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Abstract Replicability is an important feature of scientific research, but aspects of contemporary 
research culture, such as an emphasis on novelty, can make replicability seem less important than it 
should be. The Reproducibility Project: Cancer Biology was set up to provide evidence about the 
replicability of preclinical research in cancer biology by repeating selected experiments from high- 
impact papers. A total of 50 experiments from 23 papers were repeated, generating data about the 
replicability of a total of 158 effects. Most of the original effects were positive effects (136), with the 
rest being null effects (22). A majority of the original effect sizes were reported as numerical values 
(117), with the rest being reported as representative images (41). We employed seven methods to 
assess replicability, and some of these methods were not suitable for all the effects in our sample. 
One method compared effect sizes: for positive effects, the median effect size in the replications 
was 85% smaller than the median effect size in the original experiments, and 92% of replication 
effect sizes were smaller than the original. The other methods were binary – the replication was 
either a success or a failure – and five of these methods could be used to assess both positive and 
null effects when effect sizes were reported as numerical values. For positive effects, 40% of replica-
tions (39/97) succeeded according to three or more of these five methods, and for null effects 80% 
of replications (12/15) were successful on this basis; combining positive and null effects, the success 
rate was 46% (51/112). A successful replication does not definitively confirm an original finding or 
its theoretical interpretation. Equally, a failure to replicate does not disconfirm a finding, but it does 
suggest that additional investigation is needed to establish its reliability.

Introduction
Science is a system for accumulating knowledge. Independent researchers and teams study topics 
and make claims about nature based on the evidence that they gather. They also share their work so 
that others can evaluate, extend, or challenge the evidence and claims. The accumulation of evidence 
weeds out claims that are unreliable, and supports the development of new models and theories. 
Over time, uncertainty declines and the accumulated knowledge provides useful descriptions, effec-
tive predictions, and a better understanding of nature. Humanity applies this system in service of 
creating knowledge, treating disease, and advancing society.

An important feature of this system is replication (Hempel, 1968; Musgrave, 1970; Nosek and 
Errington, 2020a; Salmon and Glymour, 1999). A scientific claim is said to be replicable if it is 
supported by new data. However, it is often not straightforward to decide if a claim is supported by 
new data or not. Moreover, the success or failure of an attempt to replicate rarely provides a defin-
itive answer about the credibility of an original claim. When the replication attempt is successful, 
confidence in the reliability of the claim increases, but that does not mean that the claim is valid: a 
finding can be both replicable and invalid at the same time. Repeated successful replications can help 
to eliminate alternative explanations and potential confounding influences, and therefore increase 
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confidence in both reliability and validity, but they might not eliminate all confounding influences. 
It is possible that the original experiment and all the replication attempts could be invalidated by a 
common shortcoming in experimental design.

When a replication attempt is not successful, it is possible that the original was a false positive 
– noise mistaken as a signal. It is possible that the original claim was overly generalized and is only 
replicable under a much narrower range of conditions than was originally believed. It is also possible 
that the methodology necessary to produce the evidence is not sufficiently defined or understood, 
or that the theoretical explanation for why the finding occurred is incorrect. Failures in implementing 
experimental protocols may also result in replication attempts being uninformative.

All of these possibilities are ordinary and can occur when researchers have been rigorous in their 
work. What should not be ordinary is persistent failure to recognize that some scientific claims are 
not replicable. Science advances via self- correction, the progressive identification and elimination of 
error. Self- correction requires a healthy verification process that recognizes non- replicability, elimi-
nates unproductive paths, and redirects attention and resources to promising directions. A failure to 
recognize that some claims are not replicable can foster overconfidence, underestimate uncertainty, 
and hinder scientific progress.

There is accumulating evidence that non- replicability may be occurring at higher rates than recog-
nized, potentially undermining credibility and self- correction. Theoretical analyses point to a system 
of incentives that prioritizes innovation over verification, leading to infrequent efforts to replicate 
findings and to behaviors that could reduce the replicability of published findings such as selective 
reporting, presenting exploratory findings as confirmatory tests, and failures of documentation, trans-
parency, and sharing (Casadevall and Fang, 2012; Gelman and Loken, 2013; Greenwald, 1975; 
Kimmelman et al., 2014; Makel et al., 2012; Nosek et al., 2012; Rosenthal, 1979). For instance, 
one theoretical analysis estimated that more than half of research findings are false (Ioannidis, 2005). 
And in a survey, 60% of biologists who responded reported that they had failed to replicate their own 
results, and more than 75% had failed to replicate results from a different lab (Baker, 2016).

Large- scale replication studies in the social and behavioral sciences provide evidence of replica-
bility challenges (Camerer et al., 2016; Camerer et al., 2018; Ebersole et al., 2016; Ebersole et al., 
2020; Klein et al., 2014; Klein et al., 2018; Open Science Collaboration, 2015). In psychology, across 
307 systematic replications and multisite replications, 64% reported statistically significant evidence 
in the same direction and effect sizes 68% as large as the original experiments (Nosek et al., 2021).

In the biomedical sciences, the ALS Therapy Development Institute observed no effectiveness of 
more than 100 potential drugs in a mouse model in which prior research reported effectiveness in 
slowing down disease, and eight of those compounds were tried and failed in clinical trials costing 
millions and involving thousands of participants (Perrin, 2014). Of 12 replications of preclinical spinal 
cord injury research in the FORE- SCI program, only two clearly replicated the original findings – one 
under constrained conditions of the injury and the other much more weakly than the original (Steward 
et  al., 2012). And, in cancer biology and related fields, two drug companies (Bayer and Amgen) 
reported failures to replicate findings from promising studies that could have led to new therapies 
(Prinz et al., 2011; Begley and Ellis, 2012). Their success rates (25% for the Bayer report, and 11% 
for the Amgen report) provided disquieting initial evidence that preclinical research may be much less 
replicable than recognized. Unfortunately, because of proprietary concerns, very little information 
was made available on the studies that failed to replicate, on the replication methodology, or on the 
particular barriers encountered for replicating the findings. This lack of transparency makes it difficult 
to ascertain the reasons for failures to replicate and critique the basis of the claims.

In the Reproducibility Project: Cancer Biology, we sought to acquire evidence about the replica-
bility of preclinical research in cancer biology by repeating selected experiments from 53 high- impact 
papers published in 2010, 2011, and 2012 (Errington et al., 2014). We describe in a companion paper 
(Errington et al., 2021b) the challenges we encountered while repeating these experiments. These 
barriers include: shortcomings in documentation of the original methodology; failures of transpar-
ency in original findings and protocols; failures to share original data, reagents, and other materials; 
methodological challenges encountered during the execution of the replication experiments. These 
challenges meant that we only completed 50 of the 193 experiments (26%) we planned to repeat. 
The 50 experiments that we were able to complete included a total of 158 effects that could be 
compared with the same effects in the original paper. It was common for experiments to have multiple 
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effects, such as assessing whether an intervention affected both tumor burden and overall survival, or 
assessing the impact that depleting different genes has on cellular proliferation.

In this paper, we report the results of a meta- analysis of all these comparisons. There is no single 
method for assessing the success or failure of replication attempts (Mathur and VanderWeele, 2019; 
Open Science Collaboration, 2015; Valentine et al., 2011), so we used seven different methods to 
compare the effect reported in the original paper and the effect observed in the replication attempt 
(see Results). Six of these methods were dichotomous (i.e., replication success/failure) and one was 
not.

In total, 136 of the 158 effects (86%) reported in the original papers were positive effects – the 
original authors interpreted their data as showing that a relationship between variables existed or 
that an intervention had an impact on the biological system being studied. The other 22 (14%) were 
null effects – the original authors interpreted their data as not showing evidence for a meaningful 
relationship or impact of an intervention. Furthermore, 117 of the effects reported in the original 
papers (74%) were supported by a numerical result (such as graphs of quantified data or statistical 
tests), and 41 (26%) were supported by a representative image or similar. For effects where the orig-
inal paper reported a numerical result for a positive effect, it was possible to use all seven methods of 
comparison. However, for cases where the original paper relied on a representative image (without a 
numerical result) as evidence for a positive effect, or when the original paper reported a null effect, it 
was not possible to use all seven methods.

Results
In this section we discuss the seven different methods that we used to assess replication attempts, and 
report what we found when we used these methods to compare the effects reported in the original 
papers and the effects observed in the replications. The results are reported in Table 1. We display 
the results of original positive effects and original null effects separately; we also display cases where 
the original effect was reported as a numerical value separate from cases where the original effect 
was reported as a representative image. In some cases we conducted two or more internal replication 
experiments for the same original effect, which increased the total number of outcomes from 158 to 
188 (see Materials and methods). In the text of this article we mostly report and discuss our results 
in terms of effects, the relevant tables and figures report the results by outcome, effect, experiment, 
and paper.

The nested structure of outcomes within effects, effects within experiments, and experiments 
within papers provides different ways to characterize the results, and it is possible for some effects 
within an experiment to replicate successfully while other effects in the same experiment fail to repli-
cate. However, the results are similar irrespective of whether we look at them by paper (23 in total), 
by experiment (50 in total), by effect (158 in total), or by outcome (188 in total). We also use a number 
of strategies for aggregating data across effects and experiments, but observe very similar findings 
regardless of method used for aggregation (see Tables S1–S3 in Supplementary file 1).

Evaluating replications with the ‘same direction’ criterion
According to our first criterion, a replication attempt is successful if the original effect and the repli-
cation effect are in the same direction. This is inclusive of original effects that are reported as a repre-
sentative image without numerical values.

Among the 136 effects that were reported as being positive in the original experiments, 108 (79%) 
were likewise in the positive direction in the replications (Table 1). Moreover, the replication rate for 
the 101 cases where the original effect was based on a numerical result (80%) and the 35 cases where 
the original effect was based on a representative image (79%) were essentially the same. A weakness 
of the ‘same direction’ criterion is that it is a ‘low bar’ for determining replication success. If there were 
no true effects and all original and replication experiments were just investigating noise, the direction 
of original and replication effects would be random, and we would expect a 50% replication success 
rate. That makes 50% the lowest expected success rate with this criterion. Also, some findings have 
only a single direction – either the phenomenon is absent or present. As such, any detection of an 
effect would be labeled a success no matter the magnitude.

https://doi.org/10.7554/eLife.71601
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Table 1. Replication rates according to seven criteria.

Papers Experiments Effects All outcomes

Total number 23 50 158 188

  

ORIGINAL POSItIVE RESULtS

Numerical results

Same direction 17 of 19 (89%) 26 of 35 (74%) 80 of 101 (79%) 95 of 116 (82%)

Direction and statistical significance 8 of 19 (42%) 17 of 33 (52%) 42 of 97 (43%) 44 of 112 (39%)

Original ES in replication CI 5 of 19 (26%) 3 of 33 (9%) 17 of 97 (18%) 26 of 112 (23%)

Replication ES in original CI 5 of 19 (26%) 11 of 33 (33%) 42 of 97 (43%) 50 of 112 (45%)

Replication ES in PI (porig) 6 of 19 (32%) 13 of 33 (39%) 56 of 97 (58%) 67 of 112 (60%)

Replication ES≥ original ES 1 of 19 (5%) 1 of 33 (3%) 3 of 97 (3%) 3 of 112 (3%)

Meta- analysis (p < 0.05) 15 of 19 (79%) 26 of 33 (79%) 60 of 97 (62%) 75 of 112 (67%)

Representative images

Same direction 9 of 10 (90%) 12 of 16 (75%) 28 of 35 (80%) 34 of 45 (76%)

Direction and statistical significance 3 of 8 (40%) 7 of 12 (58%) 14 of 22 (64%) 14 of 22 (64%)

Original image in replication CI 5 of 7 (71%) 3 of 11 (27%) 10 of 21 (48%) 10 of 21 (48%)

Replication effect ≥ original image 3 of 7 (43%) 5 of 11 (45%) 7 of 21 (33%) 7 of 21 (33%)

Sample sizes

Median [IQR] of original 46.0 [20.0–100] 20.0 [8.5–48.0] 8.0 [6.0–13.0] 8.0 [6.0–18.0]

Median [IQR] of replication 50.0 [28.0–128] 24.0 [11.5–50.0] 12.0 [8.0–22.2] 12.0 [8.0–18.0]

  

ORIGINAL NULL RESULtS

Numerical results

Same direction N/A N/A N/A N/A

Direction and statistical significance 9 of 11 (82%) 10 of 12 (83%) 11 of 15 (73%) 10 of 20 (50%)

Original ES in replication CI 8 of 11 (73%) 9 of 12 (75%) 11 of 15 (73%) 12 of 20 (60%)

Replication ES in original CI 9 of 11 (82%) 10 of 12 (83%) 12 of 15 (80%) 13 of 20 (65%)

Replication ES in PI (porig) 9 of 11 (82%) 10 of 12 (83%) 12 of 15 (80%) 14 of 20 (70%)

Replication ES ≤ original ES N/A N/A N/A N/A

Meta- analysis (p > 0.05) 8 of 11 (73%) 10 of 12 (83%) 10 of 15 (67%) 11 of 20 (55%)

Representative images

Same direction N/A N/A N/A N/A

Direction and statistical significance 3 of 3 (100%) 3 of 3 (100%) 4 of 5 (80%) 4 of 5 (80%)

Original image in replication CI 1 of 3 (33%) 1 of 3 (33%) 3 of 5 (60%) 3 of 5 (60%)

Replication effect ≤ original image N/A N/A N/A N/A

Sample sizes

Median [IQR] of original 16.0 [8.0–25.0] 12.0 [6.0–20.0] 15.0 [7.5–31.0] 18.0 [8.0–514]

Median [IQR] of replication 24.0 [16.0–69.0] 21.0 [8.0–54.0] 27.0 [8.0–66.8] 24.0 [16.0–573]

Table 1 continued on next page
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The other 22 cases in the original experiments were reported as null effects. However, because of 
random error, few truly null effects are nil, literally zero, meaning that they have a direction. But, this 
means that there is no obvious interpretation for success or failure on the ‘same direction’ criterion 
for original null effects. Given this, we do not use the ‘same direction’ criterion to assess replications 
of original null effects.

Evaluating replications against a null hypothesis
Null hypothesis significance testing is used to test for evidence that an observed effect size or some-
thing larger would have been unlikely to occur under the null hypothesis. For positive original results, 
it is straightforward to assess whether a replication effect observes a statistically significant result in 
the same direction as the original effect. The simplicity of this indicator has led to it being a common 
replication criterion despite its dichotomous nature, its dependence on the power of the replication 
experiment, and challenges for proper interpretation (Andrews and Kasy, 2019; Camerer et  al., 
2016; Camerer et al., 2018; Open Science Collaboration, 2015; Patil et al., 2016; Valentine et al., 
2011). Of the 112 original effects with associated statistical significance tests, 97 were interpreted as 
positive effects, and 15 were interpreted as null effects (Figure 1).

For original positive effects, 42 of the 97 (43%) replication effects were statistically significant and in 
the same direction as the original effect; 48 (49%) were null results; and 7 (7%) were statistically signif-
icant in the opposite direction. Based on the power of the experiments, if the replications were all 
statistically consistent with the original experiments, we would expect approximately 87% of replica-
tions to be statistically significant and positive (Mathur and VanderWeele, 2020b), which is consider-
ably higher than what we observed (43% [95% CI: 25%, 62%]). A sensitivity analysis that approximately 
accounts for possible heterogeneity within pairs also yielded a value (85%) that was considerably 
higher than what was observed.

For the original null effects, 11 (73%) replication effects were null results and 4 (27%) were statisti-
cally significant. Combining positive effects that remained positive and null effects that remained null, 
53 of 112 (47%) of the replications were consistent with the original effects.

For cases in which the original findings were reported as representative images, we were able to 
conduct statistical significance tests for the replications: of the 22 effects that were positive in the 
original experiments, 14 (64%) replications were statistically significant in the same direction. And of 
the five null effects in the original experiments, 4 replications were also null (Table 1).

A weakness of this approach to assessing replication results is that it treats p = 0.05 as a bright- line 
criterion between replication success and failure. For example, if an excess of findings fell just above 
p = 0.05 it could indicate false negatives are present in the non- statistically significant outcomes of 
original positive results. p- values for non- statistically significant replication effects were widely distrib-
uted (Figure 1—figure supplement 1), and do not statistically differ from the approximately uniform 

Papers Experiments Effects All outcomes

Summary of consistency between original and replication findings for original positive results (top) and null results 
(bottom), and by treating internal replications individually (all outcomes; column 5) and aggregated by effects 
(column 4), experiments (column 3), and papers (column 2). All findings coded in terms of consistency with original 
findings. If original results were null, then a positive result is counted as inconsistent with the original finding. For 
statistical significance, if original results were interpreted as a positive result but were not statistically significant 
at p < 0.05, then they were treated as a positive result (seven effects); likewise, if they were interpreted as a null 
result but were statistically significant at p < 0.05, they were treated as a null result (two effects). For original 
positive results, replications were deemed successful if they were statistically significant and in the same direction 
as the original finding; for original null results, replications were deemed successful if they were not statistically 
significant, regardless of direction. The ‘same direction’ criterion is not applicable for original null results because 
‘null’ is an interpretation in null hypothesis significance testing and most null results still have a direction (as the 
effect size is almost always non- zero). Likewise, comparing direction of effect sizes is not meaningful for original 
null results if their variation was interpreted as noise. Mean differences were estimated from the image for original 
effects based on representative images. Original positive and null effects were kept separate when aggregating 
into experiments and papers. That is, if a single experiment had both positive and null effects, then the positive 
effects are summarized in ‘original positive results’ and the null outcomes are summarized in ‘original null results’. 
Very similar results are obtained when alternative strategies are used to aggregate the data (see Tables S1–S3 
in Supplementary file 1). Standardized mean difference (SMD) effect sizes are reported. CI = 95% confidence 
interval; PI = 95% prediction interval; ES = effect size; IQR = interquartile range.

Table 1 continued

https://doi.org/10.7554/eLife.71601
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distribution that would be expected if all were true null results whether examining the findings that 
had p- values for both original and replication effects (Fisher’s exact test: χ2(118) = 135.7, p = 0.127), 
or also including the replication effects for which the original effects were based on a representative 
image (χ2(138) = 155.1, p = 0.152). Therefore, we cannot reject the hypothesis that the observed null 
effects come from a population of true negatives.

Comparing original effect size with the 95% confidence interval of the 
replication effect size
Another approach based on the logic of null hypothesis significance testing is to assess whether the 
original effect size is contained within the 95% confidence interval of the replication effect size. In this 
approach the null hypothesis is the original effect size, and we are testing if the replication effect size 
is significantly different. We found that 17 of the 97 (18%) original positive effect sizes were in the 95% 

Figure 1. p- value density plots for original and replication results. p- alue density plots for original and replication results treating internal replications 
individually (top row), and aggregated by effects (second row), experiments (third row), and papers (fourth row). Left column presents all data for which 
p- values could be calculated for both original and replication results; the other two columns present data for when the original result was interpreted 
as positive (middle column) or as a null result (right column). Some original effects (n = 7) were interpreted as positive results with p- values > 0.05, and 
some original effects (n = 2) were interpreted as null results with p- values < 0.05. Replication p- values ignore whether the result was in the same or 
opposite direction as the original result (n = 7 effects had p- values < 0.05 in the opposite direction as the original effect).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. p- value distributions for original and replication effects.

https://doi.org/10.7554/eLife.71601
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confidence interval of the replication effect size, as were 11 of the 15 (73%) original null effect sizes. 
Therefore, according to this criterion, 75% of original effect sizes were inconsistent with the replica-
tions, even if both observed an effect in the same direction. Note that the precision of the replication 
estimate is influenced by the sample size, which was larger in the replications than in the original 
experiments for both positive effects (12.0 vs. 8.9 for the median) and null effects (27.0 vs. 15.0).

This criterion can also be applied to cases in which the original experiment reported only a repre-
sentative image with an effect size that could be estimated from that image. Of these, 10 of the 21 
(48%) original positive effect sizes, and 3 of the 5 (60%) original null effect sizes, were in the 95% 
confidence interval of the replication effect size, meaning that half of the original effect sizes were in 
the confidence interval of the replication effect sizes, and half of the original images were inconsistent 
with the replications. Combining all numerical and image- only data, 41 of 138 (30%) replications were 
consistent with original effects on this criterion.

Comparing the replication effect size with the 95% confidence interval 
of the original effect size
A complementary criterion is to assess whether the replication effect size falls within the 95% confi-
dence interval of the original effect size. When the original effect was positive, 42 of the 97 (43%) 
replication effect sizes were within the 95% confidence interval of original effect size; and when the 
original effect was null, 12 of the 15 (80%) replication effect sizes were within the 95% confidence 
interval of the original effect sizes. This success rate is low but it is almost double the rate reported 
for a seemingly similar approach in the previous section. This is attributable to the smaller sample 
sizes in the original experiments leading to wider confidence intervals, thus making it ‘easier’ for the 
replication to achieve an effect size that counts as a success.

A more complete picture of the consistency between the original findings and the replications in 
the null hypothesis significance testing framework can be obtained by combining the three criteria we 
have just discussed. Were the original results and the replications consistent on zero, one, two, or all 
three of these criteria? For the 97 effects that were positive in the original experiments, we find that 
just 13 were successful on all three criteria, 18 were successful on two, 26 were successful on one, and 
40 failed to replicate on all three criteria. For the 15 effects that were null in the original experiments, 
eight were successful on all three criteria, four were successful on two, two were successful on one, 
and only one failed on all three criteria (see Table 2 and Tables S4–S6 in Supplementary file 1).

Comparing the replication effect size with the 95% prediction interval 
of the original effect size
A 95% prediction interval is the range of values inside which a future observation will fall with 95% 
probability, given what has been observed already. Prediction intervals are sometimes preferred over 
confidence intervals when presenting new results because they do not assume that the future obser-
vation has infinite sample size. As a consequence, they more appropriately represent the (greater) 
uncertainty around the future estimate.

However, as a criterion for evaluating replication success or failure, prediction intervals are more 
liberal than criteria based on confidence intervals. If, for example, the original finding was close to 
p = 0.05, then the prediction interval will often overlap with zero. If the true effect size is near zero, 
a replication might never provide evidence inconsistent with the prediction interval unless random 
error leads to the effect size being estimated in the opposite direction of the original finding. In other 
words, somewhat ironically, the more uncertain an original finding, the harder it is for a replication to 
provide disconfirming evidence. Nevertheless, the prediction interval has been used in at least one 
case to estimate replication success (Patil et al., 2016).

For the 97 effects that were positive in the original experiments, 56 effects (58%, 95% CI: [44%, 
72%]) could be considered successful according to this criterion (Table 1). A sensitivity analysis that 
approximately accounts for possible heterogeneity within pairs yields a higher value (65%, 95% CI: 
[51%, 79%]). And for the 15 effects that were null in the original experiments, 12 effects (80%) could 
be considered successful. Combining these results, 68 of 112 (61%) replications were successful 
according to prediction interval criterion.

Related to prediction intervals, the degree of statistical inconsistency between each replication and 
the corresponding original effect can be represented with a metric called porig, which is a p- value for 

https://doi.org/10.7554/eLife.71601
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the hypothesis that the original and the replication had the same population effect size (Mathur and 
VanderWeele, 2020b). porig thus assesses whether each replication effect was similar to the corre-
sponding original effect, with small values of porig indicating less similarity and larger values indicating 
more similarity. For original positive effects, the median porig was 0.064, suggesting some evidence 
for inconsistency on average. Of the 97 original positive effects, 42% (95% CI: [28%, 56%]) had porig < 
0.05, and 14% (95% CI: [5%, 24%]) had porig < 0.005 (Benjamin et al., 2018).

We then aggregated the values of porig using the harmonic mean p- value to test the global null 
hypothesis that none of the pairs were statistically inconsistent (Wilson, 2019), yielding an aggre-
gated porig of 0.0005, which is strong evidence of some inconsistency in the tested pairs. The aggre-
gated value of porig accommodates correlations among p- values due to nested data. In a sensitivity 
analysis that additionally accounted for possible effect heterogeneity within each of the 97 original- 
replication pairs, the median porig was 0.087: 35% of effects (95% CI: [21%, 49%]) had porig < 0.05, and 
12% of effects (95% CI: [2%, 23%]) had porig < 0.005.

Table 2. Replication rates according to three criteria involving null hypothesis significance testing.

Papers Experiments Effects All outcomes

Total number 23 50 158 188

  

ORIGINAL POSItIVE RESULtS

Succeeded on all three criteria 2 11% 2 6% 13 13% 20 18%

[1]Failed only on significance and direction 2 11% 1 3% 4 4% 6 5%

[2]Failed only on original in replication confidence interval 1 5% 5 15% 14 14% 10 9%

[3]Failed only on replication in original confidence interval 0 0% 0 0% 0 0% 0 0%

Failed only on [1] and [2] 0 0% 3 9% 11 11% 14 13%

Failed only on [2] and [3] 5 26% 10 30% 15 15% 14 13%

Failed only on [1] and [3] 1 5% 0 0% 0 0% 0 0%

Failed on all three criteria [1], [2], and [3] 8 42% 12 36% 40 41% 48 43%

Total 19 33 97 112

  

ORIGINAL NULL RESULtS

Succeeded on all three criteria 6 55% 7 58% 8 53% 7 35%

[1]Failed only on significance and direction 2 18% 2 17% 3 20% 5 25%

[2]Failed only on original in replication confidence interval 1 9% 1 8% 1 7% 1 5%

[3]Failed only on replication in original confidence interval 0 0% 0 0% 0 0% 0 0%

Failed only on [1] and [2] 0 0% 0 0% 0 0% 0 0%

Failed only on [2] and [3] 2 18% 2 17% 2 13% 2 10%

Failed only on [1] and [3] 0 0% 0 0% 0 0% 0 0%

Failed on all three criteria [1], [2], and [3] 0 0% 0 0% 1 7% 5 25%

Total 11 12 15 20

Number of replications that succeeded or failed to replicate results in original experiments according to three 
criteria within the null hypothesis significance testing framework: statistical significance (p < 0.05) and same 
direction; original effect size inside 95% confidence interval of replication effect size using standardized mean 
difference (SMD) effect sizes; replication effect size inside 95% confidence interval of original effect size using 
SMD effect sizes. Data for original positive results and original null results are shown separately, as are data for 
all outcomes and aggregated by effect, experiment, and paper. Very similar results are obtained when alternative 
strategies are used to aggregate the data (see Tables S4–S6 in Supplementary file 1).

https://doi.org/10.7554/eLife.71601
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Comparing effect sizes in the original experiments and the replications
Another way to assess replications is to compare the original effect size and the replication effect size. 
For the 97 effects that were positive in the original experiments, the effect size was lower in 94 (97%) 
of the replications (Table 1): if the original effect sizes were accurately estimated, one would expect 
this percentage to be about 50%, and the probability of 94 of the 97 replication effect sizes being 
lower than the original effect sizes would be vanishingly low (binomial test: p = 1.92 × 10–24). And for 
the 21 cases in which the original evidence for a positive effect was a representative image, the effect 
size in the replication was smaller than the effect size estimated for the original in 14 cases (67%). 
Combining these results, the effect sizes in the replications were smaller than the effect sizes in the 
original findings in 108 of 118 (92%) cases.

We also compared the mean and median values of the effect sizes for positive effects (Table 3): in 
both cases the value was considerably larger for the original effect. Comparing means, the value for 
the original effects was 6.15 (SD = 12.39, 95% CI: [1.83, 10.47]), and the value for the replications was 

Table 3. Comparing effect sizes in the original results and the replications.

Papers Experiments Effects All outcomes

  

ORIGINAL POSItIVE RESULtS

Number of outcomes 19 33 97 112

Mean (SD) original experiment effect size 7.35 (18.77) 6.36 (14.62) 6.15 (12.39) 5.56 (11.63)

Median [IQR] original experiment effect size 2.07 [1.68–5.03] 2.45 [1.42–4.58] 2.96 [1.71–5.70] 2.57 [1.60–5.49]

Mean (SD) replication experiment effect size 1.38 (2.02) 1.55 (3.31) 1.37 (3.01) 1.30 (2.83)

Median [IQR] replication experiment effect 
size 0.53 [0.18–1.80] 0.37 [0.10–1.31] 0.43 [0.15–2.06] 0.47 [0.17–1.67]

Meta- analytic mean (SD) estimate 1.68 (1.81) 1.79 (2.90) 1.66 (2.47) 1.61 (2.32)

Meta- analytic median [IQR] estimate 0.98 [0.57–2.20] 1.00 [0.28–2.03] 0.92 [0.36–2.43] 1.05 [0.36–2.11]

Sample sizes

Median [IQR] of original 46.0 [20.0–100] 24.0 [9.0–48.0] 8.0 [6.0–13.0] 8.5 [6.0–18.0]

Median [IQR] of replication 50.0 [28.0–128] 32.0 [12.0–50.0] 12.0 [8.0–23.0] 12.0 [8.0–18.0]

  

ORIGINAL NULL RESULtS

Number of outcomes 11 12 15 20

Mean (SD) original experiment effect size 0.70 (0.64) 0.72 (0.61) 0.63 (0.59) 0.51 (0.55)

Median [IQR] original experiment effect size 0.61 [0.15–1.03] 0.68 [0.15–1.03] 0.61 [0.16–0.97] 0.18 [0.15–0.79]

Mean (SD) replication experiment effect size –0.08 (0.75) –0.02 (0.74) 0.02 (0.69) 0.01 (0.86)

Median [IQR] replication experiment effect 
size 0.13 [-0.27–0.24] 0.13 [-0.23–0.39] 0.16 [-0.24–0.47] 0.16 [-0.21–0.39]

Meta- analytic mean (SD) estimate 0.20 (0.31) 0.25 (0.34) 0.24 (0.34) 0.20 (0.39)

Meta- analytic median [IQR] estimate 0.17 [0.06–0.40] 0.23 [0.07–0.43] 0.16 [0.06–0.44] 0.16 [0.07–0.43]

Sample sizes

Median [IQR] of original 16.0 [8.0–25.0] 12.0 [7.0–22.5] 18.0 [8.0–32.0] 19.0 [11.0–514]

Median [IQR] of replication 24.0 [16.0–69.0] 22.5 [8.0–61.5] 30.0 [12.0–72.5] 27.0 [17.5–573]

Comparing original effect sizes and effect sizes in the replications for original positive results (top) and null results (bottom) when treating internal 
replications individually (all outcomes; column 5) and aggregated by effects (column 4), experiments (column 3), and papers (column 2). The mean and 
median of the effect sizes in the original results were considerably larger than those for the replications. SD = standard deviation; IQR = interquartile 
range.

https://doi.org/10.7554/eLife.71601
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1.37 (SD = 3.01, 95% CI: [0.42, 2.32]). Comparing medians, the value for the original effects was 2.96 
(interquartile range [IQR] = 1.71–5.70), and the value for the replications was 0.43 (IQR = 0.15–2.06).

The pattern was similar when we compared mean and median values for null effects. Comparing 
means, the value for the original effects was 0.63 (SD = 0.59), and the value for replications was 0.02 
(SD = 0.69). Comparing medians, the value for the original effects was 0.61 (IQR = 0.16–0.97), and the 
value for replications was 0.16 (IQR = –0.24–0.47).

Although the original and replication effect sizes had very different effect magnitudes, larger effect 
sizes in the original results tended to be associated with larger effect sizes in the replication (Spear-
man’s r = 0.47, p = 1.83 × 10–7; Figure 2). This indicates that observed effect sizes are not all random, 
and that some findings retain their rank ordering in effect size, despite the clear differences between 
the original and replication effect sizes. To illustrate the comparability of these findings across different 
levels of aggregation, Figure 3 presents density plots of original effect sizes compared to replication 
effect sizes by individual outcomes, effects, experiments, and papers.

Combining the original and replication effect sizes
Combining the original and replication findings provides an assessment of the cumulative evidence 
for a phenomenon. In general, cumulative or meta- analytic evidence obtained from multiple inde-
pendently conducted experiments provides a better basis for assessing the reliability of findings than 
evidence from a single experiment. However, the credibility of such results is contingent on a lack of 
selective reporting or on the ability to effectively correct for missing evidence (McShane et al., 2016; 
Stanley and Doucouliagos, 2014). If, for example, original experiments were influenced by publi-
cation bias, with null results being ignored at greater rates, then the meta- analytic evidence would 
be biased. The use of preregistration and complete outcome reporting in the project eliminated the 
possibility of publication bias in the replication experiments (Errington et al., 2021b), but it may be 
present in the original experiments. Nevertheless, we combined the two sets of results by weighting 
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Figure 2. Replication effect sizes compared with original effect sizes. (A) Graph in which each circle represents an effect for which an SMD effect size 
could be computed for both the original effect and the replication (n = 110). Blue circles indicate effects for which p < 0.05 in the replication, and 
red circles indicate p > 0.05. Two effects for which the original effects size was >80 are not shown. The median effect size in the replications was 85% 
smaller than the median effect size in the original experiments, and 97% of replication effect sizes were smaller than original effect sizes (below the gray 
diagonal line). (B) An expanded view of panel A for effect sizes < 5 (gray outline in panel A). SMD: standardized mean difference.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Replication effect sizes compared with original effect sizes for all effects (treating internal replications individually).

Figure supplement 2. Replication effect sizes compared with original effect sizes for experiments (combining effects).

Figure supplement 3. Replication effect sizes compared with original effect sizes for papers (combining experiments).
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each finding by the inverse of its variance to estimate the effect size and effect precision. Using a 
fixed- effect model for each original- replication pair where the original result was positive, 60 of the 
97 effects (62%) were statistically significant at p < 0.05 (Table 1), and 39 effects (40% of the total) 
were statistically significant according to the stricter criterion of p < 0.005. Table 3 reports mean and 
median values for the original effect size, the replication effect size, and the meta- analytic combina-
tion of the two. According to the combined results the mean effect size was 1.66 (95% CI: [0.92, 2.41]).

For cases in which the original was a null effect, 10 of the 15 (67%) meta- analytic effects were 
likewise null (p > 0.05), meaning that combining the data led to a third of cases showing statistically 
significant effects, even though the original reported a null finding. This can occur when the original 
experiment was underpowered to detect the true effect size, but combining data increases preci-
sion to detect smaller effects. This can be important when, for example, an experiment is evaluating 
whether an intervention increases toxicity. An original null result based on a small sample may provide 

Figure 3. Effect size density plots for original and replication results. Effect size density plots for original and replication findings for all results treating 
internal replications individually (top row) and aggregated by effects (second row), experiments (third row), and papers (fourth row). Left column presents 
all data for which SMD effect sizes could be calculated for both original and replication results; the other two columns present data for when the original 
result was interpreted as positive (middle column) or as a null result (right column). Effect sizes > 80 (two for all outcomes and effects, and one for 
experiments and papers) are not shown.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effect size distributions for original and replication effects.

https://doi.org/10.7554/eLife.71601
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misplaced confidence in safety. Considering all data, 70 of 112 (63%) of meta- analytic combinations 
showed effects consistent with the effect reported for the original experiment.

Comparing animal vs. non-animal experiments
Animal experiments have special significance in understanding biological mechanisms and in trans-
lating basic science into potential clinical application. We explored whether the patterns of repli-
cability differed between the animal and non- animal experiments included in this meta- analysis 
(Table  4). Descriptively, animal experiments with positive effects were less likely to replicate than 
non- animal experiments with positive effects on every replication criterion. For example, 12% of repli-
cation effects were in the same direction as the original and statistically significant for animal experi-
ments, compared with 54% for non- animal experiments. Likewise, 44% of replication effects were in 
the 95% prediction interval for animal experiments, compared with 63% for non- animal experiments.

We used multi- level models to explore the association of five possible moderators with the repli-
cation rate: (1) animal experiments vs. non- animal (i.e., in vitro) experiments; (2) the use of contract 
research organizations to conduct replications; (3) the use of academic research core facilities to 
conduct replications; (4) whether the original authors shared materials with the replicating labs; (5) 
the quality of methodological clarifications made by the original authors upon request from the repli-
cating labs (Errington et al., 2021b). None of the five moderators showed a consistent, significant 
association with replication success (see Table S7 in Supplementary file 1), though the moderators 
were variably correlated with one another (ranging from r = –0.68 to r = 0.53; Figure 4). We cannot say 
whether any of these moderators influence replication success in general, but this analysis suggests 
that they do not account for much variation in replication success in this sample.

Other factors have been identified that could improve replicability, such as blinding, randomiza-
tion, and sample size planning (Landis et al., 2012; Macleod and Mohan, 2019). However, these 
aspects were very rarely reported in the original experiments so they could not be examined as candi-
date moderators. For example, for the 36 animal effects across 15 experiments, none of the original 
experiments reported blinding, one experiment (for two effects) reported randomization, and none 
reported determining sample size a priori. By comparison, the replications reported blinding for five 
experiments (11 effects), randomization for 13 experiments (28 effects), and all 15 experiments (36 
effects) reported calculating sample size a priori.

The multi- level analysis does not support the conclusion that there is a meaningful difference in 
the replication rates of animal and non- animal experiments. As can be seen in Table 5, median effect 
sizes were 84% smaller than the original findings for animal replications, and 78% smaller for non- 
animal replications. The reason that animal experiments had such a low replication rate, particularly 
according to the statistical significance criterion (12%), is that the effect sizes in the original experi-
ments (Mdn = 1.61) were notably smaller than the effect sizes in the original non- animal experiments 
(Mdn = 3.65; Figure 5). In sum, original findings with smaller effect sizes were less likely to replicate 
than original findings with larger effect sizes, and animal experiments tended to have smaller effect 
sizes than non- animal experiments. In other words, when seeking to predict if a replication will be 
successful it is more useful to know the original effect size than to know whether the original experi-
ment was an animal experiment or not.

Summarizing replications across five criteria
The criteria described above returned a range of replication rates due to the different assumptions 
made by each, particularly how they handle the estimation of uncertainty. To provide an overall 
picture, we combined the replication rates by five of these criteria, selecting criteria that could be 
meaningfully applied to both positive and null effects, which meant excluding the ‘same direction’ and 
‘comparing effect size’ criteria, as neither works for null effects.

For replications of original positive effects, 13 of 97 (13%) replications succeeded on all five criteria, 
15 succeeded on four, 11 succeeded on three, 22 failed on three, 15 failed on four, and 21 (22%) failed 
on all five (Table 6 and Figure 6). For original null effects, 7 of 15 (47%) replications succeeded on 
all five criteria, 2 succeeded on four, 3 succeeded on three, 0 failed on three, 2 failed on four, and 1 
(7%) failed on all five. If we consider a replication to be successful overall if it succeeded on a majority 
of criteria (i.e., three or more), original null effects (80%) were twice as likely to replicate as original 
positive effects (40%). Combining positive and null effects, 51 of 112 (46%) replications succeeded on 
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Table 4. Replication rates for animal and non- animal experiments.

Animal Non- animal Total

Total number of effects 36 122 158

  

ORIGINAL POSItIVE EFFECtS

Numerical results

Same direction 17 of 27 (63%) 63 of 74 (85%) 80 of 101 (79%)

Direction and statistical significance 3 of 25 (12%) 39 of 72 (54%) 42 of 97 (43%)

Original ES in replication CI 4 of 25 (16%) 13 of 72 (18%) 17 of 97 (18%)

Replication ES in original CI 9 of 25 (36%) 33 of 72 (46%) 42 of 97 (43%)

Replication ES in PI (porig) 11 of 25 (44%) 45 of 72 (63%) 56 of 97 (58%)

Replication ES≥ original ES 0 of 25 (0%) 3 of 72 (4%) 3 of 97 (3%)

Meta- analysis (p < 0.05) 13 of 25 (52%) 47 of 72 (65%) 60 of 97 (62%)

Representative images

Same direction 1 of 4 (25%) 27 of 31 (87%) 28 of 35 (80%)

Direction and statistical significance 0 of 2 (0%) 14 of 20 (70%) 14 of 22 (64%)

Original image in replication CI 0 of 1 (0%) 10 of 20 (50%) 10 of 21 (48%)

Replication effect ≥ original image 0 of 1 (0%) 7 of 20 (35%) 7 of 21 (33%)

Sample sizes

Median [IQR] of original 14.0 [10.0–20.0] 7.0 [6.0–11.2] 8.0 [6.0–13.0]

Median [IQR] of replication 15.0 [13.0–21.8] 10.0 [8.0–22.0] 12.0 [8.0–22.2]

  

ORIGINAL NULL EFFECtS

Numerical results

Same direction N/A N/A N/A

Direction and statistical significance 4 of 5 (80%) 7 of 10 (70%) 11 of 15 (73%)

Original ES in replication CI 4 of 5 (80%) 7 of 10 (70%) 11 of 15 (73%)

Replication ES in original CI 5 of 5 (100%) 7 of 10 (70%) 12 of 15 (80%)

Replication ES in PI (porig) 5 of 5 (100%) 7 of 10 (70%) 12 of 15 (80%)

Replication ES≤ original ES N/A N/A N/A

Meta- analysis (p > 0.05) 3 of 5 (60%) 7 of 10 (70%) 10 of 15 (67%)

Representative images

Same direction N/A N/A N/A

Direction and statistical significance N/A 7 of 5 (80%) 4 of 5 (80%)

Original image in replication CI N/A 3 of 5 (60%) 3 of 5 (60%)

Replication effect ≤ original image N/A N/A N/A

Sample sizes

Median [IQR] of original 21.0 [20.0–30.0] 8.0 [5.0–266] 15.0 [7.5–31.0]

Median [IQR] of replication 35.0 [30.0–61.0] 16.0 [7.0–604] 27.0 [8.0–66.8]

Table 4 continued on next page

https://doi.org/10.7554/eLife.71601
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Animal Non- animal Total

Comparing replication rates for animal experiments (column 2) and non- animal experiments (column 3) according 
to the seven criteria used in Table 1. For statistical significance, if original effects were interpreted as a positive 
effect but were not significant at p < 0.05, then they were treated as a positive effect (7 cases), and likewise if 
they were interpreted as a null effect but were significant at p < 0.05 they were treated as a null effect (3 cases). 
Standardized mean difference (SMD) effect sizes are reported. CI = 95% confidence interval; PI = 95% prediction 
interval; ES = effect size; IQR = interquartile range.

Table 4 continued

Figure 4. Correlations between five candidate moderators. Point- biserial correlations among five candidate 
moderators for predicting replication success for the 97 original positive effects with replication pairs. The five 
moderators were: (i) animal experiments vs. non- animal (i.e., in vitro) experiments (animal expt); (ii) the use of 
contract research organizations to conduct replications (CRO lab); (iii) the use of academic research core facilities 
to conduct replications (core lab); (iv) whether the original authors shared materials with the replicating labs 
(materials shared); (v) the quality of methodological clarifications made by the original authors (clarifications 
quality); see Materials and methods for more details. Correlations are color- coded (blue = positive; red = negative; 
see color bar), with the size of the circle being proportional to the magnitude of the correlation. None of the five 
moderators showed a consistent, significant association with replication rate (see Table S7 in Supplementary file 
1).
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more criteria than they failed, and 61 (54%) replications failed on more criteria than they succeeded. 
We also found these five criteria to be positively correlated with one another ranging from 0.15 to 
0.78 and a median of 0.345 suggesting that they provide related but distinct information (Figure 7).

The ‘same direction’ and ‘comparing effect size’ criteria were not included as neither works for 
null effects. Also, these two criteria cannot be directly compared with the other five criteria because 
they both have a minimum replication success rate of 50% under ordinary assumptions, compared 
with 0% for the other criteria. For example, if all the original effects were due to noise, then the ‘same 
direction’ criterion would return a value of 50% for the replication rate indicating the worst possible 
performance. The observation that 79% of replications were in the same direction as the original 
effect indicates some signal being detected. Conversely, if all the original and replication effect sizes 
were equivalent and estimated without bias, then the ‘comparing effect size’ criterion would return 
a value of 50% indicating the best possible performance. The observation that just 3% of replica-
tions had larger effect sizes than original positive effects indicates that the original effect sizes were 
overestimated.

Discussion
We used seven criteria to assess the replicability of 158 effects in a selection of 23 papers reporting 
the results of preclinical research in cancer biology. Across multiple criteria, the replications provided 
weaker evidence for the findings than the original papers. For original positive effects that were 
reported as numerical values, the median effect size for the replications was 0.43, which was 85% 
smaller than the median of the original effect sizes (2.96). And although 79% of the replication effects 
were in the same direction as the original finding (random would be 50%), 92% of replication effect 
sizes were smaller than the original (combining numeric and representative images). Across five 

Table 5. Effect sizes for animal and non- animal experiments.

Animal Non- animal Total

  

ORIGINAL POSItIVE EFFECtS

Number of outcomes 25 72 97

Mean (SD) original experiment effect size 1.88 (1.61) 7.63 (14.07) 6.15 (12.39)

Median [IQR] original experiment effect size 1.61 [0.81–2.30] 3.65 [2.45–6.43] 2.96 [1.71–5.70]

Mean (SD) replication experiment effect size 0.19 (0.50) 1.78 (3.39) 1.37 (3.01)

Median [IQR] replication experiment effect size 0.25 [−0.06–0.41] 0.79 [0.20–2.27] 0.43 [0.15–2.06]

Meta- analytic mean (SD) estimate 0.65 (0.54) 2.02 (2.77) 1.66 (2.47)

Meta- analytic median [IQR] estimate 0.83 [0.11–1.05] 1.06 [0.46–2.79] 0.92 [0.36–2.43]

  

ORIGINAL NULL EFFECtS

Number of outcomes 5 10 15

Mean (SD) original experiment effect size 0.34 (0.29) 0.78 (0.65) 0.63 (0.59)

Median [IQR] original experiment effect size 0.19 [0.10–0.61] 0.84 [0.17–1.08] 0.61 [0.16–0.97]

Mean (SD) replication experiment effect size 0.21 (0.48) –0.08 (0.78) 0.02 (0.69)

Median [IQR] replication experiment effect size 0.13 [−0.18–0.65] 0.16 [−0.27–0.28] 0.16 [−0.24–0.47]

Meta- analytic mean (SD) estimate 0.21 (0.31) 0.25 (0.37) 0.24 (0.34)

Meta- analytic median [IQR] estimate 0.12 [0.04–0.37] 0.17 [0.10–0.45] 0.16 [0.06–0.44]

Comparing original and replication effect sizes (means and medians) for animal experiments (column 2) and 
non- animal experiments (column 3), along with meta- analytic means and medians for the effect size obtained by 
combining data from the original effects and the replications. SD = standard deviation; IQR = interquartile range.
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dichotomous criteria for assessing replicability, original null results were twice as likely as original 
positive results to mostly replicate successfully (80% vs. 40%). Combining original positive and null 
effects for each of the five criteria, the replication success rates were 47% for same direction and 
statistical significance, 25% for the original effect size being inside the 95% confidence interval (CI) 
of the replication, 48% for the replication effect size being inside the 95% CI of the original, 61% for 
the replication effect size being inside the 95% prediction interval, and 63% for a criterion based 
on a meta- analytic combination of the data from the original experiment and the replication. Repli-
cation rates were relatively consistent whether examining the effects in isolation, combining across 
internal replications, combining across all the effects of each experiment, or combining across all the 
experiments of each paper. Animal and non- animal replications both had similarly weaker effect sizes 
compared to original findings, but animal experiments were much less likely to replicate (probably 
because the original effect size tended to be smaller in animal experiments). In this section we discuss 
some of the implications of our results.

What does a failure to replicate mean?
A single failure to replicate a finding does not render a verdict on its replicability or credibility. A failure 
to replicate could occur because the original finding was a false positive. Indeed, there is accumulating 
evidence of the deleterious impacts of low power and small sample sizes, ignoring null results, failures 
of transparency of methodology, failing to publish all experimental data collected, and questionable 
research practices such as p- hacking on the inflation of false positives in the published literature 
(Casadevall and Fang, 2012; Chalmers et al., 2014; Gelman and Loken, 2013; Greenwald, 1975; 
Ioannidis, 2005; John et al., 2012; Kaplan and Irvin, 2015; Landis et al., 2012; Macleod et al., 
2014; Macleod et al., 2015; van der Naald et al., 2020; Rosenthal, 1979; Simmons et al., 2011). 
This evidence suggests that published findings might often be false positives or have exaggerated 
effect sizes, potentially adding noise and friction to the accumulation of knowledge.

A failure to replicate could also occur because the replication was a false negative. This can occur 
if the replication was underpowered or the design or execution was flawed. Such failures are uninter-
esting but important. Minimizing them requires attention to quality and rigor. We contracted indepen-
dent laboratories with appropriate instrumentation and expertise to conduct the experiments. This 
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Figure 5. Replication effect sizes compared with original effect sizes for animal and non- animal experiments. Graphs for animal experiments (n = 30 
effects; left) and non- animal experiments (n = 70 effects; right) in which each circle represents an effect for which an SMD effect size could be computed 
for both the original effects and the replication. Blue circles indicate effects for which p < 0.05 in the replication, and red circles indicate p > 0.05. Animal 
experiments were less likely to replicate than non- animal experiments and this may be a consequence of animal experiments eliciting smaller effect 
sizes on average than non- animal experiments (see main text for further discussion). Twelve effects in the non- animal experiments for which the original 
effects size was >10 are not shown. SMD: standardized mean difference.
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has the virtue of ostensibly removing biasing influences of self- interest (pro or con) on the outcomes of 
the experiments. A skeptic, however, might suggest that original authors are essential for conducting 
the experiments because of particular skills or tacit knowledge they have for conducting the exper-
iments. Indeed, this was part of a critique of the Reproducibility Project: Psychology (Gilbert et al., 
2016; Open Science Collaboration, 2015). In that case, follow- up investigations did not support the 
claim that replication failures were due to deficiencies in replication quality. For example, Ebersole et 
al. repeated the potentially flawed replication protocols and developed revised protocols that were 
peer reviewed in advance by domain experts and original authors; they found that the replicability of 
original findings did not improve with the revised vs. original replication protocols (Ebersole et al., 
2020; see also Anderson et al., 2016; Nosek and Gilbert, 2017). Nevertheless, the possibility of 
flaws in research is always present.

For the present replications, we attempted to minimize the likelihood of replication errors by using 
original materials whenever possible, employing large sample sizes, engaging expert peer review of 
the methodology in advance, and by preregistering the experiment design and analysis plan. Despite 
all this, we cannot rule out the possibility of methodological error in the replications. To facilitate 
further review, critique, and follow- up investigation, all replications in this meta- analysis are reported 
transparently with digital materials, data, and code openly available on OSF.

A failure to replicate could also occur even when both original and replication findings are ‘correct’. 
Experimental contexts inevitably differ by innumerable factors such as the samples used, reagent and 
instrument suppliers, climate, software version, time of year, and physical environment. An experiment 

Table 6. Assessing replications of positive and null results across five criteria.

Papers Experiments Effects All outcomes

  

ORIGINAL POSItIVE RESULtS

Successful replication on all five criteria 2 11% 2 6% 13 13% 20 18%

Success on 4; failure on 1 1 5% 5 15% 15 15% 13 12%

Success on 3; failure on 2 3 16% 1 3% 11 11% 13 12%

Success on 2; failure on 3 5 26% 15 45% 22 23% 26 23%

Success on 1, failure on 4 6 32% 6 18% 15 15% 19 17%

Success on 0, failure on 5 2 11% 4 12% 21 22% 21 19%

Total 19 33 97 112

  

ORIGINAL NULL RESULtS

Successful replication on all five criteria 5 45% 7 58% 7 47% 6 30%

Success on 4; failure on 1 2 18% 1 8% 2 13% 2 10%

Success on 3; failure on 2 2 18% 2 17% 3 20% 5 25%

Success on 2; failure on 3 2 18% 2 17% 2 13% 2 10%

Success on 1; failure on 4 0 0% 0 0% 0 0% 3 15%

Success on 0; failure on 5 0 0% 0 0% 1 7% 2 10%

Total 11 12 15 20

Five of the criteria we used to assess replications could be used for both positive results and null results. The 
number of papers, experiments, effects, and outcomes where replications were successful on various numbers of 
these criteria are shown for positive results (top) and null results (bottom). The five criteria were: (i) direction and 
statistical significance (p < 0.05); (ii) original effect size in replication 95% confidence interval; (iii) replication effect 
size in original 95% confidence interval; (iv) replication effect size in original 95% prediction interval; (v) meta- 
analysis combining original and replication effect sizes is statistically significant (p < 0.05). The data in this table 
are based on standardized mean difference (SMD) effect sizes. Very similar results are obtained when alternative 
strategies are used to aggregate the data (see Tables S8–S10 in Supplementary file 1).
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is a replication if the many differences between original and new experimental context are theoreti-
cally presumed to be irrelevant for observing evidence for the finding (Nosek and Errington, 2020a). 
The replication experiments underwent peer review in advance to arrive at a precommitment that 
they were good faith tests based on present understanding of the phenomena and the conditions 
necessary to observe evidence supporting them (Nosek and Errington, 2020b). However, differences 
that were deemed inconsequential during a priori peer review may be more critical than presently 
understood. After the replication results were known, some reviewers and commentators offered 
hypotheses for why the findings might have differed from the original (Errington et  al., 2021b). 
This generative hypothesizing can be productive if it spurs additional investigations to test the new 
hypotheses. It can also be counterproductive if it is just rationalizing to preserve confidence in the 
original findings. Hypothesizing ideas to test is easily conflated with providing evidence to explain. 
Without follow- up investigation to test the hypotheses, that mix- up can promote overconfidence in 
original findings.

What does a successful replication mean?
Successfully replicating a finding also does not render a verdict on its credibility. Successful replica-
tion increases confidence that the finding is repeatable, but it is mute to its meaning and validity. For 
example, if the finding is a result of unrecognized confounding influences or invalid measures, then 
the interpretation may be wrong even if it is easily replicated. Also, the interpretation of a finding may 
be much more general than is justified by the evidence. The particular experimental paradigm may 
elicit highly replicable findings, but also apply only to very specific circumstances that are much more 
circumscribed than the interpretation.

These possibilities are ordinary and unavoidable. Science makes progress by systematically 
producing and evaluating claims. Sometimes this leads to discoveries with broad generalizability and 
impact. Sometimes this leads to an understanding that is much more limited than the initial discovery. 
And, sometimes this leads to abandoning the effort because of persistent non- replicability or illumina-
tion of invalidity. Research produces its share of exhilaration with new discoveries and disappointments 

Figure 6. Assessing replications of positive and null effects across five criteria. Five of the criteria we used to assess replications could be used for both 
positive (n = 97) and null effects (n = 15). The number of effects where the replication was successful on all five criteria is shown by the top bar of each 
panel, with the second bar showing the number of effects where the replications were successful on four criteria, and so on: positive effects are shown 
in the left panel (blue bars), and null effects are shown in the right panel (green bars). The five criteria were: (i) direction and statistical significance (p 
< 0.05); (ii) original effect size in replication 95% confidence interval; (iii) replication effect size in original 95% confidence interval; (iv) replication effect 
size in original 95% prediction interval; (v) meta- analysis combining original and replication effect sizes is statistically significant (p < 0.05). Standardized 
mean difference (SMD) effect sizes are reported.
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as some of them fade, but it is the continuous march away from ignorance that gets many scientists up 
each day excited to see which ideas will flourish.

What replicates and what does not?
If we had better insights into the causes of replicability, or at least into the factors that correlate with 
replicability, we might be able to develop interventions that improve replicability. We explored five 
candidate moderators of replication success and did not find strong evidence to indicate that any of 
them account for variation in replication rates we observed in our sample. The clearest indicator of 
replication success was that smaller effects were less likely to replicate than larger effects, and this 
was particularly notable for animal experiments because they tended to have smaller original effect 
sizes than did non- animal experiments. Research into replicability in other disciplines has also found 
that findings with stronger initial evidence (such as larger effect sizes and/or smaller p- values) is more 
likely to replicate (Nosek et al., 2021; Open Science Collaboration, 2015), and it may be worth 

Figure 7. Correlations between five criteria for replication success. Point- biserial correlations among five criteria 
for evaluating replication success for the 112 original- replication pairs that could be evaluated on all five criteria: (i) 
same direction and statistical significance (Dir & Sig); (ii) original effect size in replication 95% confidence interval 
(Orig ES in rep CI); (iii) replication effect size in original 95% confidence interval (Rep ES in orig CI); (iv) replication 
effect size in 95% prediction interval (Rep ES in PI); (v) meta- analysis combining original and replication effect sizes 
gives significant effect (p < 0.05) (Meta sig). Correlations are color- coded (blue = positive; red = negative; see color 
bar), with the size of the circle being proportional to the magnitude of the correlation. The five criteria were all 
positively correlated with one another.

https://doi.org/10.7554/eLife.71601
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exploring if other findings from other disciplines – such as more surprising findings being less likely to 
replicate – can be generalized to cancer biology. There are also unique qualities of research in cancer 
biology that could be related to replicability, and a number of ongoing projects exploring replication 
in preclinical research (Amaral et al., 2019; Drude et al., 2021) will add to the data presented here 
and increase our understanding of replication and translational success (Chakroborty et al., 2020). To 
facilitate such investigation, we have made all of the data for our meta- analysis available for reanalysis. 
Exploratory analyses with the dataset can help generate hypotheses about correlates of replicability 
that could be subjected to additional investigation.

What have we learned about these findings?
After conducting dozens of replications, we can declare definitive understanding of precisely zero of 
the original findings. That may seem a dispiriting conclusion from such an intense effort, but it is the 
reality of doing research. Original findings provided initial evidence, replications provide additional 
evidence. Sometimes the replications increased confidence in the original findings, sometimes they 
decreased confidence. In all cases, we now have more information than we had. In no cases, do we 
have all the information that we need. Science makes progress by progressively identifying error and 
reducing uncertainty. Replication actively confronts current understanding, sometimes with affirma-
tion, other times signaling caution and a call to investigate further. In science, that’s progress.

What have we learned about replicability of preclinical cancer biology?
We adopted a wide and shallow approach with mostly single replications of many findings. We learned 
a little about each finding and more about replicability of preclinical cancer biology in general. If we 
had conducted a narrow and deep approach with the same resources, many replications of few find-
ings, we would have learned more about the individual findings and less about cancer biology in 
general. The present study provides substantial evidence about the replicability of findings in a sample 
of high- impact papers published in the field of cancer biology in 2010, 2011, and 2012. The evidence 
suggests that replicability is lower than one might expect of the published literature. Causes of non- 
replicability could be due to factors in conducting and reporting the original research, conducting the 
replication experiments, or the complexity of the phenomena being studied. The present evidence 
cannot parse between these possibilities for any particular finding. But, there is substantial evidence 
of how the present research culture creates and maintains dysfunctional incentives and practices that 
can reduce research credibility in general. There are also reforms emerging that could address those 
challenges and potentially improve replicability.

It is unlikely that the challenges for replicability have a single cause or a single solution. Selective 
reporting, questionable research practices, and low- powered research all contribute to the unreli-
ability of findings in a range of disciplines (Button et al., 2013; Franco et al., 2014; Ioannidis, 2005; 
John et  al., 2012). These challenges may be compounded by researchers not receiving sufficient 
training in statistical inference and research methodology (Van Calster et al., 2021). Moreover, as 
reported in the companion paper (Errington et al., 2021b), failures to document research protocols 
and to share data, materials (digital and physical), and code are hindering efforts to increase replica-
bility (see also Lemmon et al., 2014; Serghiou et al., 2021; Stodden et al., 2018; Vines et al., 2014). 
These issues are exacerbated by dysfunctional incentives in the research culture that favor positive, 
novel, tidy results, even at the expense of rigor, accuracy, and transparency. In a system that rewards 
researchers with publications, grants, and employment for producing exciting and innovative results, 
it is no surprise that the literature is filled with exciting and innovative results. A system that also 
rewarded rigor, accuracy, and transparency as counterweights might stem some of the most unpro-
ductive impacts on research credibility, improve the culture, and accelerate progress.

There are solutions available that could have a substantial positive impact on improving research 
practices. Technologies provide mechanisms for research planning, preregistration, and sharing data, 
materials, and code (Baker, 2019; Cragin et al., 2010; Heinl et al., 2020; Horai et al., 2010; Lindsay 
et al., 2016; Soderberg, 2018). Training services can assist researchers in maximizing the value of 
these technologies and advance their understanding of research methodology and statistical infer-
ence (Casadevall et al., 2016; Teal et al., 2015; Wilson, 2014). Incentive focused innovations such as 
Registered Reports can shift reward away from achieving exciting results and toward asking important 
questions and designing rigorous studies to investigate them (Chambers, 2019; Scheel et al., 2020; 
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Soderberg et al., 2020). Signals such as badges to acknowledge open practices can increase visi-
bility of these behaviors to facilitate changing norms within research communities (Kidwell et al., 
2016). Finally, journals, funders, and institutions can assess the research cultures and incentives that 
they create and maintain and introduce new policies that are values- aligned to promote research 
rigor and transparency (Hatch and Curry, 2020; Nosek et al., 2015). Improvements to infrastructure, 
training, norms, incentives, and policies are each necessary, and none individually sufficient, to foster 
a research culture that rewards rigor, transparency, and sharing, to ultimately reduce friction and 
accelerate progress.

Limitations
The present investigation provides evidence about the challenges involved in replicating a sample 
of experiments from high- impact papers in cancer biology. This could have implications for research 
on cancer biology and preclinical life sciences research more generally. However, there are important 
cautions about the selection and replication process that make the generalizability of these findings 
unclear. The systematic selection process identified 193 experiments from 53 high- impact papers 
published in 2010, 2011, and 2012. We experienced a variety of barriers to preparing and conducting 
the replications (Errington et al., 2021b). We do not know if those barriers produced a selection bias 
that altered our likelihood of successful replication, for better or worse. Moreover, replications were 
conducted on a subset of experiments from the papers. We cannot rule out the possibility that we 
inadvertently selected experiments from within the papers that were less likely to replicate.

One protection against the possibility of selection bias was the fact that all the experimental 
designs and protocols for the replications were peer reviewed by experts in advance, which some-
times resulted in changes to the experiments selected for replication. There was no systematic obser-
vation of biased selection of experiments that were more or less likely to replicate. More generally, 
selecting high- impact papers may result in biasing influence: for example, if papers reporting findings 
that have lower prior odds of being correct are more likely to gain attention and citations, then 
selecting these papers may overestimate failures to replicate for findings in general. Alternatively, if 
high- impact papers, most of which are published in ‘prestigious’ journals, are more likely to receive 
and withstand scrutiny prior to publication, then selecting these papers may underestimate failures to 
replicate for findings in general. In any case, compared to the baseline presumption that the published 
literature is credible and replicable, our findings from a systematically selected sample of the literature 
suggest that there is room for improvement.

Conclusion
No single effect, experiment, or paper provides definitive evidence about its claims. Innovation iden-
tifies possibilities. Verification interrogates credibility. Progress depends on both. Innovation without 
verification is likely to accumulate incredible results at the expense of credible ones and create friction 
in the creation of knowledge, solutions, and treatments. Replication is important for research progress 
because it helps to separate what we know from what we think we know.

The surprisingly high rate of failures to replicate in this study might be an indicator of friction in the 
research process inhibiting the successful translation of basic and preclinical research. For example, 
promising animal experiments are often the basis of launching clinical trials. The low replication 
success rates and small effect sizes we found reinforce prior calls for improving the rigor and trans-
parency of preclinical research to improve the allocation of limited resources and to protect human 
participants from being enrolled in trials that are based on weak evidence (Landis et al., 2012; Perrin, 
2014; Steward et al., 2012).

Stakeholders from across the research community have been raising concerns and generating 
evidence about dysfunctional incentives and research practices that could slow the pace of discovery. 
This paper is just one contribution to the community’s self- critical examination of its own practices. 
Science pursuing and exposing its own flaws is just science being science. Science is trustworthy 
because it does not trust itself. Science earns that trustworthiness through publicly, transparently, and 
continuously seeking out and eradicating error in its own culture, methods, and findings. Increasing 
awareness and evidence of the deleterious effects of reward structures and research practices will spur 
one of science’s greatest strengths, self- correction.

https://doi.org/10.7554/eLife.71601
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Materials and methods
Paper, experiment, and effect selection strategy
Of the 193 experiments from 53 papers selected for replication, a total of 50 experiments from 23 
papers were completed with 158 unique effects. See Errington et al., 2014 and Errington et al., 
2021b for full descriptions of the sampling strategy, methodology, and challenges in conducting the 
replications. Briefly, we asked the original authors for data, materials, and advice on the protocols to 
maximize the quality of the replications. If we were able to design complete replication protocols, iden-
tify labs to conduct the experiments, and obtain materials and reagents to perform the experiments, 
we then submitted the protocols for peer review at eLife as Registered Reports, a publishing format in 
which peer review is conducted prior to observing the experimental outcomes to maximize quality of 
methodology, ensure precommitment and transparency of registered methods and analysis plans, and 
to minimize publication bias and selective reporting (Chambers, 2019; Nosek and Lakens, 2014). 
Thus, all selected experiments and effects of interest, protocol details, material choices, and analytical 
strategies were peer reviewed in advance. In total, we published 29 Registered Reports including 87 
planned experiments. For each experiment, effects of interest were identified with sample sizes deter-
mined a priori for at least 80% power to detect the original effect size. For 18 of the original papers we 
were able to implement modifications to complete the proposed experiments resulting in a total of 
17 published Replication Studies with the one rejected Replication Study posted as a preprint (Pelech 
et al., 2021). For the five original papers where we completed some of the experiments the results 
of the completed replications were reported in an aggregate paper (Errington et al., 2021a). In total 
there were 158 effects with replication outcomes from 50 experiments (effects per experiment: M = 
3.2; SD = 2.4; range = 1–13) that came from 23 papers (effects per paper: M = 3.9; SD = 2.8; range 
= 1–13). Some of the 158 effects had internal replications (n = 19) in which we conducted multiple 
replications (range = 2–3) of the same original experiment leading to 188 total outcomes considering 
the internal replications separately. All of these outcomes are available on OSF (https:// osf. io/ e5nvr/). 
That database is the basis of the meta- analysis reported in this paper. All replication protocols, mate-
rials, data, and outcomes are documented, archived, and publicly accessible to maximize transpar-
ency, accountability, and reproducibility of this project and are available at: https:// osf. io/ collections/ 
rpcb/. All individual papers published as part of this project are available at eLife (https:// elifesciences. 
org/ collections/ 9b1e83d1/ reproducibility- project- cancer- biology).

Calculation and extraction of statistical data
Papers and experiments were coded as described in Errington et al., 2021b. All original outcome 
data were calculated using either the shared original raw data, shared original summary data, extracted 
summary data from original papers, or original statistical variables from original papers. Summary 
data from all original experiments were reported in the associated Registered Reports and used for 
power calculations. Replication outcome data were calculated using the replication raw data with the 
outcomes and summary data reported in the associated Replication Studies. There was variation in 
reporting across outcomes that constrained what kinds of comparisons could be made between orig-
inal and replication findings (e.g., 117 [74%] of the 158 original effects reported numerical results [e.g., 
graphs of quantified data or statistical tests] while other effects may have been reported as a repre-
sentative image without any information about variability or an associated statistical inference). And of 
the 158 original effects, 86% were positive (i.e., interpreted as observing a relationship or impact of an 
intervention) and 14% were null (i.e., interpreted as not observing a meaningful relationship or impact 
of an intervention). For each outcome the statistical tests, when possible, were calculated based on 
the native structure of the original or replication data with a common shared effect size calculated 
for each original and replication pair. In 19 cases (5 where the original was a numerical result and 14 
where the original was representative), this was not possible for the replication, meaning only the 
‘same direction’ criterion was able to be determined. There was also one case where the original point 
estimate from the representative image in the original study was not able to be determined, meaning 
only the ‘same direction’ and ‘significance agreement’ criteria could be assessed, but not others (e.g., 
if the original image estimate was within the 95% confidence interval of the replication). For the cases 
where there were statistical tests and effect sizes, they ranged from types of standardized mean 
differences (SMDs) (e.g., Cohen’s d) and non- parametric equivalents (e.g., Cliff’s delta) across the 
range of outcomes. To facilitate effect- size conversions to approximate the SMDs scale we calculated, 
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or approximately converted, all effect sizes to the SMD scale and recalculated statistical tests where 
necessary. This allows for meta- analysis and aggregation across a wider range of outcomes, although 
has the risk of distorting the results. As such, we conducted analyses below using the outcomes in the 
native or SMD scale, which gave similar patterns (see Tables S1–S3, S4–S6, S8–S10 in Supplementary 
file 1). Data dictionaries describing all of the variables are available at https:// osf. io/ e5nvr/.

Effect size conversions
For numerical results, we extracted effect sizes on the following SMD scales for all outcomes: Cohen’s 
d (110 outcomes), Cohen’s dz (15 outcomes), Glass’ delta (24 outcomes), hazard ratio ( outcomes), 
and Pearson’s r (6 outcomes). The first three effect size scales are types of SMDs, although their 
interpretations are somewhat different from one another. We approximately converted hazard ratios 
(Hasselblad and Hedges, 1995) and Pearson’s correlations (Mathur and VanderWeele, 2020a) to 
the SMD scale. Converting Pearson’s correlations calculated with continuous independent variables to 
SMDs requires specifying the size of contrast in the independent variable that is to be considered. We 
selected a contrast size of 1 standard deviation on the independent variable throughout.

Accounting for nested data
The data had a hierarchical structure, with effects nested within experiments nested with papers. We 
first calculated five pairwise metrics of replication success (detailed below) at the effect level, which 
was the finest- grained level of analysis. To account for this nesting structure, we first used fixed- effects 
meta- analysis to combine internal replications within a given paper, experiment, and effect, reflecting 
the assumption that they were testing the same effect size. We report aggregated findings at each 
level of analysis for ease of comprehension and multi- level analysis that account for the nested struc-
ture. Effects were meta- analytically combined into experiments with random- effect models reflecting 
the fact that the effects could be heterogeneous within an experiment. And experiments were meta- 
analytically combined into papers with random- effect models for the same reason. Original positive 
and null effects were kept separate in aggregating into experiments and papers. This was done for 
effects on the SMD scale (main paper results presented this way) and for effects on the native scale 
(where possible; Tables S1, S4, S8 in Supplementary file 1). We also summarized these effect- level 
metrics at the experiment and paper level by calculating percentages to summarize binary metrics 
of replication success, and by using harmonic mean p- values to summarize the continuous metric 
(Wilson, 2019). This was done for effects on the native scale (Tables S2, S5 and S9 in Supplemen-
tary file 1) and the SMD scale (Tables S3, S6, and S10 in Supplementary file 1). When conducting 
meta- regression analyses across pairs (i.e., when effect sizes could be determined for both original 
and replication effects), we accounted for the hierarchical structure using robust inference (Bell and 
McCaffrey, 2002; Pustejovsky and Tipton, 2017) to account for the nesting structure as described 
in ‘Assessing candidate moderators of replication success metrics’ below.

Pairwise metrics of replication success
We evaluated replication success with a variety of outcomes that have been employed in prior repli-
cation studies: (1) We evaluated whether the sign of the replication estimate agreed with that of the 
original effect (‘same direction’). This rudimentary metric does not account for effect sizes nor statis-
tical precision, but was useful because we could compute it for even the non- quantitative pairs such 
as when original experiments reported only representative images. (2) We assessed whether the repli-
cation had a p- value less than 0.05 and an estimate in the same direction as the original (‘significance 
agreement’). (3 and 4) We assessed whether the original and replication estimates were inside the 
95% confidence intervals of the other. (5) We assessed whether the replication estimate was inside the 
95% prediction interval of the original, and formally assessed the degree of statistical inconsistency 
between the replication and the original using the metric porig, which can be viewed as a p- value for 
the hypothesis that the original and the replication had the same population effect size (Mathur and 
VanderWeele, 2020b). (6) We estimated the difference in estimates between the replication and the 
original after transforming all effect sizes to a comparable scale. Finally, regarding evidence strength 
for the effects under investigation, (7) we calculated a pooled estimate from combining the replication 
and original via fixed- effects meta- analysis. This is equivalent to pooling individual observations from 
the replication and the original data and can be viewed as an updated estimate of the effect size if 
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the original experiment and the replication experiment are treated as equally informative. We chose 
a fixed- effect model rather than a random- effects model primarily for consistency with our assump-
tion throughout all main analyses that there was no within- pair heterogeneity. Also, a random- effects 
model typically cannot adequately estimate heterogeneity with only two effects (Langan et al., 2019). 
Additionally, in the specific context of pooling a single replication effect with a single original effect, 
we view the natural target of statistical inference as the mean effect size for those two effects rather 
than for a hypothetical larger population of effects on the same topic from which the original and 
replication were drawn. For this purpose, inference from a fixed- effect model is appropriate (Rice 
et al., 2017). In any case, reanalysis with a random- effects model has modest impact on the estimates 
and does not alter the substantive conclusions. Rationales, including the strengths and limitations of 
each of these metrics, are presented in context of the outcomes in the Results section.

We conducted all statistical analyses with R software (RRID:SCR_001905), version 4.0.3 (R Devel-
opment Core Team, 2021). All statistical analyses were determined post hoc. We also used metafor 
software (RRID:SCR_003450), version 2.4–0 to conduct the meta- analyses.

Assessing candidate moderators of replication success metrics
We assessed whether five candidate moderators were associated with each indicator of replication 
success. The moderators were: (1) animal experiments vs. non- animal (i.e., in vitro) experiments; (2) 
whether at least one of the replication labs was a contract research organization; (3) whether at least 
one of the replication labs was an academic research core facility; (4) whether the original authors 
shared materials with the replicating labs (coded as ‘no’, ‘yes’, or ‘not requested’, with the latter indi-
cating that we did not need to request materials); and (5) the quality of methodological clarifications 
made by the original authors upon request from the replicating labs (coded as 0 = ‘no response or 
not helpful’ to 5 = ‘extremely helpful’ and analyzed as a continuous variable). We intended to include 
a sixth moderator, which described the extent to which we were successful at implementing any 
needed protocol changes (analyzed as a categorical variable with categories ‘changes were moder-
ately, mostly, or completely implemented’, ‘changes were less than moderately implemented’, and 
‘no changes needed’). However, all but one outcome were rated in the first category, making the 
model inestimable with this variable included. We therefore excluded this moderator from the model.

To assess whether the five moderators were associated with these metrics of replication success 
across quantitative pairs, we used multi- level models to regress each pairwise metric on all candidate 
moderators simultaneously, accounting for clustering within experiments and papers. Some pairwise 
metrics had variances associated with them (i.e., the difference in estimate and the pooled estimate), 
whereas the others did not. For the metrics that did not have variances, we obtained point esti-
mates from a standard multi- level model containing random intercepts of experiments nested within 
papers. For the metrics that did have variances, we obtained point estimates from an equivalent 
model that also weighted pairs by the inverse variance of the outcome variable (i.e., the replication 
success metric); this model is a form of random- effects meta- analysis. In both cases, we used CR2 
robust standard errors in order to relax the distributional assumptions of parametric mixed models.

These models estimated the average difference in each metric of replication success that was asso-
ciated with each candidate moderator, while holding constant all the other moderators. We report 
inference both with and without Bonferroni corrections for multiplicity. The Bonferroni corrections 
adjusted for multiplicity across the five moderator coefficients per metric of replication success, but 
did not adjust for the multiple metrics of replication success because these metrics were of course 
highly correlated with one another, and were sometimes arithmetically related to one another.

Sensitivity analysis
All of the replication success metrics assume that there is no heterogeneity within quantitative pairs. 
This is a limitation because there could be substantive differences, including unmeasured moderators, 
between a given original effect and its replication that could produce genuine substantive differ-
ences between the two estimates. Such heterogeneity is not uncommon, even if it is relatively small, 
in multisite replications in which heterogeneity can be directly estimated (Ebersole et  al., 2020; 
Klein et al., 2018). As such, the metrics will typically underestimate replication success when there is 
heterogeneity within pairs (Mathur and VanderWeele, 2020b). As a sensitivity analysis, we also eval-
uated evidence for inconsistency by calculating porig, constructing prediction intervals, and estimating 
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the expected significance agreement across pairs under the assumption that there was within- pair 
heterogeneity with standard deviation 0.21 on the SMDs scale, an estimate we obtained from reana-
lyzing a review of multisite replications (Mathur and VanderWeele, 2020b; Olsson- Collentine et al., 
2020). This sensitivity analysis yielded similar results and conclusions to the main analyses for these 
three metrics of replication success (see Tables S7 and S11 in Supplementary file 1), likely because 
the estimated heterogeneity was small relative to the original and replication standard errors. Future 
research could attempt to directly estimate heterogeneity in these research contexts.

Note
All eLife content related to the Reproducibility Project: Cancer Biology is available at: https:// elife-
sciences. org/ collections/ 9b1e83d1/ reproducibility- project- cancer- biology.

All underlying data, code, and digital materials for the project is available at: https:// osf. io/ collec-
tions/ rpcb/.
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