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Abstract Short- chain fatty acids (SCFAs) acetate, propionate, and butyrate are produced in 
large quantities by the gut microbiome and contribute to a wide array of physiological processes. 
While the underlying mechanisms are largely unknown, many effects of SCFAs have been traced 
to changes in the cell’s epigenetic state. Here, we systematically investigate how SCFAs alter the 
epigenome. Using quantitative proteomics of histone modification states, we identified rapid and 
sustained increases in histone acetylation after the addition of butyrate or propionate, but not 
acetate. While decades of prior observations would suggest that hyperacetylation induced by SCFAs 
are due to inhibition of histone deacetylases (HDACs), we found that propionate and butyrate 
instead activate the acetyltransferase p300. Propionate and butyrate are rapidly converted to the 
corresponding acyl- CoAs which are then used by p300 to catalyze auto- acylation of the autoinhibi-
tory loop, activating the enzyme for histone/protein acetylation. This data challenges the long- held 
belief that SCFAs mainly regulate chromatin by inhibiting HDACs, and instead reveals a previously 
unknown mechanism of HAT activation that can explain how an influx of low levels of SCFAs alters 
global chromatin states.

Editor's evaluation
This study investigates the mechanism of agents like butyrate as metabolites that affect histone 
acetylation. The authors make the unexpected and interesting finding that such metabolites can 
stimulate the activity of the acetyltransferase p300 rather than the commonly accepted concept 
that they block histone deacetylases. The authors show evidence that p300 stimulation involves 
acylation of Lys residues on its autoinhibitory loop. The authors have effectively responded to prior 
concerns raised by the reviewers. This study should be of broad interest to the epigenetic research 
community.

Introduction
Short- chain fatty acids (SCFAs) play a crucial role in human health. Although SCFAs include any fatty 
acid with fewer than six carbons, the first three members of the family—acetate, propionate, and 
butyrate—are by far the most abundant physiologically (den Besten et al., 2013; Koh et al., 2016; 
Tan et al., 2014). These three SCFAs are produced in large quantities by bacterial fermentation of 
nondigestible fiber, and levels can fluctuate based on the amount and type of fiber in the diet (Bird 
et al., 2000; den Besten et al., 2013; Jenkins et al., 1998; Levrat et al., 1991; Marsono et al., 1993; 
Ríos- Covián et al., 2016; Velázquez et al., 2000). In humans, total SCFA concentrations can reach 
over 100 mM in the colon, in a ratio of ~60:20:20 acetate:propionate:butyrate (Cummings et al., 
1987; Parada Venegas et al., 2019). SCFAs alone may provide up to  10% of daily caloric require-
ments in humans (Bergman, 1990). Colonocytes are especially prone to metabolize SCFAs, deriving 
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60–70% of their energy from SCFA oxidation (Roediger, 1982). Excess SCFAs are transported to the 
liver through the portal vein and are eventually released into the peripheral blood, existing at micro-
molar concentrations (Bloemen et al., 2009; Cummings et al., 1987).

Butyrate and acetate are the most- studied members of the group. Acetate plays vital roles in cellular 
metabolism, especially as a building block for the central metabolite acetyl- CoA (Bose et al., 2019; 
Liu et al., 2018; Zhao et al., 2016). The physiological effects of butyrate are abundant: butyrate has 
been reported among other things to improve intestinal barrier function (Chang et al., 2014; Hamer 
et al., 2007; Peng et al., 2009), reduce inflammation (Chriett et al., 2019; Usami et al., 2008; Vinolo 
et al., 2011), improve metabolic health (Gao et al., 2009; Lin et al., 2012; Müller et al., 2019), and 
prevent cancer (Donohoe et al., 2012; Hague et al., 1993). The role of propionate is less clear—while 
it shows the same beneficial effects as butyrate in many studies, extremely high levels of propionate 
are associated with negative health outcomes such as propionic acidemia and autism spectrum disor-
ders (Abdelli et al., 2019; Al- Lahham et al., 2010; Li et al., 2017).

It is generally believed that SCFAs induce physiological effects by changing the cell’s epigenetic 
state (Hamer et al., 2007; Hinnebusch et al., 2002; Krautkramer et al., 2016; Tan et al., 2014). 
Epigenetics describes the regulation that takes place in eukaryotic chromatin. Much of this regulation 
centers around histone proteins, which are heavily decorated with post- translational modifications 
(PTMs). Histone PTMs affect a wide array of processes, from DNA accessibility to transcription factor 
binding (Bannister and Kouzarides, 2011; Karch et al., 2013; Kouzarides, 2007). Histone PTMs 
include lysine acetylation, which opens chromatin and makes it more accessible to transcription, and 
lysine methylation, which performs various functions. Recently, a host of other histone PTMs have also 
been identified, including lysine propionylation and butyrylation (Chen et al., 2007; Dai et al., 2014; 
Goudarzi et al., 2016; Kebede et al., 2017).

Histone PTMs, as well as the enzymes which add or remove them, are exquisitely sensitive to 
changes in cellular metabolism (Albaugh et al., 2011; Fan et al., 2015; Sassone- Corsi, 2013). Several 
central metabolites are also substrates for histone modifications: such as acetyl- CoA, which is used to 
acetylate histones. Histone acetylation is regulated on two fronts—first by histone acetyltransferases 
(HATs), which transfer acetyl groups to chromatin, and then by histone deacetylases (HDACs), which 
remove them (Albaugh et al., 2011). Acetate, propionate, and butyrate have all been reported to 
inhibit HDACs to varying extents, with butyrate being the most potent inhibitor (Bolduc et al., 2017; 
Candido et al., 1978; Davie, 2003; Hsu et al., 2016; Silva et al., 2018; Waldecker et al., 2008). 
HDAC inhibition has been proposed as a mechanism for SCFA’s anti- cancer effects (Donohoe et al., 
2014; Hinnebusch et al., 2002), insulin regulation (Chriett et al., 2019; Gao et al., 2009), and immu-
nomodulation (Bolduc et al., 2017; Chang et al., 2014; Usami et al., 2008; Vinolo et al., 2011). 
However, there are still questions as to whether SCFAs regulate the epigenome by HDAC inhibition 
alone (Corfe, 2012; Donohoe et al., 2012; Gibson, 2000).

It has been recently reported that the gut microbiome can affect histone modifications systemically 
(Krautkramer et al., 2016; Kumar et al., 2014; Romano et al., 2017; Takahashi et al., 2006; Wellen 
et  al., 2009; Zhao et  al., 2020a). Our lab has demonstrated that germ- free mice display distinct 
patterns of histone PTMs in multiple tissues (Krautkramer et al., 2016). This phenotype was complex, 
but could be generally characterized by decreased histone acetylation on multiple sites. However, 
acetylation levels did not depend solely on bacteria—colonized mice fed diets that produced low levels 
of SCFAs showed similar PTMs to germ- free mice. Finally, simply supplementing germ- free mice with 
SCFAs in drinking water led to changes in gene expression and histone PTMs that mimicked bacterial 
colonization. This data strongly suggests that SCFAs are a critical link between the microbiome and 
epigenetic state. Our understanding of this cross- talk is still in its infancy; thus, discovering how SCFAs 
interact with host cells on a mechanistic level is crucial to understanding how these systems interact 
as a whole. Here, we integrate proteomics and metabolomics with biochemical assays to investigate 
how each SCFA affects epigenetics and cell metabolism. Our results suggest that at physiologic levels, 
SCFAs induce histone acetylation by activating HATs instead of inhibiting HDACs.

https://doi.org/10.7554/eLife.72171
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Results
Propionate and butyrate induce hyperacetylation in cell culture
To determine the broad effects of extracellular SCFAs on histone PTMs, we treated HCT116 cells with 
acetate, propionate, and butyrate individually and then performed histone proteomics (Karch et al., 
2013; Krautkramer et  al., 2015). This mass spectrometry- based method allows for simultaneous 
analysis of >70 histone PTMs, which significantly improves on traditional Western blotting (Thomas 
et al., 2020). While the impact of SCFAs on a few of these PTMs has been studied previously, to our 

Figure 1. Extracellular propionate and butyrate induce histone hyperacetylation. (A) Histone proteomics of HCT116 cells treated with 1 mM acetate, 
propionate, or butyrate for 1 hr. (B) Histone acylation over a time course of 1 mM acetate, propionate, or butyrate treatment. (C) SCFA treatment 
(1 mM, 1 hr). of HEK293, MCF7, and HepG2 cell lines. All values are log2(fold change) over untreated, time- matched controls. *=p≤0.05, **=p≤0.01, 
***=p≤0.001. n=3 per condition.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Physiological effects of SCFA treatment.

https://doi.org/10.7554/eLife.72171


 Research article     Biochemistry and Chemical Biology | Microbiology and Infectious Disease

Thomas, and Denu. eLife 2021;10:e72171. DOI: https:// doi. org/ 10. 7554/ eLife. 72171  4 of 23

knowledge this is the first study to show how SCFAs regulate a range of both canonical and non- 
canonical PTMs (Hinnebusch et al., 2002; Kiefer et al., 2006; Silva et al., 2018; Wang et al., 2018). 
HCT116 cells were initially chosen because they are derived from colon, and colon cells are in most 
frequent contact with bacterially produced SCFAs.

Propionate and butyrate induced rapid and dose- dependent increases in histone acetylation 
but did not affect histone methylation (Figure 1A). In contrast, acetate had no significant effect on 
histone PTMs at any dose or time point tested. These results are consistent with previous reports 
(Hinnebusch et al., 2002; Kiefer et al., 2006; Silva et al., 2018). The hyperacetylation phenotype 
with propionate and butyrate was rapid and stable, persisting for at least 24 hr (Figure 1B). We also 
detected changes in both histone propionylation and butyrylation on multiple sites, including signif-
icant increases in K18/K23 propionylation after both propionate and butyrate treatment. In general, 
changes in histone propionylation and butyrylation were less consistent across experiments compared 
to the robust changes in histone acetylation, likely due in part to the technical challenges of measuring 
low- abundance propionylation/butyrylation. Based on these experiments, we chose a standard treat-
ment of 1 mM SCFA for 1 hr, which we used for further experiments unless otherwise indicated. This 
dose did not affect media pH, media glucose, or cell viability for at least 24 hr (Figure 1—figure 
supplement 1). The 1 mM dose is within the physiological concentrations in the colon (which range 
from 0.5 to 15 mM), but is higher than reported concentrations in other parts of the body (which range 
from 0 to 150 µM) (Cummings et al., 1987; Parada Venegas et al., 2019).

To determine whether this effect was unique to HCT116 cells, we also treated three other cell lines 
derived from diverse human tissues. HEK293, HepG2, and MCF7 cells showed remarkably similar 
hyperacetylation phenotypes after propionate and butyrate treatment (Figure 1C). Thus, the ability 
of propionate and butyrate to increase histone acetylation, but not methylation, can be generalized 
to multiple cell types.

Propionate and butyrate are rapidly metabolized into acyl-CoAs
This experiment raised several intriguing questions. First, what differentiates propionate and butyrate 
from acetate? It is general knowledge that butyrate can act as an HDAC inhibitor, slowing the removal 
of acetate from chromatin (Davie, 2003). This could explain the difference between acetate and 
butyrate, but it does not necessarily explain the difference between acetate and propionate. To test 
whether propionate could act as an HDAC inhibitor in HCT116 cells, we performed HDAC assays on 
nuclear extract and determined the apparent IC50 values for these SCFAs and their corresponding 
acyl- CoA forms. Table 1 lists the IC50 values of HDAC inhibition for propionate, butyrate, and corre-
sponding acyl- CoAs. These IC50 values are on the low end of previously published values, which range 
from 50 to 300 µM in nuclear extract and 1–10 mM in whole cells (Huber et al., 2011; Silva et al., 
2018; Vinolo et al., 2011; Waldecker et al., 2008). While SCFA concentrations in media were theo-
retically higher than our determined IC50 values (Figure 2C), it has been previously reported that intra-
cellular concentrations of SCFAs are much lower than extracellular concentrations, which could have 
bearing on this mechanism (Donohoe et al., 2012).

To determine intracellular SCFA concentrations before and after the extracellular addition of 
SCFAs, we treated cells with fully labeled 13C- ac-
etate, propionate, or butyrate and ran targeted 
LC- MS/MS metabolomics to track SCFAs through 
cellular metabolism (Figure 2A). After treatments, 
SCFA concentrations in media declined from 1 
mM to 0.5 mM over 24 hr. SCFA levels measured 
in cellular extractions were similar among the 
three SCFAs (max  ~  3- fold difference), with all 
showing a decline by 24  hr (Figure  2C). From 
levels determined in the cellular extractions, we 
estimated intracellular concentrations of ~40 µM 
for butyrate and  ~100  µM for propionate and 
acetate, which are consistent with previous 
reports (Donohoe et  al., 2012). In additional 
control experiments, SCFA concentrations in 

Table 1. IC50 of HDAC inhibition for SCFAs and 
acyl- CoAs.
IC50 values of HDAC inhibition for propionate, 
butyrate, propionyl- CoA, and butyryl- CoA. 
Values are calculated from dose curves using 
n=2 technical replicates, raw data can be found 
in Source data 1.

Molecule IC50

Propionate 223 ± 64 µM

Butyrate 52 ± 11 µM

Propionyl- CoA 18 ± 7 mM

Butyryl- CoA 1.13 ± 0.01 mM

https://doi.org/10.7554/eLife.72171
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Figure 2. Metabolism of extracellular short- chain fatty acids (SCFAs). (A) Overall scheme of SCFA metabolism. (B) Proportion of 13C on histones after 
4 hr treatment with labeled SCFAs. (C) Concentration of SCFAs in media (µM) and in cells (femtomole/cell) over a 24 hr time course. (D, E) 13C labeling 
of TCA cycle metabolites (D) and acyl- carnitines (E) over a  24- hr time course. Values are average and standard deviation of normalized signal intensity 
of ≥3 biological replicates.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.72171


 Research article     Biochemistry and Chemical Biology | Microbiology and Infectious Disease

Thomas, and Denu. eLife 2021;10:e72171. DOI: https:// doi. org/ 10. 7554/ eLife. 72171  6 of 23

media without cells incubated at  37°C declined at almost an identical rate as that observed in media 
incubated with cells, suggesting that the bulk of the decrease in media SCFA concentration was due 
to volatility and not to cellular consumption (Figure 2—figure supplement 1). The calculated values 
suggest that free SCFAs are rapidly metabolized instead of building up in cells (Boets et al., 2017; 
Clausen and Mortensen, 1994; Clausen and Mortensen, 1995). With this in mind, we searched for 
labeled carbons in downstream TCA cycle metabolites. However, we found no significant labeling of 
TCA cycle metabolites after propionate and butyrate treatment (Figure 2D). Instead, labeled carbons 
built up as acyl- carnitine species, appearing in as little as 10 min and remaining stable for 24 hrs 
(Figure 2E). Intriguingly, this buildup did not occur in acetate- treated cells. The same trend occurred 
in acyl- CoA levels, although these species degrade rapidly during sample processing and are thus 
difficult to detect by mass spectrometry (Figure  2—figure supplement 1). Accumulation of acyl- 
CoAs after SCFA treatment has been previously reported (Basu et al., 2011). In that study, increases 
in acyl- CoA lead to a decrease of free coenzyme A. Under our conditions, however, free carnitine 
and free CoA levels did not significantly change (Figure 2—figure supplement 1). To confirm that 
these metabolic changes were consistent across cell lines, we also performed targeted LC- MS/MS 
metabolomics in HEK293, HepG2, and MCF7 cells. All cell lines showed the same upregulation of 
acyl- carnitines after butyrate and propionate treatment (Figure 2—figure supplement 1). Ultimately, 
these data suggest that histone hyperacetylation may not be due to the presence of intracellular 
propionate or butyrate, as the intracellular levels of these metabolites are low, but to the presence 
of propionyl- or butyryl- CoA. Since propionyl- and butyryl- CoA do not inhibit HDAC at physiological 
concentrations, this raises the possibility that the histone hyperacetylation phenotype may not be due 
to HDAC inhibition, but to a different mechanism (Table 1; Vogelauer et al., 2012).

The intracellular levels of SCFAs do not support robust HDAC inhibition at micromolar treatment 
concentrations. However, we and others have measured histone hyperacetylation in response to 
treatment concentrations as low as 10 µM (Figure 1—figure supplement 1; Biermann et al., 2011; 
Donohoe et  al., 2012; Kespohl et  al., 2017). At these concentrations, HDACs would be inhib-
ited <1%. Alternatively, it has been proposed that hyperacetylation under SCFA treatment is due 
to a direct mechanism, in which acetyl- CoA generated by SCFAs is added directly onto histones 
(Donohoe et al., 2012). To test whether this occurred in our system, we performed histone proteomics 
after a  4- hr treatment with 13C- labeled SCFAs. This treatment only resulted in 1–5% 13C- labeling on 
histones, which cannot account for the two- or threefold increases in histone acetylation seen after 
SCFA treatment (Figure 2B). This indicates that the majority of new acetyl groups (~90–95%) were not 
generated from labeled SCFAs. To confirm that SCFAs do not need to be metabolized into acetyl- CoA 
to induce hyperacetylation, we knocked down several enzymes involved in acetyl- CoA generation 
from SCFAs (Figure  2A). siRNA knockdown or genetic knockout of ACLY (an enzyme involved in 
transport of acetyl- CoA out of the mitochondria), ACSS2 (the cytoplasmic acetyl- CoA ligase), and 
PCC (an enzyme in the pathway that metabolizes propionyl- CoA to succinyl- CoA) had no significant 
effect on propionate or butyrate- induced histone acetylation (Figure 2—figure supplement 2). This 
data indicates that acyl- CoAs are not metabolized to acetyl- CoA in sufficient quantities to explain the 
induced hyperacetylation, indicating a different mechanism is at play.

Propionyl- and butyryl-CoA activate histone acetylation
Next, we tested whether the rapidly formed propionyl- and butyryl- CoA from propionate and butyrate 
treatment could directly activate HATs (Table 1). HAT assays demonstrated that propionyl- and buty-
ryl- CoA induced dose- dependent increases in the HAT activity of nuclear extract (Figure 3A). Free 
propionate and butyrate had no effect. However, since this assay simply measures the release of CoA, 
the apparent increase in HAT activity could have resulted from increased propionyl- or butyryl- transfer 
reactions. In addition, these results do not indicate which HAT enzymes may be activated.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Further SCFA metabolism.

Figure supplement 2. Metabolism of SCFAs to acetyl- CoA is not necessary to induce hyperacetylation.

Figure 2 continued

https://doi.org/10.7554/eLife.72171
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HATs can be categorized into three main families—GNAT, MYST, and p300/CBP (Albaugh et al., 
2011; Berndsen and Denu, 2008; Fan et al., 2015). Most HATs prefer specific histone lysines and 
catalyze acetyl- transfer to a handful of histone substrates (Roth et al., 2001). However, p300/CBP 
acetylates a large number of lysine sites in vitro, and is known to target several of our measured hyper-
acetylation sites in vivo (Henry et al., 2013). p300/CBP are two closely related transcriptional co- acti-
vators—large proteins consisting of several domains and even more binding partners and acetylation 
targets (Chan and La Thangue, 2001; Dancy and Cole, 2015; Goodman and Smolik, 2000). Both 
proteins encode an autoinhibitory loop (AIL, also called the autoregulatory or activation loop), which 
must be auto- acetylated to stimulate HAT activity (Karanam et al., 2006; Thompson et al., 2004). 
Large- scale mass- spectrometry surveys have identified sites of propionylation and butyrylation on 
p300, including on several AIL lysines; however, how these modifications are added and whether they 
have a functional consequence on p300 activity are not known (Chen et al., 2007; Cheng et al., 2009; 
Kaczmarska et al., 2017). First, we determined whether unmodified p300 can catalyze auto- acylation 
using propionyl- or butyryl- CoA. Indeed, we found that recombinant p300 performed auto- acylation 
with propionyl- or butyryl- CoA at rates indistinguishable from auto- acetylation with acetyl- CoA 
(Figure 3B). Auto- acylation was catalytic, as heat- denatured p300 did not show increases in acylation 
under the same conditions (Figure 3—figure supplement 1A). Proteomics analysis confirmed the 
location of propionylation and butyrylation on several AIL lysine sites under these conditions (Table 2).

Next, we investigated if auto- acylation activates p300 toward histone acetylation. To do so, we 
compared pre- acylated and unmodified forms of recombinant p300 in radioactive HAT assays to 
measure acetylation rates on a K18/K23- containing peptide substrate. All forms of acylated p300 
(acetylated, propionylated, and butyrylated) were significantly more active than an unmodified control 
(Figure 3C). In addition, there were no significant differences in the activity of auto- acetylated, propi-
onylated, or butyrylated p300, which all showed ~ 500% increase in their initial rates compared to 
unmodified p300. We confirmed these results by performing Western blot HAT activity assays with 

Figure 3. Acyl- CoAs activate p300. (A) HAT activity of nuclear extract treated with a dose curve of SCFAs and acyl- CoAs. (B) Rate of p300 auto- acylation 
with acetyl- CoA, propionyl- CoA, and butyryl- CoA. Values are average and standard deviation, n=4 per condition. (C) Rate of histone acetylation by 
acetylated, propionylated, or butyrylated p300 using radioactive acetyl- CoA. Values are average and standard deviation, n=3 per condition. Replicate 
results from this assay performed with different enzyme preparations on different days are shown in Figure 3—figure supplement 1. Quantification for 
all replicates including Western blots and radioactive assays available in Source data 1. HAT, histone acetyltransferase; SCFA, short- chain fatty acid.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Recombinant p300 is actively auto- acylated.

https://doi.org/10.7554/eLife.72171
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full- length histone H3/H4 dimers/tetramers, which are a more physiological substrate than a single 
peptide (Figure 3—figure supplement 1C- D). Again, these data showed an increase in activity for 
all three forms of acylated p300. In all, these data demonstrate that p300 catalyzes auto- butyrylation 
and propionylation on AIL sites, and that auto- acylation activates the enzyme in a similar manner to 
auto- acetylation.

To investigate whether this previously unappreciated mechanism functions in vivo, we used phar-
macological inhibitors of each potential pathway. To minimize any potential effects from HDAC inhi-
bition in these experiments, we used treatment concentrations from 100 to 250 µM, which should 
lead to no more than 5–15% HDAC inhibition (Table 1). First, we treated cells with a potent inhib-
itor of p300, A485. A485 inhibits both histone acetylation and auto- acetylation of p300, and thus 
should inhibit histone hyperacetylation due to p300 activation (Lasko et al., 2017). Indeed, A485 
treatment reversed SCFA- induced hyperacetylation on p300 targets H3K27 and H3K18 (Figure 4A, 
Figure 4—figure supplement 1A). A485 treatment did not just reverse SCFA- induced hyperacetyla-
tion on histone substrates of p300, but also on the non- histone p300 substrate p53 (K382). Second, 
we treated cells with the potent HDAC inhibitor, SAHA. Both SAHA and butyrate are thought to be 
competitive inhibitors of HDACs, although the IC50 of SAHA is significantly lower (~10 nm) (Marks 
and Breslow, 2007; Sekhavat et al., 2007). Treatment with 10 µM of this potent pan- HDAC inhib-
itor should effectively saturate HDAC inhibition, at least of class I and II HDACs, which are known to 
target these sites (Caslini et al., 2019; Kelly et al., 2018; Rajan et al., 2018). Thus, if propionate and 
butyrate act solely as HDAC inhibitors, they should not induce further hyperacetylation under these 
conditions. However, 100 µM treatment of propionate or butyrate with SAHA still led to significant 
increases in p53K382 acetylation over a SAHA control (Figure 4A, Figure 4—figure supplement 1A). 
Collectively, these results suggest that propionate and butyrate induce histone hyperacetylation by 
an alternative mechanism to HDAC inhibition, likely through the auto- activation of p300 by rapidly 
formed acyl- CoAs.

To corroborate this novel mechanism of SCFA action on chromatin, we transfected HCT116 cells 
with two full- length p300 constructs: either wild- type (WT) p300 or an AIL mutant in which 11 of the 
17 AIL lysines were mutated to a glutamate (ΔGlu) (Ortega et al., 2018). The ΔGlu mutation changes 

Table 2. Sites of p300 acylation.
Sites of lysine acetylation, propionylation, and butyrylation on recombinant p300 treated with acyl- 
CoAs. AIL: autoinhibitory loop, A: acetylation, P: propionylation, B: butyrylation.

Lysine site
(AIL lysines in bold). Acetylation Propionylation Butyrylation

K1542 A P   

K1546 A P   

K1549 A P   

K1550 A     

K1551 A P   

K1554 A P B

K1555 A P B

K1558 A P B

K1560 A P B

K1568 A P   

K1569 A P   

K1570 A P   

K1583 A     

K1590 A     

K1637 A P   

https://doi.org/10.7554/eLife.72171
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Figure 4. p300 inhibition, but not HDAC inhibition, reverses SCFA- induced hyperacetylation. (A) Acetylation of H3K27ac, H3K18ac, and p53K382ac 
after treatment with A485, SAHA, and 100–250 µM of propionate/butyrate for 24 hr. Values are normalized to total H3 or total p53 before calculating 
fold changes to the appropriate untreated control. (B) Acetylation of H3K27ac and H3K18ac in cells transfected with sham, WT p300, or ΔGlu p300 
plasmids. Values are fold change over untreated cells with the same transfection. (C) Activity of immunoprecipitated p300 after treatment with 500 µM 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.72171


 Research article     Biochemistry and Chemical Biology | Microbiology and Infectious Disease

Thomas, and Denu. eLife 2021;10:e72171. DOI: https:// doi. org/ 10. 7554/ eLife. 72171  10 of 23

the charge on AIL sites, which in turn blocks auto- acylation of the AIL and prevents p300 activation. 
As expected, 500 µM propionate treatment induced significant increases in histone acetylation after 
sham and WT transfections (Figure 4B, Figure 4—figure supplement 1B- C). However, cells trans-
fected with the ΔGlu mutant showed significantly smaller increases in acetylation, approximately half 
of that seen in WT- transfected cells. In addition, we suspect that even the small increases in acetyla-
tion in the ΔGlu condition were due to residual amounts of endogenous p300 in transfected cells, or 
possibly acylation of residual lysine sites on the AIL. Nevertheless, these data strongly suggest that the 
AIL lysines of p300 are necessary to induce the full extent of histone hyperacetylation after propionate 
treatment.

Finally, we performed immunoprecipitation of full- length endogenous p300 from HCT116 cells 
treated with 500 µM propionate or butyrate. p300 immunoprecipitated from propionate and butyrate- 
treated cells showed small but significant increases in activity in a radioactive HAT assay (Figure 4C). 
Corresponding western blots also identified increased propionylation and butyrylation of p300 under 
these conditions (Figure 4—figure supplement 1D). In all, our results demonstrate that p300 activa-
tion, rather than HDAC inhibition, plays a critical role for propionate and butyrate- induced chromatin 
hyperacetylation at low concentrations.

Discussion
For decades, butyrate and propionate’s ability to alter chromatin have been attributed to HDAC 
inhibition (Candido et al., 1978). However, the IC50 values for these two molecules are quite high, 
with reported values ranging between 50 and 300 µM in nuclear extract and between 1 and 10 mM in 
whole cells (Huber et al., 2011; Silva et al., 2018; Vinolo et al., 2011; Waldecker et al., 2008). While 
it is possible to reach those concentrations in the gut lumen or portal vein, few other organs would 
normally reach these values. In addition, our previous data suggests that SCFAs can induce histone 
hyperacetylation in colon, liver, and adipose tissue, which experience SCFA concentrations that differ 
by orders of magnitude (Krautkramer et al., 2016). Even in the gut, intracellular concentrations of 
SCFAs could be significantly lower than exterior concentrations (Donohoe et al., 2012; Sengupta 
et al., 2006). Thus, the idea that increased histone acetylation is primarily mediated by HDAC inhibi-
tion requires re- evaluation.

In this study, we report a previously unappreciated mechanism and provide compelling evidence 
that butyrate and propionate activate p300 at low levels, through the rapid conversion to propionyl- 
and butyryl- CoA, catalytic auto- acylation, and subsequent activation of p300. While the IC50 values 
for HDAC inhibition are in the high µM to mM range, Km values for p300 auto- acetylation lie in the 
nM to low µM range (Karanam et  al., 2006; Liu et  al., 2008). Hyperacetylation induced by high 
doses of butyrate (2–5 mM) are almost immediately reversed after butyrate withdrawal (Prasad and 
Sinha, 1976; Wang et al., 2018). In contrast, auto- acetylation of p300 increases its half- life from 4.5 
to >24 hr (Jain et al., 2012). Thus, even after extracellular SCFAs have been fully metabolized, modi-
fied p300 could still theoretically induce hyperacetylation. Auto- acylation of p300 may thus prove a 
primary mechanism in physiological systems where SCFA concentrations are low.

It is important to note that acetate had negligible effect on histone acetylation in the cell- based 
systems described in this study. Acetate treatment has been previously reported to increase histone 
acetylation, but only under extreme conditions such as hypoxia (Bulusu et  al., 2017; Gao et  al., 
2016), or after genetic manipulation (Zhao et al., 2016). Others have reported no effect of acetate in 
conditions similar to those described here (Hinnebusch et al., 2002). This phenomenon has tradition-
ally been explained by the fact that acetate is a worse HDAC inhibitor than other SCFAs (Hinnebusch 
et al., 2002; Waldecker et al., 2008). Based on the results reported here, acetate’s lack of effect can 
be explained by the fact that acetate is not rapidly metabolized to acetyl- CoA, as propionate and 
butyrate are to their respective acyl- CoAs. It has been previously shown that extracellular acetate 

of propionate or butyrate. Activity is measured with a radioactive assay and normalized to concentration of immunoprecipitated p300 in each sample. 
*=p≤0.05, **=p≤0.01, ***=p≤0.001. n≥3 per condition. HDAC, histone deacetylase; SCFA, short- chain fatty acid.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Representative Western blots corresponding to Figure 4.

Figure 4 continued

https://doi.org/10.7554/eLife.72171
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concentration does not necessarily correlate with intracellular concentrations of acetyl- CoA. Instead, 
under normal conditions, acetyl- CoA is mainly generated in the mitochondria from glucose (Wellen 
et al., 2009). Since there is no evidence to date of acetyl- CoA crossing the mitochondrial membrane, 
acetyl- CoA must be shuttled to the cytosol via citrate. Once in the cytosol, citrate is converted into 
oxaloacetate and acetyl- CoA by ATP citrate lyase (ACLY). However, stress conditions such as hypoxia, 
or genetic knockout of ACLY, can cause the cell to rely on acetate for acetyl- CoA production (Bulusu 
et al., 2017; Gao et al., 2016; Zhao et al., 2016). We do not expect these conditions to exist in the 
experiments described here.

The main pathways responsible for butyryl- and propionyl- CoA synthesis in the nucleus and cyto-
plasm are still unclear (Corfe, 2012; Fujino et al., 2001; Luong et al., 2000; Trefely et al., 2020). 
However, our results suggest that p300 auto- acylation and activation via SCFAs depend on robust 
cellular synthesis of the corresponding acyl- CoAs. In vivo, synthesis of acyl- CoAs may depend on 
complex interactions between various SCFAs. While we investigated each SCFA individually, it is 
possible that mixtures of each SCFA could have varied effects on histone acetylation. However, there 
is some data to suggest that in cells treated with mixtures of SCFAs, acetylation increased based only 
on the sum of butyrate and propionate concentrations (Kiefer et al., 2006). This is consistent with our 
observation that the use of normal or dialyzed fetal bovine serum (FBS) in cell culture media did not 
affect the histone hyperacetylation phenotype (dialyzed FBS does not contain acetate). We predict 
that rapid histone acetylation, as described for the mechanism revealed in this study, will depend on 
the ability of cells to convert each SCFA to its corresponding acyl- CoA.

The p300 activation mechanism revealed here could also resolve outstanding issues. SCFA treat-
ment phenocopies other HDAC inhibitors in some cases (Chang et al., 2014; Rahman et al., 2003; 
Zhou et al., 2011), but not others (Milton et al., 2012; Siavoshian et al., 2000; Zhao et al., 2020b). 
An alternate method for SCFAs to regulate histone acetylation could account for some of these 
discrepancies. In addition, several groups have reported that certain phosphatase or PKC inhibitors 
can reverse SCFA- induced hyperacetylation (Cuisset et al., 1997; Cuisset et al., 1998; Rickard et al., 
1999). While it has been proposed that this is due to phosphorylation of HDACs (Davie, 2003), it 
is interesting to note that these inhibitors are also known to interact with p300 (H.-H. Cheng et al., 
2014; Granja et al., 2008; Zgheib et al., 2012).

Our proposed mechanism also raises the question: why is p300 specifically activated after SCFA 
treatment? Many HATs can acylate histones, and some are even known to auto- acetylate (Kaczmarska 
et al., 2017; Leemhuis et al., 2008; Yang et al., 2012). In general, rates of acylation decrease as 
acyl chains increase, to the extent that butyryl- CoA can act as a competitive inhibitor for some HATs 
(Carrer et al., 2017; Montgomery et al., 2015; Ringel and Wolberger, 2016; Simithy et al., 2017). 
Thus, a sharp increase in acyl- CoA concentrations could slow most HATs, which cannot efficiently use 
longer acyl- CoAs as substrates. Intriguingly, previous reports indicate that p300 is also less efficient 
at histone propionylation and butyrylation than it is at histone acetylation (Kaczmarska et al., 2017), 
which is consistent with our histone PTM analyses (Figure 1). However, our measured rates of p300 
auto- acylation were indistinguishable between acetate, propionate, and butyrate. In addition, the 
reported Km of p300 for auto- acetylation (~100 nM) is lower than for acetylation of histone substrates 
(~6 µM) (Karanam et al., 2006; Liu et al., 2008). While the differences between the catalytic mecha-
nisms for p300 auto- acylation and histone acylation have not yet been elucidated, this data suggests 
that p300 may have different substrate preferences for these two reactions. Thus, p300 may prefer 
to use acyl- CoAs to auto- acylate, which would activate the enzyme toward other substrates targeted 
for acetylation. In that case, while higher concentrations of acyl- CoAs may slow or inhibit other HATs, 
they could preferentially activate p300 via auto- acylation. The fact that our proteomics data shows 
more robust increases in histone acetylation than histone propionylation or butyrylation would further 
support this hypothesis (Figure 1).

It should be noted that SCFAs are also known to bind and activate several G- protein coupled 
receptors (GPCRs), especially FFAR2, FFAR3, and HCAR2 (Brown et al., 2003; Inoue et al., 2014; 
Priyadarshini et al., 2018; Singh et al., 2014; Thangaraju et al., 2009; Xiong et al., 2004). These 
receptors are not expressed in most of the cell lines investigated here, and do not influence the 
hyperacetylation phenotype when they are (Figure 1C). However, exploring the potential interactions 
between GPCR activation and histone hyperacetylation will be critical to a full understanding of SCFA 
signaling and metabolism, and its impact on human health.

https://doi.org/10.7554/eLife.72171
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Finally, we are not suggesting that SCFAs cannot induce HDAC inhibition under certain physi-
ological conditions. Butyrate especially is likely capable of inducing HDAC inhibition in the colon, 
where extracellular concentrations of butyrate are often >10 mM. In fact, this may be the reason that 
butyrate leads to higher levels of histone acetylation than propionate at the 1 mM treatment concen-
tration (Figure 1), but not at the 100 µM treatment concentration (Figure 4). Discovering which mech-
anism is most prevalent at various concentrations may assist in understanding the pharmacology of 
this crucial molecule.

The results presented in this study provide key new insight into the actions of normal physiolog-
ical and therapeutic levels of SCFAs. This is especially important in the case of butyrate, which is the 
subject of over 100 active clinical trials. In fact, there is already evidence that low SCFA concentrations 
can have widely different physiological effects while still increasing histone acetylation (Biermann 
et al., 2011; Donohoe et al., 2012). By comparing cellular responses to high and low SCFA doses 
(e.g., 5 mM and 50 µM), it may be possible to explore distinct cellular responses given the different 
mechanisms. It may also be necessary to reexamine the systemic effects of SCFAs. Many studies use 
high doses of SCFAs (5–30  mM), even in regions of the body where physiological concentrations 
should be thousands of times lower. It is possible that these doses are not necessary to induce hyper-
acetylation and could in fact obscure biologically relevant pathways. In the end, this new data suggest 
that the mechanism of action extends beyond HDAC inhibition and should be incorporated into the 
rationale for the therapeutic use of SCFAs.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

HCT116 cell line 
(Homo- sapiens) Colorectal carcinoma ATCC CCL- 247 RRID:CVCL_0291

HEK- 293 cell line 
(Homo- sapiens) Kidney epithelial ATCC CRL- 1573 RRID:CVCL_0045

HepG2 cell line 
(Homo- sapiens) Liver epithelial ATCC HB- 8065 RRID:CVCL_0027

MCF7 cell line (Homo- 
sapiens) Adenocarcinoma epithelial ATCC HTB- 22 RRID:CVCL_0031

PCCA mutant cell 
lines (Homo- sapiens)

Propionic acidemia cell 
lines

NIGMS Human Genetic Cell 
Repository, Coriell Institute

GM00371 GM00405 
GM22010 GM22011 
GM22123 GM22126

Transfected construct 
(human)

siRNA to ACSS2 
(SMARTpool) Dharmacon L- 010396- 00- 0005

Transfected construct 
(human)

siRNA to ACLY 
(SMARTpool) Dharmacon L- 004915- 00- 0005

Transfected construct 
(human)

siRNA to PCCA 
(SMARTpool) Dharmacon L- 008965- 00- 0005

Transfected construct 
(human) p300 mutant constructs Ortega et. al. 2018 WT p300, ΔGlu p300

antibody ACLY, rabbit CST 4,332 S RRID:AB_2223744, 1:1,000 dilution

antibody ACSS2, mouse Novus Biologicals NBP2- 01269 1:1,000 dilution

antibody FFAR2/GPR43, mouse Novus Biologicals MAB10082- 100 1:1,000 dilution

antibody FFAR3/GPR41, rabbit Novus Biologicals NBP2- 14014 1:1,000 dilution

antibody H3, mouse Abcam ab24834 RRID:AB_470335, 1:5,000 dilution

antibody H3 K18ac, rabbit Abcam ab1191 RRID:AB_298692, 1:1,000 dilution

antibody H3 K27ac, mouse Active Motif 39,685 RRID:AB_2793305, 1:1,000 dilution

https://doi.org/10.7554/eLife.72171
https://identifiers.org/RRID/RRID:CVCL_0291
https://identifiers.org/RRID/RRID:CVCL_0045
https://identifiers.org/RRID/RRID:CVCL_0027
https://identifiers.org/RRID/RRID:CVCL_0031
https://identifiers.org/RRID/RRID:AB_2223744
https://identifiers.org/RRID/RRID:AB_470335
https://identifiers.org/RRID/RRID:AB_298692
https://identifiers.org/RRID/RRID:AB_2793305
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antibody HA- Tag, rabbit CST 3,724 RRID:AB_1549585, 1:1,000 dilution

antibody p300 (NM11), mouse SCBT sc- 32244 RRID:AB_628076, 1:1,000 dilution

antibody p53, mouse CST 2,524 RRID:AB_331743, 1:1,000 dilution

antibody p53 K382ac, rabbit CST 2,525 RRID:AB_330083, 1:1,000 dilution

antibody
Pan anti- acetyllysine, 
rabbit CST 9,814 1:1,000 dilution

antibody
Pan anti- butyryllysine, 
mouse PTM Biolabs PTM- 329 1:500 dilution

antibody Pan anti- propionyllysine, 
rabbit

PTM Biolabs PTM- 201 1:500 dilution

 Continued

Materials
Cell culture reagents were purchased from Invitrogen (Carlsbad, CA). All reagents used for proteomic 
and metabolomic samples were HPLC- grade. All cell lines were regularly tested for mycoplasma 
contamination.

SCFA cell line treatments
All cell lines were plated in Minimum Essential Media (MEM) supplemented with  10% dialyzed FBS 
the day before SCFA treatment. MEM contains ~5 mM glucose, compared to ~25 mM in Dulbecco's 
modified Eagle's medium. Stock solutions of each SCFA were prepared fresh in PBS the day of each 
experiment. After collection, cell pellets and metabolite extracts were stored at – 80°C. Using prelimi-
nary data sets to estimate population variance, a minimum of three biological replicates are necessary 
to detect changes of  50% or greater, assuming α=0.05 and power=0.80. We thus chose 3–4 repli-
cates for all experiments unless otherwise noted.

Histone proteomics
We performed histone proteomics as described previously (Krautkramer et al., 2016; Sidoli et al., 
2016). The method is briefly described below.

Histone extraction and derivatization
Cells were trypsinized and washed once with PBS. Cell pellets were then dounce homogenized in lysis 
buffer (10 mM Tris- HCl, 10 mM NaCl, 3 mM MgCl2, and pH 7.4)+ protease inhibitors (10 mM nico-
tinamide, 1 mM sodium butyrate, 4 µM trichostatin A, 10 µg/ml leupeptin, 10 µg/ml aprotinin, and 
100 µM PMSF) and nuclei were spun out. Histones were extracted from the nuclei pellet with 0.4 N 
H2SO4 for 4 hr. Extracted histones were then TCA precipitated overnight and washed with acetone. 
After performing a Bradford assay to determine protein concentrations, 5 µg of each sample was 
dried down and resuspended in 100 mM triethylammonium bicarbonate buffer. Unmodified lysines 
were labeled with d6- acetic anhydride, a labeling method that allows for quantification of histone 
acylations (Thomas et al., 2020). Labeled histones were digested with trypsin and labeled with N- ter-
mini phenyl isocyanate before stage tip desalting and resuspension sample diluent ( 5% ACN,  0.1% 
acetic acid in H2O).

UPLC MS/MS analysis
Derivatized histone peptide was injected onto a Dionex Ultimate3000 nanoflow HPLC with a Waters 
nanoAcquity UPLC C18 column (100 m × 150 mm, 3 m) coupled to a Thermo Fisher Q- Exactive mass 
spectrometer at 700  nl/min. Mobile phase consisted of water  +  0.1% formic acid (A) and aceto-
nitrile  +  0.1% formic acid (B). Histone peptides were resolved with a two- step linear gradient of 
5–35% B over 45 min followed by 35–95% B over 10 min. Data was acquired in data- independent 
acquisition (DIA) mode. The MS1 scan resolution=35,000, automatic gain control target=1 ×106, and 
scan range=390–910  m/z, followed by a DIA scan with a loop count of 10. DIA settings: window 

https://doi.org/10.7554/eLife.72171
https://identifiers.org/RRID/RRID:AB_1549585
https://identifiers.org/RRID/RRID:AB_628076
https://identifiers.org/RRID/RRID:AB_331743
https://identifiers.org/RRID/RRID:AB_330083
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size=10 m/z, resolution=17,500, automatic gain control target=1 ×106, DIA maximum fill time=Auto, 
and normalized collision energy=30. For each cycle, 1 full MS1 scan was followed by 10 MS2 scans 
using an isolation window size of 10 m/z.

Data analysis
Thermo RAW files were loaded into EpiProfile 2.0 and run using the AcD3 module (Yuan et al., 2018). 
Normalization and statistics were then performed using our previously published Histone Analysis 
Workflow (Thomas et al., 2020). RAW files, peak tables, and processing scripts have been uploaded 
to the MassIVE database and can be accessed with username: MSV000087800_reviewer and pass-
word: SCFAp300.

Metabolomics
Sample preparation
Cells were plated in six- well plates and allowed to reach ~ 70% confluency. Media was replaced with 
fresh media 1 hr before the experiment, and then again with media+SCFAs at time 0. Extraction and 
derivatization solutions were also prepared at least 1 hr before the experiment and stored at – 20°C. 
Extraction solution contained 80:20 methanol:water with 1:2500 dilution of a heavy amino acid mix 
standard (MSK- A2, Cambridge Isotope Laboratories); derivatization solution is described below. At 
each time point, media was collected for SCFA measurements (see below) and cells were washed  3× 
with  0.9% NaCl. Then, 700 µl of ice- cold extraction solution was added and plates were set at – 80°C 
for 15 min. After 15 min, cells were scraped into extraction solution and aliquots were taken for SCFA 
measurement and DNA quantification. The rest was spun down at max speed for 5 min at  4°C. The 
resulting supernatant was split in two and dried down using a speed vac and stored at – 80°C. Samples 
were reconstituted in ice- cold 50 mM ammonium acetate and spun down again before injection into 
the mass spec. One half of the sample was run in positive mode, while the other half was run in nega-
tive mode (details below). Samples were reconstituted in batches and run in random order to minimize 
error due to metabolite decay or instrumentation.

SCFA concentrations were measured by LC- MS using the derivatization protocol described by 
Lu et al., 2013. In brief, 10 µl of media or cell extract was added to 150 µl of derivatization solution 
containing 0.5  mM of 2- hydrazinoquinoline, triphenylphosphine, 2,2′dipyridyl disulfide, and either 
250 µM (for media) or 25 µM (for cells) unlabeled acetate, propionate, and butyrate. Samples were 
incubated at  60°C for 1 hr and then spun at max speed for 5 min to remove any cellular debris. The 
resulting supernatant was mixed 1:1 with ice- cold 50 mM ammonium acetate before injection.

To measure cellular concentration, we used the Hoechst staining protocol described by Muschet 
et al., 2016. To do so, 20 µl of metabolite extract was added to 80 µl of Hoechst 33342 (CST) diluted 
to 20 µg/ml in ddH2O. Samples were incubated in the dark for 30 min in a black 96- well plate and then 
read on a plate reader with Ex/Em=355/465 nm. Samples were compared to a dose curve of known 
cell numbers.

UPLC MS/MS analysis
All metabolites were injected onto a Dionex Ultimate3000 nanoflow HPLC with a Waters ACQUITY 
UPLC BEH C18 column (2.1 mm×100 mm) coupled to a Thermo Fisher Q- Exactive mass spectrometer 
at 0.2 ml/min. Separate columns were used for positive and negative mode to reduce TBA contam-
ination. For samples run in positive mode, mobile phase consisted of water  +5  mM ammonium 
acetate + 0.05% acetic acid (A) and  90% acetonitrile +5 mM ammonium acetate + 0.05% acetic acid 
(B). Positive mode metabolites were resolved with a two- step linear gradient of 2–85% B over 5 min 
followed by 85–95% B over 6 min. For derivatized samples, data was acquired in data- dependent 
acquisition (DDA) mode. MS1 scan resolution=140,000, automatic gain control target=3×106, and 
scan range=189–450 m/z. MS2 scan resolution=35,000, automatic gain control target=1× 105, loop 
count=5, and isolation window=4.0 m/z. For other positive mode samples, only MS1 data was acquired 
in two isolation windows from 60 to 184 m/z and 189 to 1200 m/z. MS1 scan resolution=70,000, auto-
matic gain control target=1× 106.

For samples run in negative mode, mobile phase consisted of methanol (A) and water + 3% meth-
anol +10 mM tributylamine + 0.05% acetic acid (B). Metabolites were resolved with a linear gradient 

https://doi.org/10.7554/eLife.72171
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of 95–5% B over 15 min. Only MS1 data was acquired. Scan resolution=70,000, automatic gain control 
target=1×106, and scan range=59–880 m/z.

Data analysis
Metabolite identification and peak integration were performed in EL- MAVEN (Elucidata). For SCFA 
concentrations, heavy SCFAs were normalized to unlabeled internal controls and SCFA dose curves 
run throughout the course of the experiment. For all other metabolites, data was normalized to heavy 
amino acid standards and cell number determined by Hoechst stain. All 13C- labeling was corrected 
based on natural 13C abundance.

ACLY, ACSS2, and PCC knockdowns
HCT116 cells were transfected with siRNA SMARTpools targeting ACLY, ACSS2, and PCC according 
to the manufacturer’s protocols. In short, 10 nM ACLY, ACSS2, and non- targeting siRNAs and 20 nM 
PCC siRNA were transfected using Lipofectamine RNAiMAX and opti- MEM media and allowed to 
incubate for 48 hr. Media was then replaced with fresh MEM media containing 1 mM SCFA and incu-
bated for 1 hr. Knockdown efficiency was assessed by Western blotting.

Primary lymphoblasts from patients with propionic acidemia and family matched controls were 
purchased from the NIGMS Human Genetic Cell Repository. Propionic acidemia is a rare genetic 
disease caused by mutations in PCC. Knockout of PCC activity was confirmed using the HPLC assay 
developed by Y.-N. Liu et al., 2016. Since lymphoblasts are grown in suspension, stock solutions of 
SCFA were added directly to media, resulting in 1 mM final concentrations. Cells were treated with 
SCFAs for 4 hr before collection.

HDAC assay
HDAC activity of HCT116 nuclear extract was assayed using the Fluorometric HDAC Activity Assay 
Kit from Abcam (ab156064) according to the manufacturer’s protocol. Briefly, nuclear extract was 
prepared by dounce homogenizing cell pellets in lysis buffer (10 mM Tris- HCl, 10 mM NaCl, 3 mM 
MgCl2, and pH 7.4), then spinning out nuclei and resuspending in nuclear extraction buffer (50 mM 
HEPES, 420 mM NaCl, 0.5 mM EDTA, 0.1 mM EGTA,  10% glycerol, and pH 7.5). Protein concen-
tration was determined by Bradford, and then 50 µg was added to dose curves of butyrate, propio-
nate, and their corresponding acyl- CoAs. TSA was used as a positive control. Fluorescence signal (Ex/
Em=360/450 nm) was read on a plate reader at 2 min intervals for 1 hr. Values were averaged over two 
technical replicates. IC50 values were calculated using GraphPad Prism.

HAT assays
Colorimetric assay
HAT activity was assayed using the HAT Activity Assay Kit from Sigma- Aldrich (EPI001), which measures 
release of free CoA over time. Acetyl- CoA levels were kept constant at 100 µM. Nuclear extract was 
the same as that used in the HDAC assay. 50 µg nuclear extract was added to kit components and 
dose curves of butyrate, propionate, and corresponding acyl- CoAs. Signal at 440 nm was read on a 
plate reader at 2 min2- min intervals for 2 hr. Values are averaged over two technical replicates.

Recombinant p300—
Recombinant catalytic domain of p300 was purchased from Enzo Life Sciences (BML- SE451). To 
remove endogenous acetylation from the recombinant protein, p300 was incubated with mamma-
lian SIRT2 and NAD. SIRT2 was kindly provided by Dr. Mark Klein. For each experiment, equimolar 
amounts of SIRT2 and p300 and a tenfold molar excess of NAD were incubated at RT for 45 min. This 
incubation reduced endogenous acetylation on p300 five- to tenfold without inhibiting auto- acylation 
(Figure 3—figure supplement 1). Excess NAD was then removed by running protein over a Zeba 
Spin desalting column (Thermo Fisher Scientific). Acyl- CoAs were then added back to the enzyme and 
auto- acylation was allowed to continue at RT for 30–60 min. For untreated controls, the same amount 
of CoA was added to account for CoA concentration. Finally, for denatured samples, p300 was incu-
bated with SIRT2 and then boiled at  95°C for 5 min before the addition of acyl- CoAs.

https://doi.org/10.7554/eLife.72171
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Auto-acylation assay
Recombinant enzyme was treated with SIRT2, then diluted to 1 µM in HAT assay buffer (50 mM Bis- 
Tris, 25 mM Tris, 10 mM NaCl, and pH 7) with 80 µM acyl- CoA. For each time point, 2 µl of each 
sample was dotted directly onto nitrocellulose membrane. Membranes were then allowed to dry for 
30 min before blocking and incubating with antibodies specific to each acyl- CoA.

Identification of lysine acylation
Recombinant enzyme was prepared as described above, then dried down, resuspended in 100 mM 
triethylammonium bicarbonate buffer, and trypsinized overnight. Samples were then stage tip 
desalted and resuspended in sample diluent (same as histone protocol above). Samples were run on a 
Thermo Fisher Q- Exactive mass spectrometer using the same settings as histone samples, except that 
they were run in DDA rather than DIA mode. Acyl identification was performed using Mascot (Matrix 
Science) and manually validated in XCalibur (Thermo Fisher Scientific). Acylation had to be present in 
two of  three samples to be reported.

 3H acetylation assay
Tritiated acetyl- CoA was purchased from PerkinElmer. For each assay, reaction buffer was made by 
using HAT assay buffer with 5 µM cold acetyl- CoA, 1 µM hot acetyl- CoA, and 25 µM biotinylated 
peptide. Biotinylated peptide was kindly provided by Dr. Vyacheslav Kuznetsov and corresponds to 
resides 9–23 of histone H3. Reactions were started by addition of 24 µl reaction buffer to 2 µl acetyl-
ated p300 (final concentration 10 nM). At each time point, 7 µl of the reaction mixture was added to 
150 µl of cold  2% TFA + 5% Streptavidin Sepharose High Performance (v/v, Cytiva). After the time 
course was completed, samples were incubated at RT with shaking for 30 min. The samples were then 
spun down at 1000×g for 1 min, and then washed with 2 ml of  10% acetone. The washed sepharose 
was then directly added to 2  ml Ultima Gold scintillation cocktail (PerkinElmer). Radioactivity was 
read by a Tri- Carb 2910TR scintillation counter (PerkinElmer). The scintillation counter was calibrated 
before each run.

Western HAT assays
For western samples, 100 nM acylated p300 was added to a master mix of 100 µl acetyl- CoA and 
0.4 µg/µl histone H3/H4 dimers. Samples were collected by adding 20 µl directly to 5 µl of  4× sample 
loading buffer (LI- COR) and heating at  95°C for 5 min. Samples were run on Bolt 4–12% Bis- Tris gels 
using the XCell II blot module (Thermo Fisher Scientific). Protein was transferred onto nitrocellulose 
membranes for 45 min and then allowed to block in  5% BSA for 1 hr. Samples were incubated in 
primary antibody overnight, before washing and incubating in LI- COR secondary antibody for 1 hr. All 
membranes were imaged on a LI- COR Odyssey imager and quantified using ImageStudio (LI- COR). 
Whenever possible, antibodies for modifications and loading controls were run simultaneously using 
two separate fluorescent LI- COR channels. p300 transfections—p300 plasmids were a kind gift from 
Dr. Daniel Panne (Ortega et al., 2018) HCT116 cells were grown to ~ 60% confluency and trans-
fected with Lipofectamine 3000 according to the manufacturer’s protocols. After 48 hr, media was 
replaced with MEM media containing 500 µg/ml Geneticin (Thermo Fisher Scientific). Antibiotic media 
was then replaced every 2 days for 1 week to select for transfected cells. After 1 week, cells were 
treated with 500 µM propionate for 2 hr. Samples were collected as described previously. HA and 
p300 blots were performed as described in the previous section, except that transfers were allowed 
to run overnight to maximize signal for high molecular weight proteins. p300 immunoprecipitation—
HCT116 cells were grown to 60–70% confluency and treated with 500 µM propionate or butyrate for 
1 hr. Cells were lysed using RIPA buffer and Pierce protease phosphatase inhibitors (Thermo Fisher 
Scientific). Protein concentrations were determined by Bradford assay and equal amounts of protein 
were added to a slurry of Dynabeads Protein G (Thermo Fisher Scientific) and p300 antibody (NM11, 
Santa Cruz Biotechnology). Samples were allowed to incubate 3 hr at  4°C before washing twice with 
Tris buffer + 0.01 Triton. Washed beads were then directly added to radioactive assays or run on 
gels as described previously. For radioactive assays, beads were incubated with 1 µM hot acetyl- CoA 
and 25 µM biotinylated peptide for 1 hr before quenching reaction in  2% TFA + 5% Streptavidin 
Sepharose High Performance (v/v, Cytiva).

https://doi.org/10.7554/eLife.72171
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