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Abstract The respiratory system maintains homeostatic levels of oxygen (O2) and carbon dioxide 
(CO2) in the body through rapid and efficient regulation of breathing frequency and depth (tidal 
volume). The commonly used methods of analyzing breathing data in behaving experimental animals 
are usually subjective, laborious, and time-consuming. To overcome these hurdles, we optimized 
an analysis toolkit for the unsupervised study of respiratory activities in animal subjects. Using this 
tool, we analyzed breathing behaviors of the common marmoset (Callithrix jacchus), a New World 
non-human primate model. Using whole-body plethysmography in room air as well as acute hypoxic 
(10% O2) and hypercapnic (6% CO2) conditions, we describe breathing behaviors in awake, freely 
behaving marmosets. Our data indicate that marmosets’ exposure to acute hypoxia decreased 
metabolic rate and increased sigh rate. However, the hypoxic condition did not augment ventila-
tion. Hypercapnia, on the other hand, increased both the frequency and depth (i.e., tidal volume) of 
breathing.

Editor's evaluation
The authors have thoughtfully revised their manuscript, with an increased focus on their breath anal-
ysis toolkit. We think this will be a tremendous resource for the respiratory community and we are 
hopeful it will decrease the barriers for others to conduct similar investigations.

Introduction
Mammals rely on a continuous supply of oxygen (O2) from the environment and efficient removal of 
carbon dioxide (CO2) and other metabolic waste products from their body. The intricate respiratory 
system ensures the homeostatic state of the arterial partial pressure of O2 (PO2) and CO2 (PCO2) in the 
blood by executing rhythmic movement of the respiratory pump, which includes the intercostals and 
the diaphragm muscles (Del Negro et al., 2018). The inception of this respiratory rhythm occurs within 
the preBötzinger complex (preBötC), a functionally specialized region in the ventrolateral medulla of 
the brainstem (Smith et  al., 1991; Del Negro et  al., 2018). Activities of the preBötC are modu-
lated by specialized peripheral and central chemosensors that adjust the respiratory drive to regulate 
homeostatic levels of PO2 and PCO2 (Heymans and Bouckaert, 1930; O’Regan and Majcherczyk, 
1982; Guyenet, 2014; Sheikhbahaei et  al., 2018; Angelova et  al., 2015; van der Heijden and 
Zoghbi, 2020; Guyenet et al., 2019; Sheikhbahaei et al., 2017; Del Negro et al., 2018).

Most studies on homeostatic control of breathing have been done in rodent models, in which the 
experiments are mostly performed during the day, rodents’ normal inactive period. Since, in general, 
rodents have relatively reduced chemosensitivities compared with primates (Hazari and Farraj, 
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2015), the use of non-human primates (NHPs) has been proposed to fill the gap and translate rodent 
breathing data to humans (SheikhBahaei, 2020). The common marmoset (Callithrix jacchus) is a New 
World NHP with a small body size (250–600 g) similar to that of a rat. Ease of handling, high reproduc-
tive efficacy, and lack of zoonotic risks compared to Old World NHPs make marmosets an attractive 
and powerful NHP model for biomedical and neuroscience research (Abbott et al., 2003). Marmo-
sets have been proposed as a primate model to study behavioral neuroscience, leading to a recent 
increase of their use in research settings (Prins et al., 2017; Miller et al., 2016; Walker et al., 2017). 
However, the basic characteristics of breathing behaviors in marmosets are not yet defined.

Whole-body plethysmography has been widely used in studying breathing behaviors in animal 
models (Besch et al., 1996; Iizuka et al., 2010; Sheikhbahaei et al., 2018; Hosford et al., 2020; Liu 
et al., 2016; Hutchison et al., 1983; Hoffman et al., 1999; Valente et al., 2012; Tattersall et al., 
2002). However, analyzing whole-body respiratory data in awake animals requires algorithms to distin-
guish different respiratory signals. To avoid this problem, respiratory activities are often recorded when 
the animal is asleep, awake with minimal movement, or anesthetized. Yet studying the homeostatic 
control of breathing physiology in awake animals has absolute advantages, despite the increased 
variability. Therefore, to overcome this challenge, we developed an open-source Python tool using 
Neurokit2 (Makowski et al., 2021), for unsupervised analysis of respiratory signals obtained from rats 
and common marmosets. We then characterized the ventilatory responses in marmosets at rest as well 
as during acute hypoxia (decrease inspired O2 to 10%) and hypercapnia (increased inspired CO2 to 
6%). We found that while exposure of marmosets to hypoxia increased sigh rate and decreased overall 
animal metabolic rate, the hypoxia-induced augmentation of ventilation was diminished. On the other 
hand, hypercapnic conditions increased both frequency and depth of breathing.

Results
Validation of the analysis toolkit in experimental animal models
Analysis of breathing data from plethysmography is usually time-consuming, laborious, and often 
involves measurements of rate of breathing (fR), tidal volume (VT), and minute ventilation (VE). fR is 

plethysmography data acquisition
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Figure 1. Experimental design for measurement and analysis of marmoset respiratory behaviors. After a 40 min baseline period at room air (21% 
O2, ~0% CO2, and 79% N2), the breathing behavior of the animal was studied under either hypoxic (10% O2; 10 min) or hypercapnic (6% CO2; 10 min) 
conditions. Raw respiratory signal is later cleaned and analyzed offline (see Materials and methods for details). Video of spontaneous activity in the 
chamber at baseline and during each challenge was used to train a DeepLabCut model to track the animal body.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Breathing behaviors in adult marmoset.

https://doi.org/10.7554/eLife.71647
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usually calculated in intervals when the animal is asleep or stationary from the time of peak-to-peak 
inspiratory or expiratory signal. VT is often measured by integration of signal over a specified period 
of time. Therefore, analysis of minute-to-minute changes in breathing may be difficult and take more 
time. In addition, the fact that conventional analysis is usually subjective might affect the reproduc-
ibility of reported results. To overcome this problem, we wrote a custom, open-source Python script 
using Neurokit2, NumPy, and Pandas software packages (McKinney, 2010; van der Walt et al., 2011; 
Makowski et al., 2020) to analyze breathing signals in awake, freely-moving animals (Figure 1). While 
using this script, the user has the option to define the start and end intervals for baseline as well as 
experimental challenges, which the script uses to import the data and perform analysis. To validate 
our script, we benchmarked the data analyzed against a conventional method (Sheikhbahaei et al., 
2018; Sheikhbahaei et al., 2017) by analyzing simple respiratory data (fR,VT, and VE) in conscious 
marmosets and rats (Figure 2). We did not identify any differences in values of fR, VT, and VE between 
those generated using our script or by the conventional method (n = 3 per species) (Figure 2—figure 
supplement 1 and Figure 2—figure supplement 2). We then used our toolkit to further analyze other 
breathing behaviors in both male and female marmosets at room air and during acute exposure to 
hypoxia and hypercapnia (see below).

Resting respiratory behavior in adult marmosets
The fR at room air (normoxia/normocapnia) was similar in female (79 ± 7 breaths min–1, n = 8) and 
male (78 ± 8 breaths min–1, n = 8) adult marmosets (p = 0.88, Mann–Whitney test) (Figure 2—figure 
supplement 3). The VT, calculated from trough to peak amplitude and normalized to body mass, 
was similar in female (0.43 ± .10 a.u.) and male (0.53 ± 0.08 a.u.) adult marmosets as well (p = 0.37, 
Mann–Whitney test). Additionally, baseline VE was similar in female (35 ± 10 a.u.) and male (42 ± 8 a.u.) 
marmosets (p = 0.38, Mann–Whitney test) (Figure 2—figure supplement 3). Two marmosets (one 
male and one female) showed prolonged breath holding (11 ± 2 breaths hr–1 for 4.3 ± 0.1 s).

Ventilatory response to acute hypercapnia in adult marmosets
We also measured changes in fR, VT, and VE before, during, and after acute hypercapnic challenge 
(6% CO2 in the inspired air). The magnitude of change in fR, VT, and VE was similar between females 
and males during hypercapnia (n = 4 per sex, Figure 3—figure supplement 1), so we grouped them 
for further analyses. Increasing CO2 inside the chamber increased fR (87 ± 8 vs. 74 ± 8 breaths min–1 
in baseline, p = 0.039, Wilcoxon matched-pairs signed rank test), VT (1.04 ± .11 vs. 0.4 ± 0.05 a.u. in 
baseline, p = 0.008, Wilcoxon matched-pairs signed rank test) and VE (81 ± 11 vs. 32 ± 5 a.u. in base-
line, p = 0.008, Wilcoxon matched-pairs signed rank test) (Figure 3).

Hypercapnic-induced increase in fR was mainly due to decrease in time of inspiration (TI) (0.26 ± 
0.02 vs. 0.36 ± 0.03 s at baseline, p = 0.008, Wilcoxon matched-pairs signed rank test) rather than 
time of expiration (TE) (0.48 ± 0.06 vs. 0.58 ± 0.09 at baseline sec, p = 0.078, Wilcoxon matched-
pairs signed rank test). As expected, respiratory flow (RF) was also increased during hypercapnia (4.1 
± 0.4 vs. 1.2 ± 0.2 a.u. in baseline, p = 0.008, Wilcoxon matched-pairs signed rank test) (Figure 3, 
Figure 3—figure supplement 2).

Subsequently, we measured regularity of respiration via cycle-to-cycle dispersion of TTOT in base-
line and hypercapnic condition as shown in Poincaré plots (Figure 3). We quantified the regularity 
of breathing (Sheikhbahaei et al., 2017) by SD1 and SD2 (see Materials and methods and Soni and 
Muniyandi, 2019). The baselines SD1 and SD2 were greater than those during hypercapnia (132 ± 17 
vs. 550 ± 115 a.u. in baseline, p = 0.008, and 198 ± 34 vs. 758 ± 138 in baseline, p = 0.008, respec-
tively; Wilcoxon matched-pairs signed rank test) (Figure 3 and Figure 3—figure supplement 3).

Ventilatory response to acute hypoxia in adult marmosets
We then measured changes of fR, VT, and VE during acute systemic hypoxic challenges (10% O2 in the 
inspired air) with respect to the baseline. Similar to hypoxia, the magnitude of the change in fR, VT, 
and VE was not different in females and males during acute hypoxia (n = 4 per sex) (Figure 4—figure 
supplement 1), therefore we combined all the data from both sexes. In the first minute of the hypoxic 
challenge, VT and VE increased by 17% ± 12% and 17% ± 14%, respectively (Figure 4). This initial 
increase in ventilation may be due to hypoxic-induced carotid body activation. We then analyzed 
breathing behaviors 5 min after changing the inspired O2 from 21% (room air) to 10%. Hypoxic 

https://doi.org/10.7554/eLife.71647


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Bishop et al. eLife 2022;11:e71647. DOI: https://doi.org/10.7554/eLife.71647 � 4 of 20

−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2

Raw and Cleaned Signal

Raw
Cleaned
Inhalation Peaks
Exhalation Troughs
exhalation
inhalation

Breathing Rate

Amplitude
Mean

A

B

C

re
sp

ira
to

ry
 a

ct
iv

ity
fre

qu
en

cy
 (m

in
 -1

)
am

pl
itu

de
 (a

. u
.)

Breathing Amplitude

*

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0
25
50
75

100
125
150
175
200

Rate
Mean

Figure 2. Sample marmoset respiratory trace output from Neurokit2. Representative respiratory trace is sampled from a single male marmoset during 
hypercapnia challenge. (A) NeuroKit2 was used for signal detrending and smoothing, peak and trough extraction, as well as respiratory phase. (B and 
C) Instantaneous measurement of breathing frequency (fR) (B) and breathing amplitude (VT) (C) are illustrated. This sample also contained respiratory 
changes during a phee call (marked by *). a. u. – arbitrary unit.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Validation of our tool in analysis of breathing behaviors in common marmoset.

Figure supplement 2. Analysis of rodent respiratory behaviors.

Figure supplement 3. Sex differences in baseline respiratory frequencies.

https://doi.org/10.7554/eLife.71647
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Figure 3. Hypercapnia challenge-induced changes in respiratory features. (A) Measurements of breathing rate (fR), tidal volume (VT), and minute 
ventilation (VE) were averaged across 1 min epochs for assessment of local changes in each parameter. (B) Summaries of each feature at baseline, 
following 5 min exposure to hypercapnia, and in the 5 min immediately following the end of challenge. We observed increases in respiratory frequency 
(p = 0.023, Wilcoxon matched-pairs signed rank test), VT (p = 0.008, Wilcoxon matched-pairs signed rank test), and VE (p = 0.008, Wilcoxon matched-
pairs signed rank test) during hypercapnia. (C) Measurements of inspiratory time (TI), expiratory time (TE), and respiratory drive (RD) were averaged across 
1 min epochs for assessment of local changes in each parameter. (D) Summaries of each feature at baseline (0% inspired CO2), following 5 min exposure 
to 6% hypercapnia, and in the first 5 min following the end of hypercapnic challenge. During hypercapnia, we observed decreases in TI (p = 0.008, 
Wilcoxon matched-pairs signed rank test), TE (p = 0.078, Wilcoxon matched-pairs signed rank test), and increase in RD (p = 0.008, Wilcoxon matched-
pairs signed rank test). Representative Poincaré plots of total cycle duration (TTOT) for the nth cycle vs. TTOT for the nth+1 cycle during baseline (room air) 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.71647
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conditions did not elicit overall changes in fR (74 ± 5 vs. 82 ± 7 breaths min–1 in baseline, p = 0.3, 
Wilcoxon matched-pairs signed rank test), but decreased VT (0.39 ± 0.08 vs. 0.54 ± 0.11 a.u. in base-
line, p = 0.078, Wilcoxon matched-pairs signed rank test) and VE (29 ± 6 vs. 46 ± 12 a.u. in baseline, 
p = 0.043, paired t test) (Figure 4).

Then, we also calculated changes in TI, TE, and RF during hypoxic challenge with respect to base-
line. Since TI, TE, and RF were not different in females and males during hypoxia (n = 4 per sex) 
(Figure 4—figure supplement 2), we combined their data. While hypoxia did not change ΤΙ (0.34 ± 
0.02 vs. 0.30 ± 0.02 s in baseline, p = 0.46, Wilcoxon matched-pairs signed rank test) and TE (0.55 ± 
0.1 vs. 0.50 ± 0.1 s in baseline, p = 0.4, Wilcoxon matched-pairs signed rank test), RF was decreased 
during hypoxia (12 ± 2 vs. 16 ± 3 a.u. in baseline, p = 0.008, Wilcoxon matched-pairs signed rank test) 
after 5 min of challenge (Figure 4C and D).

We also measured the effects of acute hypoxia on the regularity of breathing (Figure 4E–G). We 
combined the data from male and female marmosets as there were no sex differences measured for 
irregularity of breathing (Figure 4—figure supplement 3). We quantified the regularity of breathing 
by generating Poincaré plots and measuring SD1 and SD2. The baselines for SD1 and SD2 were 
similar during hypoxia (330 ± 39 vs. 374 ± 42 in baseline, p = 0.4, and 419 ± 52 vs. 488 ± 68 in base-
line, p = 0.6, respectively; Wilcoxon matched-pairs signed rank test) (Figure 4G).

We then measured changes in respiratory features in the 5 min immediately following the hypoxic 
challenge (post-hypoxic challenge). Though we saw no changes in fR (73 ± 4 vs. 82 ± 7 breaths min–1 in 
baseline, p = 0.11, Wilcoxon matched-pairs signed rank test) and VT (0.47 ± .10 vs. 0.54 ± 0.12 a.u. in 
baseline p = 0.15, Wilcoxon matched-pairs signed rank test), VE decreased (34 ± 7 vs. 46 ± 12 a.u. in 
baseline, p = 0.078, Wilcoxon matched-pairs signed rank test) relative to baseline (Figure 4A and B). 
We also calculated changes in TI, TE, and RF, immediately following the hypoxia challenge. While we 
observed no change in TE (5.4 ± 0.5 vs. 5.0 ± 0.6 a.u. in baseline, p = 0.46), there was an increase in TI 
(3.4 ± 0.2 vs. 3.0 ± 0.2 a.u. in baseline, p = 0.055) and a decrease in RF (1.3 ± 0.2 vs. 1.8 ± 0.4 a.u. in 
baseline, p = 0.078) after hypoxia challenge (Figure 4C and D).

The constant fR and decrease in RF during hypoxia and post-hypoxic challenge suggests that the 
metabolic rate might decrease during acute hypoxic challenge. We then calculated the metabolic 
rate (MR) in marmosets during hypoxic challenge. Our data suggest that MR had a profound decrease 
(~50%) during hypoxia when compared to the baseline (Table 1). Therefore, we calculated ventila-
tory efficiency as VE/MR to understand the changes in ventilation in response to CO2 production. Our 
analysis suggested that the ventilatory efficiency during hypoxic challenge was not different from the 
baseline (22 ± 6 vs. 19 ± 6 a.u. in baseline, p = 0.6, Wilcoxon matched-pairs signed rank test), however 
it was lower during post-hypoxic challenge (13 ± 3 vs. 22 ± 6 a.u. in hypoxia, p = 0.055, Wilcoxon 
matched-pairs signed rank test) (Figure 4H).

Sigh frequency, sniffing, and apnea index in adult marmosets
Since incidences of sighs, apneas, and sniffing could contribute to the irregularity of respiration, we 
measured the frequencies of these essential features of breathing behavior. Sighs can be generated 
within the inspiratory rhythm-generating circuits of the preBötzinger complex (preBötC) (Sheikh-
bahaei et al., 2018; Li et al., 2016; Lieske et al., 2000; Borrus et al., 2020; Toporikova et al., 
2015; Vlemincx et al., 2013), and may be modulated by excitatory signals from central chemocen-
ters (Sheikhbahaei et al., 2018; Sheikhbahaei et al., 2017; Souza et al., 2018; Souza et al., 2019; 

and hypercapnic (6% CO2) conditions in male (E) and female (F) marmosets. (G) Grouped data illustrating changes in SD1 and SD2 before, during, and 
after hypercapnia challenge. Respiratory rate variability decreased in both measures during hypercapnia compared to baseline (SD1: p = 0.008; SD2: p 
= 0.008; Wilcoxon matched-pairs signed rank test). In B, D, and G, data are shown as individual (gray lines) and mean values ± SEM (black line). a. u. – 
arbitrary unit.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Hypercapnia challenge source data.

Figure supplement 1. Hypercapnia challenge-induced changes in respiratory behavior by sex.

Figure supplement 2. Hypercapnia challenge-induced changes in respiratory features by sex.

Figure supplement 3. Changes in variability of respiration during hypercapnic challenge.

Figure 3 continued

https://doi.org/10.7554/eLife.71647
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Figure 4. Hypoxic and post-hypoxic challenge-induced changes in respiratory features. (A) Measurements of breathing rate (fR), tidal volume (VT), and 
minute ventilation (VE) were averaged across 1-min epochs for assessment of local changes in each parameter. (B) Summaries of each feature at baseline, 
following 5 min exposure to hypoxic (10% O2) challenge, and in the 5 min immediately following the end of challenge. During hypoxia challenge, we 
saw no changes in respiratory frequency (p = 0.31, Wilcoxon matched-pairs signed rank test) and VE (p = 0.11, Wilcoxon matched-pairs signed rank 
test) compared to baseline. VT decreased during hypoxia challenge (p = 0.078, Wilcoxon matched-pairs signed rank test). Immediately following the 
challenge, we saw no changes in respiratory frequency (p = 0.11, Wilcoxon matched-pairs signed rank test) compared to baseline, and a post-challenge 
decrease in VT (p = 0.078, Wilcoxon matched-pairs signed rank test) and VE (p = 0.078, Wilcoxon matched-pairs signed rank test) compared to baseline. 
(C) Measurements of inspiratory time (TI), expiratory time (TE), and respiratory drive (RD) were averaged across 1 min epochs for assessment of local 

Figure 4 continued on next page
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Li et al., 2016). In female adult marmosets, sigh frequencies were not different when compared to 
those in male animals during the baseline in room air (11 ± 1 vs. 12 ± 2 hr–1 in male) (Figure 5—figure 
supplement 1). In rodents, both hypoxic and hypercapnic challenges increased frequency of sighs (Li 
et al., 2016; Sheikhbahaei et al., 2018). Consistent with those results, hypoxia increased sigh events 
by 5.5 folds in marmosets (71 ± 10 vs. 11 ± 1 hr–1 in room air, p = 0.008, Wilcoxon matched-pairs 
signed rank test). Similarly, hypercapnia also increased sigh frequency (68 ± 3 vs. 12 ± 1 hr–1 in room 
air; p = 0.008, Wilcoxon matched-pairs signed rank test) (Figure 5A).

We also analyzed high-frequency breathing (sniffing) in marmosets. During the hypoxic challenge, 
the sniffing rate did not change with respect to baseline (74 ± 13 vs. 101 ± 38 hr–1 in baseline, p = 
0.84, Wilcoxon matched-pairs signed rank test) (Figure 5B). However, during hypercapnic challenge, 
rate of sniffing was less than that in room air (27 ± 16 vs. 100 ± 38 hr–1 in baseline, p = 0.078, Wilcoxon 
matched-pairs signed rank test) (Figure 5B).

Spontaneous and post-sigh apneas have been reported in rodents, rabbits, humans, and other 
animals (Yamauchi et al., 2008; Franco et al., 2003; van der Heijden and Zoghbi, 2018; Bongi-
anni et al., 2010; Li et al., 2006; Ramirez et al., 2013; Sheikhbahaei et al., 2017). We did not find 
differences in the apnea index between female and male marmosets (Figure 5—figure supplement 
1). Apneas decreased during hypoxic challenge (37 ± 12 vs. 79 ± 20 in room air, p = 0.039, Wilcoxon 
matched-pairs signed rank test) (Figure  5C). During hypercapnic challenge, rate of spontaneous 
apneas also decreased drastically relative to that in room air (9 ± 6 vs. 129 ± 31 hr–1 in room air, p = 
0.008, Wilcoxon matched-pairs signed rank test) (Figure 5C).

Spontaneous activity of adult marmosets
Lastly, to understand if hypoxia or hypercapnia have any effect on the animal’s activity, we measured 
the movement of marmosets in the plethysmograph during both challenges. In measurements of large 
changes in position from one quadrant of the chamber to another, we saw no changes during hypoxia 
(4.1 ± 1.8 vs. 5.4 ± 1.6 quadrant changes per minute at baseline, n = 3, p = 0.99, Wilcoxon matched-
pairs signed rank test) or hypercapnia (4.0 ± 0.5 vs. 4.7 ± 1.4 quadrant changes per minute at baseline, 
n = 3, p = 0.75, Wilcoxon matched-pairs signed rank test). Similarly, we observed no differences in the 
sum of frame-to-frame Euclidean distances in hypoxic challenge (124 ± 28 vs. 128 ± 27 pixels min–1 
at baseline, n = 3, p = 0.99, Wilcoxon matched-pairs signed rank test) or hypercapnia challenge (126 
± 20 vs. 120 ± 11 min–1 at baseline, p = 0.99, Wilcoxon matched-pairs signed rank test) (Figure 6).

changes in each parameter. (D) Summaries of each feature at baseline, following 5 min exposure to challenge until end of challenge, and in the 5 min 
immediately following the end of challenge. During hypoxic challenge, we saw no changes in respiratory TI (p = 0.5) or TE (p = 0.4), but a decrease in 
RD during (p = 0.008, Wilcoxon matched-pairs signed rank test) compared to baseline. We did observe post-hypoxic challenge increase in TI (p = 0.055) 
and RD (p = 0.023) and no change in TE (p = 0.46, Wilcoxon matched-pairs signed rank test). Representative Poincaré plots of total cycle duration (TTOT) 
for the nth cycle vs. TTOT for the nth+1 cycle during baseline and hypoxic conditions (10% O2) in male (E) and female (F) marmosets. (G) Summary data 
illustrating changes in SD1 and SD2 before, during, and after hypoxic challenge. Respiratory rate variability did not change for either measure during 
(SD1: p = 0.4; SD2: p = 0.6; Wilcoxon matched-pairs signed rank test) or after (SD1: p = 0.6; SD2: p = 0.3; Wilcoxon matched-pairs signed rank test) the 
hypoxic challenge compared to baseline. (H) Group data illustrating changes in ventilatory efficiency (VE/MR) before, during, and after hypoxic challenge. 
Ventilatory efficiency was not affected by acute hypoxia (p = 0.6, Wilcoxon matched-pairs signed rank test), however, it was lower during the post-
hypoxic challenge (p = 0.055, Wilcoxon matched-pairs signed rank test). In B, D, G, and H, data are shown as individual (gray lines) and mean values ± 
SEM (black line). a. u. – arbitrary unit.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Hypoxia challenge source data.

Figure supplement 1. Hypoxic challenge-induced changes in respiratory behavior by sex.

Figure supplement 2. Hypoxic challenge-induced changes in respiratory features by sex.

Figure supplement 3. Changes in variability of respiration during hypoxic challenge.

Figure 4 continued

Table 1. Hypoxia decreased metabolic rate in common marmoset.

Pre-hypoxia Hypoxia Post-hypoxia

Metabolic rate (%) 100 51 ± 4 98 ± 1

https://doi.org/10.7554/eLife.71647
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Figure 5. Sigh frequencies, sniffing rate, and apnea index during hypoxia and hypercapnia challenges. 
(A) Summary data demonstrating increase in sigh frequency after 5 min of hypoxic (10% O2, left) or hypercapnic 
(6% CO2, right) challenge (p = 0.008 and p = 0.008, respectively; Wilcoxon matched-pairs signed rank test). 
(B) Summary data demonstrating no change in sniffing rate during (p = 0.74) and after (p = 0.74) hypoxia challenge 
(left). Sniffing rate increased during and returned to baseline after hypercapnia challenge (p = 0.008 and p = 0.08 
respectively; Wilcoxon matched-pairs signed rank test) (right). (C) Grouped data demonstrating a decrease in rate 
of spontaneous apneas during hypoxia (p = 0.04, Wilcoxon matched-pairs signed rank test) (left) and hypercapnia 
(p = 0.008, Wilcoxon matched-pairs signed rank test) (right). Data are shown as individual (gray lines) and mean 
(black line) values ± SEM.

Figure 5 continued on next page

https://doi.org/10.7554/eLife.71647
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Discussion
We used non-invasive, whole-body plethysmography to measure breathing behaviors (Hamelmann 
et  al., 1997) in unrestrained, freely moving, awake marmosets, and rats. Plethysmography has a 
simple and robust design that has been used widely in humans (neonates [Sivieri et al., 2017] and 
adults [Dubois et al., 1956]), NHPs (such as macaques [Besch et al., 1996] and cynomolgus monkeys 

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Breathing behaviors source data.

Figure supplement 1. Augmented breath frequencies during hypoxia and hypercapnia challenges by sex.

Figure 5 continued
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Figure 6. Changes in spontaneous activity during hypoxic and hypercapnic challenges. (A) Experimental design 
to analyze subject movement at baseline and during challenge. (B) Hypoxia did not induce any changes in animal 
movement rate as measured by quadrant changes in the chamber (top) (p = 0.99, n = 3; Wilcoxon matched-pairs 
signed rank test), or as measured by total change in animal position per second (bottom) (p = 0.99, n = 3; Wilcoxon 
matched-pairs signed rank test). (C) We detected no changes in animal’s movement rate as measured by quadrant 
changes in the chamber (top) (p = 0.75, n = 3; Wilcoxon matched-pairs signed rank test), or by total change in 
position per second (bottom) (p = 0.99, n = 3; Wilcoxon matched-pairs signed rank test) during hypercapnia.

The online version of this article includes the following source data for figure 6:

Source data 1. Spontaneous activity source data.

https://doi.org/10.7554/eLife.71647
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[Iizuka et al., 2010]), rodents (Sheikhbahaei et al., 2018; Hosford et al., 2020), dogs (Liu et al., 
2016), sheep (Hutchison et al., 1983), cats (Hoffman et al., 1999), turtles (Valente et al., 2012), and 
other animals.

However, analyzing whole-body respiratory data in conscious, awake animals requires complex 
algorithms to differentiate the respiratory signals. These respiratory data are commonly analyzed 
manually (or with proprietary software), therefore the analysis could be subjective, time-consuming, 
expensive, and/or not reproducible. To overcome this hurdle, we wrote a user-friendly, open-source 
Python script using Neurokit2, NumPy, and Pandas software packages (McKinney, 2010; van der 
Walt et al., 2011; Makowski et al., 2020) to analyze breathing behaviors from awake animal models. 
We then used our analysis tool to characterize breathing behaviors of awake common marmosets (C. 
jacchus) in their natural posture at rest, as well as during exposures to acute hypoxic and hypercapnic 
conditions.

The common marmoset is a small New World primate (Okano et al., 2015). Recently, marmo-
sets have been proposed as a powerful animal model in neuroscience research (Miller et al., 2016; 
Burkart and Finkenwirth, 2015; Leopold et al., 2017; Mitchell and Leopold, 2015), especially to 
study vocal communication (Eliades and Miller, 2017). Compared to rodents, marmosets’ central 
nervous system more closely resemble humans’ in terms of physiological function and anatomy of 
the brain (Bendor and Wang, 2005). In addition, considering the similarity of the brain structure 
and circuit connectivity between primates, marmosets provide an attractive opportunity to study 
cortical (i.e., voluntary) control of motor activity (Walker et al., 2017). Furthermore, marmosets offer 
promise in understanding the coordination of breathing with complex behaviors, such as vocalization. 
However, the basic characteristics of breathing behaviors in the common marmoset had not been 
defined prior to this work.

The ventilatory response to acute hypercapnia
Currently, the chemosensitivity mechanisms that adjust breathing with respect to the level of PCO2/
pH in the brain are centered around neurons and astrocytes in the retrotrapezoid nucleus (RTN) and 
medullary raphé (Kumar et  al., 2015; Teran et  al., 2014; Guyenet et  al., 2019; Gourine et  al., 
2010). However, other data support a hypothesis that distributed chemosensitive regions in the 
medulla act as central respiratory chemosensors and are responsible for mounting of about 70% 
of the hypercapnic respiratory response (the mechanism that adjusts breathing in accordance with 
increase in PCO2) (Nattie, 1999; Nattie, 2000; Nattie, 2001; Spyer and Thomas, 2000; Nattie and 
Li, 2009). Specialized peripheral chemoreceptors located in the carotid bodies (and aortic bodies 
in some species) are responsible for the remaining 30% of hypercapnia-induced augmentation of 
breathing. In awake, freely behaving marmosets, hypercapnia increased both breathing rate (fR) and 
tidal volume (VT) (Figure 3). However, the augmentation of ventilation (VE) was mainly due to increase 
in VT (by ~160%) rather than fR. These data are comparable to data obtained from rodents (Bhandare 
et al., 2020; Sheikhbahaei et al., 2018) and human (Duffin et al., 2000; Ogoh et al., 2009; Sere-
brovskaya, 1992; Maxwell et al., 1986). In this study we used hyperoxic hypercapnia. In humans 
and rodents, hyperoxia is proposed to suppress the activity of carotid bodies (Chavez-Valdez et al., 
2012; Gonzalez et  al., 1994; Bates et  al., 2014). By extrapolation, since marmosets lack aortic 
bodies (Clarke and de B Daly, 2002), we assumed that hyperoxia attenuates marmoset’s carotid body 
activity, and therefore, the hypercapnic ventilatory response presented here may represent the central 
CO2 chemosensitive activity. Hypercapnia also increases frequency of sighs (i.e., augmented breath) 
in rodents (Forsberg et al., 2016; Ramirez, 2014). Consistent with these data, we also found that 
hypercapnia increased sigh frequency in marmosets (Figure 5A). Nevertheless, our data suggest that 
the common marmoset is a good animal model for studying respiratory responses to hypercapnia. 
However, more experiments are required to show that increases in CO2 actually activate classical 
chemosensitive regions in marmosets.

The ventilatory response to acute hypoxia
The hypoxic ventilatory response (HVR) in common marmosets was noteworthy, as there was little or 
no increase in fR during hypoxic exposure (Figure 4A). We believe the level of O2 during hypoxia was 
sufficient to elicit HVR, as a similar level of O2 (10% O2) decreased the peripheral oxygen saturation 
(SpO2) to 89% in humans after 180 s (Gerlach et al., 2021). In addition, increases in sigh rate and the 

https://doi.org/10.7554/eLife.71647
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existence of post-hypoxic depression (see below) strongly suggest that the respiratory circuits were 
activated by the hypoxic challenge to prevent hypoxic ventilatory decline (HVD).

Although hypoxic conditions in marmosets’ natural habitat (sea-level forests of the Amazon) 
are rare, hypoxia might occur as a result of disease or during sleep. Acute HVR is likely biphasic in 
mammals (Easton et al., 1986; Rehan et al., 1996; Martin et al., 1998; Vizek et al., 1987; Waites 
et al., 1996; Gozal and Gaultier, 2001; Greer and Funk, 2013). During acute hypoxia, ventilation 
shows an initial increase followed by a subsequent decline to a value at or above the baseline (i.e., 
HVD). This biphasic hypoxic response has been reported in humans, rats, and other mammals (Eden 
and Hanson, 1987; Martin et al., 1990; Fung et al., 1996; Dahan et al., 1996; Vizek and Bonora, 
1998). However, earlier reports suggest that there is considerable interindividual variation in HVR 
in humans (Hirshman et al., 1975; Weil and Zwillich, 1976). Recent data in awake adult humans 
showed no increase of fR during acute hypoxia (Gerlach et al., 2021), suggesting that any changes in 
ventilation may be due to changes in VT, not fR (Tarbichi et al., 2003). Our data support these reports, 
as we see variable responses to acute hypoxia in marmosets as well as a slight increase in VT and VE 
during the first minute of HVR followed by a decrease in VT and VE as hypoxia continues (Figure 4). 
However, ventilatory efficiency (VE /MR) was not affected by hypoxia (see below). It is possible that the 
large gas-exchange capacity of marmosets’ lungs (due to the increased oxygen diffusion capacity) 
(Barbier and Bachofen, 2000) maintains the adequate blood oxygenation, and therefore, blunts the 
HVR during hypoxia.

Hypoxia increases sigh frequency in mammals, even in animals whose carotid bodies are non-
functional (Bartlett, 1971; Schwenke and Cragg, 2000; Cherniack et al., 1981; Sheikhbahaei et al., 
2018). Consistent with these data, hypoxia also increased sigh frequency in marmosets. In addi-
tion, the fact that sigh frequency, but not breathing frequency, increased during hypoxic challenge, 
supports the hypothesis that distinct cells may be responsible for the generation of rhythmic sighs and 
normal breathing (Toporikova et al., 2015; Li et al., 2016; Sheikhbahaei et al., 2018). Recent data 
from behaving rats suggest that purinergic signaling from astrocytes (numerous star-shaped glial cells) 
in the respiratory rhythm-generating circuits of the preBötC may play a significant role in regulation of 
sigh generation (Sheikhbahaei et al., 2018).

On the other hand, the mechanism of HVD is not fully understood. It is proposed that desensi-
tization of peripheral chemoreceptors might play a role (Bascom et  al., 1990), though significant 
evidence suggests that, at least in rodents, astrocytes in the preBötC are capable of acting as central 
respiratory oxygen chemosensors (Sheikhbahaei et al., 2018; Angelova et al., 2015; Rajani et al., 
2018). Moreover, preBötC astrocytes might contribute to the HVD via release of adenosine triphos-
phate (ATP) (Sheikhbahaei et  al., 2018). Existence of ATP receptors in the brainstem respiratory 
regions in marmosets (Yao et al., 2000) further strengthens this hypothesis in primates. In addition to 
the preBötC, RTN, rostral ventrolateral medulla, and the nucleus of the solitary tract in the brainstem 
are proposed to have oxygen sensing capabilities (Accorsi-Mendonça et al., 2015; Mazza et al., 
2000; Uchiyama et al., 2020). However, more research is required to understand if this ‘distributed 
central oxygen chemosensors’ hypothesis (SheikhBahaei, 2020) can be generalized to primates.

Decrease of post-hypoxic ventilation in human is also reported (Tarbichi et al., 2003). This post-
hypoxic depression is also illustrated in conscious (Angelova et  al., 2015; Sheikhbahaei et  al., 
2018) and anesthetized (Rajani et al., 2018) rats. Similarly, we observe such a respiratory response 
in marmosets. However, we did not detect any sex differences during post-hypoxic recovery from 
hypoxia as reported in rat’s in vitro models (Garcia et al., 2013). Our data are consistent with that 
reported in humans, namely that there are no differences in ventilation between sexes during post-
hypoxic response (Tarbichi et al., 2003).

We also examined marmoset activity during hypoxic challenges. Our data, however, suggest that 
animal activity was not affected by hypoxia (or hypercapnia). This suggests that decreases in metabolic 
rate during hypoxic challenge are not due to decrease in spontaneous activity, but may be accounted 
for by changes in other processes with metabolic demand such as thermoregulation or cardiovascular 
activities.

Other than an increase in ventilatory response during hypoxia, mammals can reduce oxygen 
demand by optimizing and decreasing their rates of metabolism (Dzal et al., 2015). During acute 
hypoxia, adult marmosets decreased their metabolic rates (MR) by  ~50%, which is similar to data 
reported in other primates (pygmy marmosets [Tattersall et al., 2002] and humans [Robinson and 

https://doi.org/10.7554/eLife.71647
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Haymes, 1990]), but two to three times more than the calculated rates from cats (Gautier et al., 1989) 
and rats (Mortola et al., 1994). This decrease in metabolism together with increase in sigh frequency 
might be sufficient for homeostatic control of blood oxygen during acute hypoxia in primates. We also 
analyzed ventilatory efficiency (VE/MR) to understand the changes in ventilation in response to CO2 
production. Although we saw a slight increase in ventilatory efficiency, acute hypoxia did not have 
a significant effect on VE/MR (Figure 4H). We believe ventilatory efficiency gives a more comprehen-
sive view on ventilation compared to just measuring VE. It also suggests that acute hypoxia does not 
increase ventilation in the common marmoset.

We acknowledge that our characterization of breathing behaviors in the common marmoset is 
not complete and more experiments are needed to fully characterize hypoxic breathing behaviors in 
common marmosets. For instance, the respiratory response to hypoxia in rodents is non-linear, as a 
decrease in inspired O2 to 15% elicits a minimal ventilatory response, but a decrease to 10% elicits a 
strongly robust one (SheikhBahaei, 2017; Hosford et al., 2020; Sheikhbahaei et al., 2018). In addi-
tion, a decrease in metabolic rate strongly suggests that the core body temperature is affected by 
hypoxia (Morgan et al., 2014). Since we did not measure core body temperature in the marmoset, 
we reported the tidal volume as arbitrary units. Future experiments (using telemetry probes or other 
devices) to measure core body temperature in marmosets are needed to accurately measure changes 
in tidal volume during stepwise changes of inspired O2 or CO2. However, our data suggest that the 
analysis toolbox presented in this study is a powerful means to analyze breathing data in awake animal 
models under different experimental O2 and CO2 conditions.

Materials and methods
Animals
We used 16 common marmosets (C. jacchus) (8 males, 8 females; 394 ± 5 g; 40 ± 1 months) and three 
male Sprague-Dawley rats (320 ± 11 g) for measuring and defining breathing behaviors. All experi-
ments were performed in accordance with the National Institutes of Health Guide for the Care and 
Use of Laboratory Animals. The experiments on marmosets and rats were approved by the Animal 
Care and Use Committee (ACUC) of the Intramural Research Program (IRP) of the National Institute 
of Mental Health and ACUC of the IRP of National Institute of Neurological Disorders and Stroke, 
respectively. Animals were housed in temperature-controlled facilities on a normal light-dark cycle 
(12 hr:12 hr, lights on at 7:00 AM). They lived in paired or family-grouped housing and were given 
food and water ad libitum.

Measurement of respiratory activity
Marmoset respiratory activity was measured using whole-body plethysmography in a room with 
ambient temperature of 27–28°C. Awake animals were placed in the Plexiglas chamber (~3 L) which 
was flushed with 21% O2, 79% N2, at a rate of 2.2 L min−1 during measurements of baseline respira-
tory behavior (Figure 1). Concentrations of O2 and CO2 in the chamber were monitored using a fast-
response O2/CO2 analyzer (ML206, AD Instruments). All experiments were performed at the same 
time of day (between 10:00 and 14:00 hr) to account for possible circadian changes in base level physi-
ology (Iizuka et al., 2010). For measuring the respiratory behaviors during hypoxia, following a 40 min 
baseline period, the chamber was flushed with 10% O2, 90% N2, at a rate of 2.2 L min–1. After 10 min 
of exposure to hypoxic conditions, the gas concentration in the chamber was changed to room air for 
another 10 min (Figure 1—figure supplement 1). Marmoset respiratory activity was also measured 
during exposure to hypercapnic conditions. Following a 40 min baseline period, the chamber was 
flushed with 6% CO2, 60% O2, 34% N2, at a rate of 2.2 L min–1. After 10 min of exposure to hypercapnic 
conditions, the chamber was then flushed with room air for another 10  min. Hyperoxic condition 
(60% O2) was used to prevent any hypoxia associated with hypercapnia as used routinely in rodents 
(Teppema et al., 1997; Sheikhbahaei et al., 2018). Respiratory data were acquired with Power1401 
(CED; RRID: SCR_017282) interface and transferred to Spike2 software (CED; RRID: SCR_000903). 
To prevent any acclimatization confound, each animal was placed only once in the plethysmography 
chamber and randomly assigned to either hypoxia or hypercapnia experiment.

Similarly, we used whole-body plethysmography to record respiratory activity in unrestrained 
conscious adult rats as described before (Sheikhbahaei et al., 2017). Briefly, adult rats were placed 

https://doi.org/10.7554/eLife.71647
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in a Plexiglas recording chamber (~1 L) that was flushed continuously with room air (21% O2, 79% 
N2; temperature 22–24°C), at a rate of 1.2 L min−1. The animals were allowed to acclimatize to the 
chamber environment for ~60 min. Resting breathing activity was then recorded for 10 min. Respira-
tory activity in all the animals was assessed at the same time of the day (between 10:00 AM and 2:00 
PM) to take into the account circadian variations of the physiological parameters. Data were acquired 
using Power1401 interface and analyzed offline using either Spike2 software (CED) or our in-house 
script presented in this paper.

Calculation of metabolic rate
For measuring metabolic rate (MR) in marmosets, we calculated CO2 production using the following 
equation and expressed as percent: MR = ΔCO2 × FR/body mass, where ΔCO2 is the peak changes in 
the [CO2] in the chamber as measured by the gas analyzer. FR is the flow rate through the plethysmog-
raphy chamber (i.e., 2.2 L min–1), and body mass is marmoset body mass (g).

Automated quantification of marmoset activity
We tracked 10 points on the marmoset head and body (n = 3 animal per challenge) from an overhead 
view of the plethysmograph using WhiteMatter e3Vision cameras (e3Vision camera; e3Vision hub; 
White Matter LLC). We used DeepLabCut version 2.10.2 for pose estimation of these features (Nath 
et al., 2019; Mathis et al., 2018). We labeled 656 total frames from 16, 20–30 min videos recorded 
at 60 fps (95% was used for model training). We used ResNet-50-based neural network with default 
parameters for four iterations with five shuffles, and the test error was: 29.8 pixels, train: 2.4 pixels, 
with 0.6 p-cutoff, test error was: 14.0 pixels, train: 2.4 pixels (image size 600 by 800 pixels).

Below-threshold feature coordinates were then filled using methods from the B-SOiD Python 
toolkit (Hsu and Yttri, 2021). We used the average position of five points on the head for further 
analysis after qualitative assessment of consistent labeling accuracy. By dividing the labeled images in 
quadrants along the X- and Y-axes (X = 400 pixels, Y = 300 pixels), we counted the number of times 
large changes in position (i.e., movement) occurred. Quadrant positions were down-sampled to 2 s 
to avoid counting quadrant changes from when the animal paused near the dividing lines. Addition-
ally, successive Euclidean distances were calculated for each point across each frame of the videos to 
produce total movement. Total linear distance was then divided by length of condition in minutes to 
obtain rate of activity in each condition.

Respiratory data analysis
All animals in the study were included in the analysis. Plethysmography data were imported to Python 
using Neo Python package (Van Rossum and Drake, 2011; Garcia et al., 2014). We wrote a custom 
Python script using methods from Neurokit2, NumPy, and Pandas software packages (McKinney, 
2010; van der Walt et al., 2011; Makowski et al., 2020). Areas of the signal with frequencies above 
300 cycles per minute (~3.3 Hz) were excluded from analysis, as they were likely artifact resulting 
from movement inside the chamber. To ensure that we captured the full change in ventilation, we 
used steady-state responses to hypoxia and hypercapnia and analyzed the data 5 min after the start 
of each challenge. Neurokit2 methods were used for signal cleaning and extraction of instantaneous 
frequency, TTOT (total time of breath), TI (time of inspiration), TE (time of expiration), and amplitude (i.e., 
tidal volume [VT]) from trough to peak of the signals (see Figure 2). The calculated VT was normalized 
to the body mass (g) of each animal. Mean inspiratory flow rate (RF) was defined as the ratio of VT to 
TI (VT/TI). During hypoxia and hypercapnia challenges, the respiratory signals were analyzed in 1 min 
epochs to consider local changes in respiration parameters.

High-frequency breathing (i.e., sniffing) was defined as any breathing frequency between 250 
cycles (2.5 Hz) and 300 cycles per minute. Apneas were defined by breathing cycles with TTOT greater 
than three times the average for each animal. Augmented breaths (i.e., sighs) were readily identifiable 
by using the criteria described in rats (Sheikhbahaei et al., 2018; Sheikhbahaei et al., 2017) and 
measured during the baseline and experimental conditions.

Two measures of rate variability were also calculated as described elsewhere (Soni and Muniyandi, 
2019). SD1 is a measure of dispersion of TTOT perpendicular to the line of identity in the Poincaré plots, 
therefore demonstrating short-term variability. SD2 is a measure of dispersion of TTOT along the line of 
identity in the Poincaré plots, demonstrating long-term variability in respiratory rate.

https://doi.org/10.7554/eLife.71647
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SD1 and SD2 are calculated by:
SD1

2 = ½ SDSD2

SD2
2 = 2SDTTOT

2 – ½ SDTTOT
2

where SD is the standard deviation of successive differences in TTOT and SDTTOT is the standard 
deviation in TTOT.

All data were tested with Shapiro-Wilk test for normality and statistically compared by t test, 
Wilcoxon matched-pairs signed rank test, or Mann–Whitney U rank test as appropriate in Prism 9 
(GraphPad, Inc; RRID: SCR_002798). Data are reported as mean ± SEM.
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