVID-19 
Host Genetics Initiative, 2021). We utilized the ‘A2_ALL_leave_23andme’ dataset for which the 
tested phenotype is ‘Very severe respiratory confirmed covid vs. population’. There are 5,582 cases 
and 709,010 controls in this dataset.

eQTL data
eQTL data was obtained from the public repository of the eQTLGen consortium http://www.eqtlgen.​
org/cis-eqtls.html. Only significant cis- and trans-eQTLs, multiple hypothesis corrected p-value <0.05, 
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were included. Whenever Z-scores are reported including in Supplementary file 1e-g, the scores are 
polarized to the correct direction of effect of the allele along the introgressed haplotype.

Covid-19 and related RNA-seq datasets
Datasets for RNA-seq studies performed on in vitro lung cell lines exposed to either SARS-CoV-2 
infection, related coronaviruses (e.g. MERS), other virus infection (e.g. RSV), or immune stimulation 
were obtained from the GEO database. Namely, GSE147507 provided by the tenOever lab (Blanco-
Melo et  al., 2020; Daemen et al. 20201) – Series 1–9 and 15, GSE139516 (Zhang et  al., 2020), 
GSE122876 (Yuan et al., 2019), and GSE151513 (Banerjee et al., 2021). Raw RNA-seq data were 
all processed with a similar pipeline. Sequence read quality was checked with FastQC (https://www.​
bioinformatics.babraham.ac.uk/projects/fastqc/), with reads subsequently aligned to the human refer-
ence transcriptome (GRCh37.67) obtained from the ENSEMBL database (Hunt et al., 2018) which 
was indexed using the ‘index’ function of Salmon (version 0.14.0) (Patro et al., 2017) with a k-mer 
size of 31. Salmon alignment was performed with the ‘quant’ function with the following parameters: 
‘-l A --numBootstraps 100 --gcBias --validateMappings’. All other parameters were left 
to defaults. Resulting quantification files were loaded into R (version 3.6.1) (R Development Core 
Team, 2017) via the tximport library (version 1.14.0; Soneson et al., 2015) with the ‘type’ option set 
to ‘salmon’. Transcript quantifications were summarized to the gene level using the corresponding 
hg19 transcriptome GTF file mappings obtained from ENSEMBL. Count data were subsequently 
loaded into DESeq2 (version 1.26.0; Love et al., 2014) using the ‘DESeqDataSetFromTximport’ func-
tion. For subsequent differential-expression analysis, a low-count filter was applied prior to library 
normalization, wherein a gene must have had a count greater than five in at least three samples (in 
a given dataset) in order to be retained. For tenOever datasets, differential expression analysis was 
performed comparing treated samples (i.e., infected of stimulated cells) relative to the respective 
series’ mock control samples. For the Yuan et al., 2019 dataset, expression was compared between 
MERS-infected and mock controls. For the Zhang et  al., 2020 dataset, hours post-infection were 
used as a continuous variable (with mock representing ‘0 H post-infection’) for the DESeq2 model, 
with significance defined as a gene being up- or down-regulated as a function of post-infection time. 
The differential expression analysis for the processed Banerjee et al., 2021 dataset, which is also 
a time-course dataset, was implemented as described previously (Banerjee et  al., 2021). Sets of 
significant genes in each dataset (defined as having a Benjamini-Hochberg adjusted p-value of <0.05) 
were subsequently intersected with the sets of response genes identified for the cis- and trans-eQTLs 
described in this study.

MPRA design and implementation
We used an MPRA to determine which of these 613 variants within the introgressed segment fall 
within active CREs and whether they modulate reporter gene expression relative to the other variant 
at the same position. We conducted this assay in K562 cells, a leukemia cell line that displays multipo-
tent hematopoietic biology and which allows for comparison between MPRA data and eQTL datasets 
derived from whole blood samples. Furthermore, K562 cells can be induced into cell fates associated 
with the COVID-19 phenotypes including monocyte and macrophage and neutrophils (Butler and 
Hirano, 2014).

Each variant was tested in the context of 270 bp of the endogenous sequence centered around 
each variant. For the Sprime alleles, if there is another allele within the span of this 270 bp sequence 
that is highly linked (r2 >0.8) in the Estonian population and at least in 9 of the 10 1KG populations it 
was included in the 270 bp sequence. This 270 bp sequence will be hereafter referred to as the ‘tested 
sequence’. Additionally, we included 44 control sequences from a past MPRA experiment performed 
in K562 cells (Jagoda et al., 2021) with the 22 strongest up-regulating sequences from this MPRA 
serving as positive controls and the 22 sequences with smallest magnitude of effect on expression 
serving as negative controls. In the original assay, these control sequences were 170 bp in length, 
here we extended the sequences to create 270 bp sequences centered around the original 170 bp 
sequence. This difference in length could account for any potential regulatory discrepancy between 
the original experiment and this one. In total, the MPRA experiment consisted of 1,270 sequences. 
All tested sequences additionally included 15 bp of adaptor sequence on both the 5’ and 3’ side to 
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facilitate cloning into the MPRA vector. Following Tewhey et al., 2016, sequences were cloned into 
the MPRA vectors oriented according to the nearest transcription start site.

The tested sequences were synthesized by Twist Bioscience and the cloning steps to generate the 
MPRA vector library were conducted following the procedure outlined by Tewhey et al., 2016 using 
the scale of their smaller library size. Barcoded sequences were initially cloned into pGL4:23:∆xba∆luc 
vectors and four sequencing libraries were prepared to sequence across the oligos and barcodes 
to determine oligo-barcode combinations within this mpra∆orf pool. Sequencing was conducted by 
the Harvard Bauer Core facility on an Illumina NovaSeq using 2x250 bp chemistry. Again, following 
Tewhey et  al., 2016, an amplicon containing a GFP open reading frame, minimal promoter, and 
partial 3’ UTR was cloned into the mpra∆orf library to make the final mpra:gfp library.

For each of four biological replicates, 40 µg of mpra:gfp vector pool was then transfected into 
10  million K562 cells using electroporation with the Lonza 4D-Nucleofector following the manu-
facturer’s protocol. After 24 hr, cells were collected and flash frozen in liquid N2. Closely following 
Tewhey et al., 2016 procedure for their smaller library, total RNA was extracted, GFP mRNA was 
isolated, converted to cDNA, and prepared into sequencing libraries to sequence the barcodes. Four 
sequencing libraries were also prepared of the mpra:gfp plasmid to obtain the representation of each 
barcode in the transfected vector pool. Barcode sequencing was performed on an Illumina MiSeq with 
1x50 bp chemistry at the Harvard Bauer Core.

MPRA data analysis
Barcode - Oligo reconstruction
All MPRA data analysis steps were conducted following Tewhey et al., 2016. The 250 bp paired end 
reads from the sequencing of the mpra∆orf library were merged using Flash v.1.2.11 (Magoč and Salz-
berg, 2011). Merged amplicon sequences were then filtered for quality control such that sequences 
were kept if (1) there was a perfect match of 10 bp on the left or right side of the barcode, (2) the 
10 bp on both sides of the barcode matched with levenshtein distance of 3 or less, and (3) the 2 bp 
on either side of the barcode matched perfectly. Sequences that passed through these filters were 
aligned back to the expected sequence pool using Bowtie2 v. 2.3.4.1 with the --very-sensitive 
flag. Alignments that had less than 95% perfect matching with the expected sequence and any align-
ment which had a mismatch at the variant position were removed. Barcodes that matched to more 
than one expected sequence are unusable and therefore were also removed.

Because of our small library size, we were able to get a very high barcode yield. All oligo sequences 
were represented and tagged with a wide diversity of barcodes, with the median unique barcodes 
per oligo being 18,812. Only five oligos had fewer than 100 unique barcodes, with the fewest being 
tagged by 27 unique barcodes. This large number of unique barcodes lead to extremely high reduc-
ibility between replicates (Figure 2A), which will allow for a high degree of sensitivity to detect subtle 
differences between alleles (Tewhey et al., 2016).

Tag sequencing
Again, following Tewhey et al., 2016, the 1x50 bp tag sequencing reads were filtered such that reads 
were only kept if they had a maximum levenshtein distance of 4 with the constant sequence within the 
3’ UTR of the GFP as well as a perfect match with the two base pairs adjacent to the barcode. If the 
sequence passed through these filters, the barcodes were then matched back to the oligos based on 
the information from the mpra∆orf library sequencing described above. The counts for each barcode 
were summed for each oligo. This summation of the counts per barcode reduces the noise that could 
be derived from any individual barcode having a functional effect.

Determination of active putative cis-regulatory elements and expression 
modulating variants (emVars)
Following Tewhey et al., 2016, the summed oligo counts from the tag sequencing for all four cDNA 
samples and all four plasmid samples were passed in DESeq2 and sequencing depth was normalized 
using the median-of-rations method (Love et al., 2014). We then used DESeq2 to model the normal-
ized read counts for each oligo as a negative binomial distribution (NB). DESeq2 then estimates the 
variance for each NB by pooling all oligo counts across all the samples and modeling the relation-
ship between oligo counts and the observed dispersion across all the data. It then estimates the 
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dispersion for each individual oligo by taking this observed relationship across all the data as a prior 
to performing a maximum posteriori estimate of the dispersion for each oligo. Therefore, the bias 
for the dispersion estimate for each oligo is greatly reduced because it relies on pooled information 
from all other oligos. We then used DESeq2 to estimate whether an oligo sequence had an effect on 
transcription by calculating the log fold change (LFC) between the oligo count in the cDNA replicates 
compared with its count in the plasmid pool. We tested whether this LFC constituted a significant 
difference of expression using Wald’s test and required a stringent Bonferroni corrected p-value of 
less than 0.01 for a significant result. If an oligo sequence had a significant LFC with either allele, the 
sequence is considered ‘“active’. Finally, to determine which variants are expression modulating, for 
oligos which were determined to be active, we used DESeq2 to calculate the fold change between 
the two versions of the oligo sequences with Wald’s test to calculate the p-values. p-values were then 
corrected using the Benjamini-Hochberg test to correct for multiple hypothesis testing. Significance 
was defined stringently as a multiple hypothesis corrected p-value of <0.01.

emVar prioritization and intersection of data from other functional sources
To identify which of the 20 variants identified by the MPRA as emVars are the best candidates for 
contributing to an increased risk of severe COVID-19, we analyzed the MPRA data with data from 
other sources specifically:

GWAS data
As described above, GWAS data is from a recent release (release 5) from the COVID-19 Host Genetics 
Initiative, 2021. If the p-value for an emVar was less than 5 * 10–8 (or -log10(p-value)>7.3), it was 
considered significant and passed through this prioritization step.

Promoter-capture Hi-C datasets
Promoter-capture (Hi-C) data were obtained from Jung et al., 2019, particularly the file ‘​GSE86189_​
all_​interaction.​po.​txt.​gz’ containing processed information on genomic regions with significant 
contacts of targeted promoters. This dataset was generated from promoter-capture assays across 
a number of different tissues and cell-types; given our particular interest in immune cell regulation, 
we considered only those significant interactions (reported p-value <0.01) present in samples from 
lymphoblasts (GM12878.ADS and GM19240.ADS), spleen (STL001.SX1 and STL003.SX3), and thymus 
(STL001.TH1) samples. Interacting regions, which may indicate putative CREs, were intersected with 
our defined emVars using bedtools intersect. If an emVar falls within a contact site for any gene, this 
is reported in Table 1. For our prioritization, if an emVar is both within a contact site for a gene with 
relevance to COVID-19 infection, particularly CCR1, which is differentially expressed in some SARS-
COV-2 infection studies (Supplementary file 1h and Supplementary file 1i) and by others (Chua 
et al., 2020), and CCR5 which is reported as differentially expressed in other studies (Chua et al., 
2020), and the emVar is also an eQTL for this same gene (Võsa et al., 2018), that supports its priori-
tization (Table 1).

Candidate cis-regulatory elements (CCREs) by ENCODE
To further validate emVars for biological relevance, we downloaded all 926,535 human cCREs from 
https://screen.encodeproject.org/ (Moore et al., 2020). cCREs are DNAse hypersensitivity sites that 
are further supported by additional evidence of cis-regulatory activity in the form of either histone 
modifications (H3K4me3 and H3K27ac) or CTCF-binding data. These cCREs were further classified 
based on the combination of both their epigenomic signals as well as their genomic context into 
four major categories: cCREs with promoter-like signatures (cCRE-PLS), cCREs with enhancer-like 
signatures (cCRE-ELS, these are further subsetted as either proximal [pELS] or distal [dELS]), DNase-
H3K4me3 cCREs, and CTCF-only.

To intersect these human cCREs with our emVar data, we first used LiftOver Hinrichs et al., 2006 to 
convert our emVar coordinates from GRCh37 to GRCh38 and then used Bedtools intersect to search 
for emVars falling within cCREs. These intersections are reported in Table 1. For emVars that already 
passed through the prior prioritization steps that overlapped a cCRE, we then examined the tissue 
level information on the cCRE on the web browser (https://screen.encodeproject.org/). emVars were 
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prioritized if they are within cCREs that had cCRE annotations in at least one immune-related ‘class 
a’ cell line, which is a cell line for which data on all four makers (DNAse, H3K4me3, H3K27ac, CTCF-
binding) is available. These results are displayed in Figure 2D and Table 1.

TF binding analysis
We used ENCODE (Davis et al., 2018) TF ChIPseq NarrowPeaks data (downloaded on 13/09/2021) 
for COVID19-relevant untreated conditions: blood-derived cell lines (K562,GM12878), lung-derived 
cell lines (A549, IMR-90), as well as primary cells from lung fibroblasts and upper lobe of left lung 
tissue experiments.

We extracted TF Positional Weight Matrices (PWMs) from HOCOMOCO v11 (Kulakovskiy et al., 
2018) core human dataset and scored all positions within ChIPseq peaks with the PWM for the rele-
vant TF following methods in Molineris et al., 2013. In particular, we defined TF affinity as log2 of the 
ratio between the probability of obtaining a motif from the TF PWM and the probability of obtaining 
it from a background model given by GC-content in the human genome. Considering only positions 
that overlap a SNP, and both the modern human and archaic alleles, we define putative TF binding 
sites (TFBS) as those with an affinity score above a cutoff defined as –0.021*SM

2 +1.020*SM +0.032, 
where SM is the maximal score for that PWM (after the local maximum at SM = 24.2857 the cutoff is set 
to 12.4177). We define affinity-changing SNPs if only one of the alleles yields an affinity greater than 
such cutoff and their difference is greater than 0.5.

Generation of custom plasmids for SARS-CoV-2 virus infections
Four paired constructs (introgressed vs non-introgressed) were designed to check the activity of our 
four top emVars (rs71327024, rs71327057, rs34041956 of CCR1 and rs35454877 of CCR5). Each 
oligonucleotide and the promoter fragment of the corresponding gene were subcloned into a vector 
(Promega Monster Green Fluorescent Protein phMGFP vector; catalog number E6421) containing 
EGFP. The custom plasmid synthesis was done via Genewiz, where the EGFP and the minimal 
promoter of the vector was replaced by each oligonucleotide +promoter of the corresponding gene 
(sequences of the eight custom plasmids are given in Supplementary file 1m). The eight custom plas-
mids referred to as A-I in the subsequent SARS-CoV-2 virus infection experiments are listed as below: 
promoter of the target gene is given first, followed by the four SNP rsID and if the oligonucleotide 
is introgressed or not. A: CCR1_ rs71327024_non-introgressed; B: CCR1_ rs71327024_introgressed; 
C: CCR1_ rs71327057_non-introgressed; D: CCR1_ rs71327057_introgressed; E: CCR1_ rs34041956_
non-introgressed; F:CCR1_ rs34041956_introgressed; G: CCR5_ rs35454877_non-introgressed; H: 
CCR5_ rs35454877_introgressed; I: control plasmid (phMGFP vector).

Cell culture and SARS-CoV-2 virus infection
A549-ACE2 cells (human lung adenocarcinoma derived cells overexpressing ACE2) were generated by 
transducing A549 cells (ATCC) with lentiviruses carrying the ACE2 coding sequence. Lentiviruses were 
produced by co-transfection of HEK293T/17 cells with a transfer plasmid encoding ACE2 (Addgene 
#154981), the lentiviral packaging plasmid psPAX2 (Addgene #12260) and an envelope plasmid 
encoding VSV-G (Addgene #8454). Following transduction and selection with 10 µg/mL blasticidin, 
bulk cell populations were diluted to single cells by limiting dilution, and single-cell clonal popula-
tions were expanded. For this study, we used the clonal population A549-ACE2 B9. A549-ACE2 cells 
were maintained in Ham’s F-12K (Kaighn’s) medium supplemented with 10% fetal bovine serum (FBS; 
Sigma-Aldrich), 10 µg/ml blasticidin (Gibco), and Penicillin/Streptomycin (Pen/Strep; VWR). For SARS-
CoV-2 infections, 1.5x105 cells/well were seeded in a 12-well plate for 24 hr. After 24 hr, cells were 
transfected with 200 ng of plasmids A-I (see above) for 24 hr, followed by mock infection or infection 
with ancestral SARS-CoV-2 (VIDO-01 isolate) for 24 hr. After 24 hr of infection, bulk RNA was extracted 
from mock infected and SARS-CoV-2-infected cells, followed by gene expression analyses using quan-
titative real-time PCR (qRTPCR). SARS-CoV-2 infections were performed at a multiplicity of infection 
(MOI) of 1. Regarding transfection controls, equal amounts of plasmid I (control plasmid, 200 ng) were 
transfected for both mock and SARS-CoV-2-infected cells. We noticed comparable amount of eGFP 
transcripts across all experimental conditions for plasmid I. This demonstrates that transfection effi-
ciency did not vary significantly between experimental conditions in A549-ACE2 cells. Experiments, 
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performed in triplicate with SARS-CoV-2, were performed in a BSL3 laboratory at the Vaccine and 
Infectious Disease Organization, University of Saskatchewan following approved protocols.

Quantitative real-time PCR (qRTPCR)
Bulk cellular RNA extraction was performed using RNeasy Mini Kit (Qiagen) according to the manu-
facturer’s protocol. Four hundred nanograms of purified RNA was reverse transcribed using iScript 
gDNA Clear cDNA Synthesis Kit (Bio-Rad). Quantitative PCR reactions were performed with SsoFast 
EvaGreen supermix (Bio-Rad) for eGFP and SARS-CoV-2 UpE Relative mRNA expression of eGFP was 
normalized to UpE and presented as 40-Ct. Primer sequences used were SARS2 UpE F – ATTG​TTGA​
TGAG​CCTG​AAG, SARS2 UpE R – TTCG​TACT​CATC​AGCT​TG, eGFP F - ​ATGA​​AGGG​​TGTG​​GACG​​
ACTG​ and eGFP R- ​CGCA​​CGTA​​CATC​​TTCT​​CGGT​. qRTPCR to determine UpE levels was performed 
using as previously described (Banerjee et al., 2017).
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