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Abstract Sex differences in whole- body fat storage exist in many species. For example, 
Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference 
in fat storage remain incompletely understood. Here, we identify a key role for sex determination 
gene transformer (tra) in regulating the male- female difference in fat storage. Normally, a functional 
Tra protein is present only in females, where it promotes female sexual development. We show that 
loss of Tra in females reduced whole- body fat storage, whereas gain of Tra in males augmented fat 
storage. Tra’s role in promoting fat storage was largely due to its function in neurons, specifically 
the Adipokinetic hormone (Akh)- producing cells (APCs). Our analysis of Akh pathway regulation 
revealed a male bias in APC activity and Akh pathway function, where this sex- biased regulation 
influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Impor-
tantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh 
pathway rescued Tra- dependent effects on fat storage. This identifies sex- specific regulation of Akh 
as one mechanism underlying the male- female difference in whole- body triglyceride levels, and 
provides important insight into the conserved mechanisms underlying sexual dimorphism in whole- 
body fat storage.

Introduction
In animals, stored fat provides a rich source of energy to sustain basal metabolic processes to survive 
periods of nutrient scarcity, and to support reproduction (Heier and Kühnlein, 2018; Heier et al., 
2021; Walther and Farese, 2012). The main form of stored fat is triglyceride, which is deposited 
within specialized organelles called lipid droplets (Kühnlein, 2012; Murphy, 2001; Thiele and Spandl, 
2008). Lipid droplets are found in many cell types throughout the body, but the main organ respon-
sible for triglyceride storage is the adipose tissue (Murphy, 2001). The amount of triglyceride in the 
adipose tissue is regulated by many factors; however, one important factor that influences an individ-
ual’s whole- body fat level is whether the animal is female or male (Karastergiou et al., 2012; Power 
and Schulkin, 2008; Sieber and Spradling, 2015; Wat et al., 2020). Typically, females store more 
fat than males. In mammals, females store approximately  10% more body fat than males (Jackson 
et al., 2002; Karastergiou et al., 2012; Womersley and Durnin, 1977). Female insects, on the other 
hand, can store up to four times more fat than males of the same species (Lease and Wolf, 2011) 
and break down fat more slowly than males when nutrients are scarce (Wat et al., 2020). These male- 
female differences in fat metabolism play a key role in supporting successful reproduction in each 
sex: females with reduced fat storage often show lower fecundity (Buszczak et al., 2002; Sieber and 
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Spradling, 2015) whereas males with excess fat storage generally show decreased fertility (Grönke 
et al., 2005; Wat et al., 2020). Given that fat storage also influences diverse phenotypes such as 
immunity and lifespan (DiAngelo and Birnbaum, 2009; Gáliková and Klepsatel, 2018; Johnson 
and Stolzing, 2019; Kamareddine et al., 2018; Liao et al., 2021; Roth et al., 2018; Suzawa et al., 
2019), the sex- specific regulation of fat storage has implications for several life- history traits. Yet, the 
genetic and physiological mechanisms that link biological sex with fat storage remain incompletely 
understood in many animals.

Clues into potential mechanisms underlying the sex difference in fat storage have emerged from 
studies on the regulation of triglyceride metabolism in Drosophila. While many pathways impact 
whole- body triglyceride levels (Ballard et al., 2010; Bjedov et al., 2010; Broughton et al., 2005; 
Choi et al., 2015; DiAngelo and Birnbaum, 2009; Francis et al., 2010; Ghosh and O’Connor, 2014; 
Grönke et al., 2010; Heier and Kühnlein, 2018; Heier et al., 2021; Hentze et al., 2015; Kamared-
dine et al., 2018; Kang et al., 2017; Kubrak et al., 2020; Lee et al., 2019; Lehmann, 2018; Luong 
et  al., 2006; Rajan and Perrimon, 2012; Roth et  al., 2018; Scopelliti et  al., 2019; Sieber and 
Spradling, 2015; Song et al., 2014; Song et al., 2017; Suzawa et al., 2019; Teleman et al., 2005; 
Texada et al., 2019), the Adipokinetic hormone (Akh; FBgn0004552) pathway plays a central role in 
regulating whole- body fat storage and breakdown (Heier and Kühnlein, 2018; Heier et al., 2021; 
Lehmann, 2018). Akh is synthesized as a preprohormone in the Akh- producing cells (APCs), and is 
subsequently cleaved by proprotein convertases to produce active Akh (Lee and Park, 2004; Noyes 
et al., 1995; Predel et al., 2004; Wegener et al., 2006). When the APCs are activated by stimuli such 
as peptide hormones or neurons that make physical connections with the APCs (Kubrak et al., 2020; 
Oh et al., 2019; Scopelliti et al., 2019; Zhao and Karpac, 2017), Akh is released into the hemolymph 
(Braco et al., 2012).

Circulating Akh then interacts with a G- protein coupled receptor called the Akh receptor (AkhR, 
FBgn0025595), where Akh binding to AkhR on target tissues such as the fat body increases intracel-
lular cyclic adenosine monophosphate (cAMP) levels. High levels of cAMP activate protein kinase A 
(PKA; FBgg0000242) (Gäde and Auerswald, 2003; Park et al., 2002; Staubli et al., 2002), which 
phosphorylates several downstream metabolic effectors to promote fat breakdown. For example, 
in insects, active PKA promotes fat breakdown via phosphorylation and activation of Lipid storage 
droplet- 1 (Lsd- 1; FBgn0039114) (Arrese et  al., 2008; Bickel et  al., 2009; Gäde and Auerswald, 
2003; Patel et al., 2005). In mammals, fat breakdown is mediated by similar PKA- dependent phos-
phorylation of Perilipin 1, the mammalian homolog of Lsd- 1, and by PKA- dependent phosphorylation 
and recruitment of lipases, such as Hormone- sensitive lipase (Hsl), to lipid droplets to promote fat 
mobilization (Sztalryd and Brasaemle, 2017). Given that these genes are highly conserved between 
mammals and flies (Kühnlein, 2012), similar PKA- dependent mechanisms likely explain triglyceride 
mobilization from lipid droplets. Thus, high levels of Akh pathway activity limit fat storage whereas 
low levels of Akh signaling promote fat storage. While Akh- mediated triglyceride breakdown plays a 
vital role in releasing stored energy during times of nutrient scarcity to promote survival (Mochanová 
et al., 2018), the Akh pathway limits fat storage even in contexts when nutrients are plentiful. Indeed, 
loss of Akh or AkhR augments fat storage in males under normal physiological conditions (Bharucha 
et al., 2008; Gáliková et al., 2015; Grönke et al., 2007), highlighting the critical role of this pathway 
in regulating whole- body triglyceride levels.

Additional clues into potential mechanisms underlying the sex difference in fat storage come from 
studies on metabolic genes. For example, flies carrying loss- of- function mutations in genes involved 
in triglyceride synthesis and storage, such as midway (mdy; FBgn0004797), Lipin (Lpin; FBgn0263593), 
Lipid storage droplet- 2 (Lsd- 2; FBgn0030608), and Seipin (Seipin; FBgn0040336) show reduced 
whole- body triglyceride levels (Buszczak et al., 2002; Grönke et al., 2003; Teixeira et al., 2003; 
Tian et al., 2011; Ugrankar et al., 2011; Wang et al., 2016). Whole- body deficiency for genes that 
regulate triglyceride breakdown, on the other hand, generally have higher whole- body fat levels. This 
is best illustrated by elevated whole- body triglyceride levels found in flies lacking brummer (bmm; 
FBgn0036449) or Hsl (FBgn0034491), both of which encode lipases (Bi et al., 2012; Grönke et al., 
2005). While these studies demonstrate the strength of Drosophila as a model in revealing conserved 
mechanisms that contribute to whole- body fat storage (Recazens et al., 2021; Schreiber et al., 2019; 
Walther and Farese, 2012), studies on Drosophila fat metabolism often use single- or mixed- sex 
groups of flies (Bednářová et al., 2018; Gáliková et al., 2015; Grönke et al., 2007; Hughson et al., 
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2021; Isabel et al., 2005; Lee and Park, 2004; Scopelliti et al., 2019). As a result, less is known 
about how these metabolic genes and pathways contribute to the sex difference in fat storage.

Recent studies have begun to fill this knowledge gap by studying fat metabolism in both sexes. 
In one study, higher circulating levels of steroid hormone ecdysone in mated females were found to 
promote increased whole- body fat storage (Sieber and Spradling, 2015). Another study showed 
that elevated levels of bmm mRNA in male flies restricted triglyceride storage to limit whole- body fat 
storage (Wat et al., 2020). Yet, neither ecdysone signaling nor bmm fully explain known male- female 
differences in whole- body fat metabolism (Sieber and Spradling, 2015; Wat et  al., 2020). This 
suggests additional metabolic genes and pathways must contribute to sex differences in fat storage 
and breakdown (Wat et al., 2020). Indeed, genome- wide association studies in Drosophila demon-
strate sex- biased effects on fat storage for many genetic loci (Nelson et al., 2016; Watanabe and 
Riddle, 2021). As evidence of sex- specific mechanisms underlying whole- body fat storage continues 
to mount, several reports have also identified male- female differences in phenotypes linked with fat 
metabolism. For example, sex differences have been reported in energy physiology, metabolic rate, 
food intake, food preference, circadian rhythm, sleep, immune response, starvation resistance, and 
lifespan (Andretic and Shaw, 2005; Austad and Fischer, 2016; Belmonte et al., 2019; Chandegra 
et al., 2017; Helfrich- Förster, 2000; Huber et al., 2004; Hudry et al., 2019; Millington et al., 2021; 
Park et al., 2018; Reddiex et al., 2013; Regan et al., 2016; Sieber and Spradling, 2015; Videlier 
et al., 2019; Wat et al., 2020). More work is therefore needed to understand the genetic and phys-
iological mechanisms underlying the male- female differences in fat metabolism, and to identify the 
impact of this sex- specific regulation on key life- history traits. Further, it will be critical to elucidate 
how these mechanisms are linked with upstream factors that determine sex.

In Drosophila, sexual development is determined by the number of X chromosomes (Salz and 
Erickson, 2010). In females, the presence of two X chromosomes triggers the production of a 
functional splicing factor called Sex- lethal (Sxl; FBgn0264270) (Bell et al., 1988; Bridges, 1921; 
Cline, 1978). Sxl’s most well- known downstream target is transformer (tra; FBgn0003741), where 
Sxl- dependent splicing of tra pre- mRNA allows the production of a functional Tra protein (Belote 
et al., 1989; Boggs et al., 1987; Inoue et al., 1990; Sosnowski et al., 1989). In males, which have 
only one X chromosome, no functional Sxl or Tra proteins are made (Cline and Meyer, 1996; Salz 
and Erickson, 2010). Over several decades, a large body of evidence has accumulated showing that 
Sxl and Tra direct most aspects of female sexual identity, including effects on abdominal pigmen-
tation, egg- laying, neural circuits, and behavior (Anand et al., 2001; Baker et al., 2001; Billeter 
et al., 2006; Brown and King, 1961; Burtis and Baker, 1989; Camara et al., 2008; Christiansen 
et al., 2002; Cline, 1978; Cline and Meyer, 1996; Clough et al., 2014; Dauwalder, 2011; Demir 
and Dickson, 2005; Goodwin et al., 2000; Hall, 1994; Heinrichs et al., 1998; Hoshijima et al., 
1991; Inoue et al., 1992; Ito et al., 1996; Nagoshi et  al., 1988; Neville et  al., 2014; Nojima 
et al., 2014; Pavlou et al., 2016; von Philipsborn et al., 2014; Pomatto et al., 2017; Rezával 
et al., 2014; Rezával et al., 2016; Rideout et al., 2007; Rideout et al., 2010; Ryner et al., 1996; 
Sturtevant, 1945). More recently, studies have extended our knowledge of how Sxl and Tra regu-
late additional aspects of development and physiology such as body size and intestinal stem cell 
proliferation (Ahmed et al., 2020; Hudry et al., 2016; Millington and Rideout, 2018; Millington 
et al., 2021; Regan et al., 2016; Rideout et al., 2015; Sawala and Gould, 2017). Yet, the effects 
of sex determination genes on whole- body fat metabolism remain unknown, indicating a need for 
more knowledge of how factors that determine sexual identity influence this important aspect of 
physiology.

Here, we reveal a role for sex determination gene tra in regulating whole- body triglyceride storage. 
In females, Tra expression promotes a higher level of whole- body fat storage, whereas lack of a func-
tional Tra protein in males leads to lower fat storage. Interestingly, neurons were the anatomical focus 
of tra’s effects on fat storage, where we show that ectopic Tra expression in male APCs was sufficient 
to augment whole- body triglyceride levels. Our analysis of Akh pathway regulation in both sexes 
revealed increased Akh/AkhR mRNA levels, APC activity, and Akh pathway activity in males. Our find-
ings indicate that this overall male bias in the Akh pathway contributes to the sex difference in whole- 
body triglyceride levels by restricting fat storage in males. Importantly, we show that the presence 
of Tra influences Akh pathway activity, and that Akh lies genetically downstream of Tra in regulating 
whole- body fat storage. These results provide new insight into the mechanisms by which upstream 
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determinants of sexual identity, such as tra, influence the sex difference in fat storage. Further, we 
identify a previously unrecognized sex- biased role for Akh in regulating whole- body triglyceride levels.

Results
Sex determination gene transformer regulates the male-female 
difference in fat storage
Altered Sxl function in either sex causes significant lethality due to effects on the dosage compen-
sation machinery (Cline, 1978; Cline and Meyer, 1996). We therefore asked whether the presence 
of Tra in females, which promotes female sexual development, contributes to the elevated whole- 
body triglyceride levels observed in females (Sieber and Spradling, 2015; Wat et  al., 2020). In 
5- day- old virgin females lacking tra function (tra1/Df(3 L)st- j7), we found that whole- body triglyceride 
levels were significantly lower than in age- matched w1118 control females (Figure 1A). Because we 

Figure 1. transformer regulates the sex difference in fat storage. (A) Whole- body triglyceride levels were significantly lower in tra1/Df(3 L)st- j7 females 
compared with w1118 controls (p<0.0001; Student’s t- test). n=8 biological replicates. (B) Whole- body triglyceride levels were significantly lower in tra1/
Df(3 L)st- j7 females with excised gonads compared with w1118 with excised ovaries (p<0.0001; Student’s t- test). n=8 biological replicates. (C) Whole- 
body triglyceride levels were significantly lower in traKO females compared with w1118 controls (p=0.0037; Student’s t- test). n=8 biological replicates. (D) 
Whole- body triglyceride levels were significantly higher in da- GAL4>UAS- traF males compared with da- GAL4>+ and +>UAS- traF controls (p<0.0001 and 
p<0.0001, respectively; one- way ANOVA followed by Tukey’s HSD). n=8 biological replicates. (E) Whole- body triglyceride levels were significantly higher 
in traF K- IN males compared with w1118 controls (p<0.0001, Student’s t- test). n=8 biological replicates. (F) Whole- body triglyceride levels were significantly 
higher in traF K- IN males with excised gonads compared with w1118 controls lacking gonads (p<0.0001; Student’s t- test). n=8 biological replicates. Black 
circles indicate the presence of a transgene and open circles indicate the lack of a transgene. ** indicates p<0.01, **** indicates p<0.0001; error bars 
represent SEM.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Elucidating transformer’s effect on sex differences in fat metabolism.

https://doi.org/10.7554/eLife.72350
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observed no significant difference in fat storage between tra1/Df(3 L)st- j7 mutant males and w1118 
control males (Figure  1—figure supplement 1A), the sex difference in whole- body triglyceride 
storage was reduced. While previous studies show the ovaries store a small amount of triglyceride 
(Sieber and Spradling, 2015; Wat et al., 2020), Tra’s effect on whole- body triglyceride storage was 
not explained by the absence of ovaries in females lacking Tra function: whole- body fat storage was 
still significantly lower in tra1/Df(3 L)st- j7 mutant females with excised gonads compared with w1118 
control females with excised ovaries (Figure 1B). Given that we reproduced this finding in females 
carrying a distinct combination of tra mutant alleles (Figure 1C; Hudry et al., 2016), our findings 
suggest Tra regulates the sex difference in whole- body triglyceride levels by promoting fat storage 
in females.

We next asked whether Tra function also contributes to the reduced fat breakdown phenotype 
post- starvation in females (Wat et al., 2020). To quantify fat breakdown, we measured whole- body 
triglyceride levels at 0 hr  , and 24 hr after food withdrawal, and calculated the percent change in 
whole- body triglyceride levels between time points. While female flies normally have reduced fat 
breakdown post- starvation compared with males (Wat et al., 2020), the magnitude of fat breakdown 
post- starvation was not significantly different between tra1/Df(3 L)st- j7 mutants and sex- matched w1118 
controls (genotype:time interactions p=0.6298 [females], p=0.3853 [males]; Supplementary file 1; 
Figure 1—figure supplement 1B). Tra function is therefore required to promote elevated fat storage 
in females, but does not regulate fat breakdown post- starvation.

Given that males normally lack a functional Tra protein (Belote et  al., 1989; Boggs et  al., 
1987; Inoue et  al., 1990; Sosnowski et  al., 1989), we next asked whether the absence of Tra 
in males explains their reduced whole- body triglyceride levels and rapid triglyceride breakdown 
post- starvation (Wat et al., 2020). To test this, we ubiquitously overexpressed Tra using daugh-
terless (da)-GAL4, an established way to feminize male flies (Ferveur et al., 1995; Rideout et al., 
2015), and examined whole- body fat metabolism. In 5- day- old da- GAL4>UAS- traF males, whole- 
body triglyceride levels were significantly higher than in age- matched da- GAL4>+ or +>UAS- traF 
control males (Figure 1D). No increase in whole- body fat storage was observed in age- matched 
da- GAL4>UAS- traF females compared with da- GAL4>+ or +>UAS- traF control females (Figure 1—
figure supplement 1C); therefore, the sex difference in fat storage was reduced. Because high levels 
of Tra overexpression affected viability in one study (Siera and Cline, 2008), we also measured fat 
storage in males carrying an allele of tra that directs the production of physiological Tra levels (traF 

K- IN allele) (Hudry et al., 2019). As in da- GAL4>UAS- traF males, whole- body triglyceride levels were 
significantly higher in traF K- IN males compared with w1118 control males (Figure  1E). While these 
data indicate that gain of a functional Tra protein in males promotes whole- body fat storage, we 
note that the magnitude of the increase in fat storage was higher in traF K- IN males. The reason for 
this discrepancy between tra- expressing males is not clear, therefore, future studies will need to 
compare tra expression levels and tissue distribution between da- GAL4>UAS- traF males and traF 

K- IN males.
Importantly, the presence of rudimentary ovaries in traF K- IN males did not explain their increased 

fat storage, as whole- body fat storage was still higher in traF K- IN males lacking gonads compared 
with gonadless control males (Figure 1F). The elevated fat storage in traF K- IN males also cannot be 
attributed to ecdysone production by the rudimentary ovaries, as no ecdysone target genes were 
upregulated (Figure 1—figure supplement 1D; Sieber and Spradling, 2015); however, future studies 
will need to address why these traF K- IN males showed significant ecdysone target gene downregula-
tion. Taken together, these data indicate that lack of Tra function contributes to the reduced whole- 
body triglyceride levels normally observed in males. In males, this role for Tra may also extend to the 
regulation of fat breakdown, as triglyceride mobilization post- starvation was significantly reduced in 
da- GAL4>UAS- traF males compared with da- GAL4>+ or +>UAS- traF controls during a  24- hr starva-
tion period (genotype:time p<0.0001 [males]; Supplementary file 1; Figure 1—figure supplement 
1E), a finding we reproduced in traF K- IN males (Figure 1—figure supplement 1F). While this effect 
of Tra on fat breakdown in males does not perfectly align with our data from tra mutant females, we 
note a trend toward increased fat breakdown in tra mutant females that was not statistically signif-
icant (Figure 1—figure supplement 1B). Taken together, these data support a clear role for Tra in 
regulating the sex difference in fat storage, and suggest that a role for Tra in regulating fat breakdown 
cannot be ruled out.

https://doi.org/10.7554/eLife.72350
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transformer function in neurons regulates the sex difference in fat 
storage
Tra function is required in many cell types, tissues, and organs to promote female sexual development 
(Anand et al., 2001; Baker et al., 2001; Billeter et al., 2006; Brown and King, 1961; Burtis and 
Baker, 1989; Camara et al., 2008; Christiansen et al., 2002; Clough et al., 2014; Dauwalder, 2011; 
Demir and Dickson, 2005; Goodwin et al., 2000; Hall, 1994; Heinrichs et al., 1998; Hoshijima 
et al., 1991; Inoue et al., 1992; Ito et al., 1996; Nagoshi et al., 1988; Neville et al., 2014; Nojima 
et al., 2014; Pavlou et al., 2016; von Philipsborn et al., 2014; Pomatto et al., 2017; Rezával et al., 
2014; Rezával et al., 2016; Rideout et al., 2007; Rideout et al., 2010; Ryner et al., 1996; Stur-
tevant, 1945). To determine the cell types and tissues in which Tra function is required to influence 
fat metabolism, we overexpressed Tra using a panel of GAL4 lines that drive expression in subsets 
of cells and/or tissues. To rapidly assess potential effects on fat metabolism, we measured starvation 
resistance, an established readout for changes to fat storage and breakdown (Beller et al., 2010; 
Bi et al., 2012; Choi et al., 2015; Grönke et al., 2003; Grönke et al., 2005; Grönke et al., 2007; 
Gutierrez et al., 2007).

Normally, adult females have elevated starvation resistance compared with age- matched males 
due to higher fat storage and reduced fat breakdown (Wat et al., 2020). Indeed, loss of tra reduced 
starvation resistance in females (Figure 2A) whereas gain of Tra function enhanced starvation resis-
tance in males (Figure 2B), in line with their effects on fat metabolism (Figure 1A and D). From our 
survey of different GAL4 lines (Figure 2—figure supplement 1A- F; Figure 2—figure supplement 
2A- D), we found that neurons were the cell type in which gain of Tra most strongly extended male 
starvation resistance (Figure 2C). Specifically, starvation resistance in males with Tra overexpression in 
neurons (elav- GAL4>UAS- traF) was significantly extended compared with elav- GAL4>+ and +>UAS- 
traF controls (Figure 2C), with no effect in females (Figure 2—figure supplement 3A). Because the 
increase in starvation resistance upon neuron- specific Tra expression was similar in magnitude to the 
increase in survival observed upon global Tra expression (Figure 2B and C), this finding suggests a key 
role for neuronal Tra in regulating starvation resistance.

To determine whether increased starvation resistance in elav- GAL4>UAS- traF males was due 
to altered fat metabolism, we measured whole- body triglyceride levels in males and females with 
neuronal Tra overexpression. We found that elav- GAL4>UAS- traF males (Figure 2D), but not females 
(Figure 2—figure supplement 3B), showed a significant increase in whole- body fat storage compared 
with sex- matched elav- GAL4>+ and +>UAS- traF controls. This suggests that the male- specific 
increase in starvation resistance (Figure 2C) was due to increased fat storage in elav- GAL4>UAS- traF 
males, which we confirm by showing that the rate of fat breakdown in elav- GAL4>UAS- traF males 
and females was not significantly different from sex- matched elav- GAL4>+ and +>UAS- traF controls 
(Figure 2—figure supplement 3C) (genotype:time interaction p=0.2789 [males], p=0.7058 [females]; 
Supplementary file 1). Neurons are therefore one cell type in which Tra function influences the sex 
difference in whole- body triglyceride storage.

To identify specific neurons that mediate Tra’s effects on starvation resistance and whole- body fat 
storage, we overexpressed Tra in neurons known to affect fat metabolism and measured starvation 
resistance (Figure 2—figure supplement 4A- E; Al- Anzi and Zinn, 2018; Al- Anzi et al., 2009; Chung 
et al., 2017; Li et al., 2016; May et al., 2020; Min et al., 2016; Mosher et al., 2015; Zhan et al., 
2016). One group of neurons that significantly augmented starvation resistance upon Tra expression 
was the APCs (Figure 2E), a group of neuroendocrine cells in the corpora cardiaca that produce Akh 
and other peptide hormones such as Limostatin (Lst; FBgn0034140) (Alfa et al., 2015; Lee and Park, 
2004). Although we note that Tra expression in additional neurons and in glia affected starvation resis-
tance (Figure 2—figure supplement 2D; Figure 2—figure supplement 4D), suggesting the regula-
tion of fat metabolism by Tra function in neurons is complex, the central role of the APCs in regulating 
fat metabolism prompted a more detailed investigation into Tra’s function in these neurons. Flies with 
APC- specific Tra expression (Akh- GAL4>UAS- traF) had significantly increased starvation resistance 
compared with sex- matched Akh- GAL4>+ and +>UAS- traF controls (Figure  2E; Figure  2—figure 
supplement 5A). To determine whether the starvation resistance phenotype indicated altered fat 
storage, we compared whole- body triglyceride levels in Akh- GAL4>UAS- traF males and females with 
sex- matched Akh- GAL4>+ and +>UAS- traF controls. There was a significant increase in whole- body 
fat storage in males (Figure 2F) but not females (Figure 2—figure supplement 5B) with APC- specific 

https://doi.org/10.7554/eLife.72350
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Figure 2. transformer function in Akh- producing cells contributes to the sex difference in fat storage. (A) Starvation resistance was significantly reduced 
in tra1/Df(3 L)st- j7 females compared with w1118 controls (p<2×10–16; log- rank test, Bonferroni’s correction for multiple comparisons). n=344–502 animals. 
(B) Starvation resistance was significantly enhanced in da- GAL4>UAS- traF males compared with da- GAL4>+ and +>UAS- traF controls (p<2×10–16 and 
p<2×10–16, respectively; log- rank test, Bonferroni’s correction for multiple comparisons). n=198–201 animals. (C) Starvation resistance was significantly 
enhanced in elav- GAL4>UAS- traF males compared with elav- GAL4>+ and +>UAS- traF controls (p<2×10–16 and p<2×10–16, respectively; log- rank test, 
Bonferroni’s correction for multiple comparisons). n=248–279 animals. (D) Whole- body triglyceride levels were significantly higher in elav- GAL4>UAS- 
traF males compared with elav- GAL4>+ and +>UAS- traF controls (p=0.0001 and p=0.0006, respectively; one- way ANOVA followed by Tukey’s HSD). 
n=7–8 biological replicates. (E) Starvation resistance was significantly enhanced in Akh- GAL4>UAS- traF males compared with Akh- GAL4>+ and +>UAS- 
traF controls (p=3.1×10–9 and p<2×10–16, respectively; log- rank test, Bonferroni’s correction for multiple comparisons). n=280–364 animals. (F) Whole- 
body triglyceride levels were significantly higher in Akh- GAL4>UAS- traF males compared to Akh- GAL4>+ and +>UAS- traF control males (p<0.0001 and 
p<0.0001, respectively; one- way ANOVA followed by Tukey’s HSD). n=8 biological replicates. Black circles indicate the presence of a transgene and 
open circles indicate the lack of a transgene. *** indicates p<0.001, **** indicates p<0.0001; shaded areas represent the  95% confidence interval; error 
bars represent SEM.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.72350
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Tra expression. This indicates Tra function in the APCs promotes fat storage, revealing a previously 
unrecognized role for the APCs in regulating the sex difference in fat storage. Indeed, fat breakdown 
was unaffected in Akh- GAL4>UAS- traF males and females compared with sex- matched Akh- GAL4>+ 
and +>UAS- traF controls (Figure  2—figure supplement 5C) (genotype:time interaction p=0.1201 
[males] and p=0.0596 [females]; Supplementary file 1).

Sex-specific regulation of adipokinetic hormone leads to a male bias in 
pathway activity
Given that the sexual identity of the APCs impacts whole- body fat storage, we compared the regu-
lation of Akh, APC activity, and Akh signaling between adult males and females. We first examined 
Akh and AkhR mRNA levels in both sexes using quantitative real- time polymerase chain reaction 
(qPCR). We found that mRNA levels of both Akh and AkhR were significantly higher in 5- day- old 
w1118 males than in females (Figure 3A and B). This male bias in Akh mRNA levels did not reflect an 
increased APC number in males, as we found no sex difference in the number of APCs (Figure 3C). 
Because Akh release from the APCs is regulated by APC activity (Kubrak et al., 2020; Oh et al., 
2019), we next measured APC activity in males and females by driving APC- specific expression of 
calcium- responsive chimeric transcription factor LexA- VP16- NFAT (Akh- GAL4>UAS- LexA- VP16- NFAT 
[called UAS- CaLexA]) (Masuyama et  al., 2012). Sustained APC activity triggers nuclear import of 
LexA- VP16- NFAT, where it drives expression of a GFP reporter downstream of a LexA- responsive 
element (Masuyama et al., 2012). Monitoring GFP levels in the APCs therefore provides a straight-
forward way to monitor APC activity.

In 5- day- old Akh- GAL4>UAS- CaLexA males, GFP levels were significantly higher than in age- and 
genotype- matched females (Figure 3D–H). Because GAL4 mRNA levels were not significantly different 
between males and females carrying the Akh- GAL4 transgene (Figure 3—figure supplement 1A), 
and the number of APCs did not differ between the sexes (Figure 3C), these findings indicate that 
the APCs are more active in males than in females. To determine whether the male bias in Akh/AkhR 
mRNA levels and APC activity affected Akh pathway activity, we next compared levels of phosphor-
ylated Inositol- requiring enzyme- 1 (Ire1; FBgn0261984) between males and females. Because levels 
of phosphorylated Ire1 (p- Ire1) are higher in Drosophila cells stimulated with Akh peptide, regulation 
that was dependent on the presence of AkhR, high p- Ire1 levels indicate increased Akh pathway 
activity (Song et al., 2017). We found that the ratio of p- Ire1 to loading control actin was higher in 
5- day- old w1118 males compared with age- and genotype- matched females in three out of four biolog-
ical replicates (Figure  3I–K; Figure  3—figure supplement 1B), a finding that aligns with the sex 
difference in Akh/AkhR mRNA levels and APC activity. Taken together, our data suggest a previously 
unrecognized male bias in the Akh pathway.

The adipokinetic hormone pathway contributes to the sex difference in 
fat storage
Given that high Akh pathway activity limits fat storage via an established intracellular signaling cascade 
that culminates in lipase recruitment and fat mobilization (Baumbach et al., 2014; Grönke et al., 
2007; Lee and Park, 2004; Mochanová et al., 2018), we wanted to determine whether the male 
bias in Akh pathway activity influences the sex difference in fat metabolism by restricting fat storage 
in males. We therefore used a published approach to ablate the APCs (Akh- GAL4>UAS- reaper (rpr)) 
(Lee and Park, 2004; White et  al., 1996), and measured whole- body triglyceride levels in each 
sex. Because the sexual identity of the APCs affects fat storage and not fat breakdown (Figure 2F; 

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Effect of transformer gain in multiple cell types and tissues on starvation resistance.

Figure supplement 2. Effect of transformer gain in additional cell types and tissues on starvation resistance.

Figure supplement 3. Gain of transformer function in neurons does not affect fat breakdown.

Figure supplement 4. Effect of transformer gain in multiple neuronal subsets on starvation resistance.

Figure supplement 5. Gain of transformer function in Akh- producing cells does not affect fat breakdown.

Figure 2 continued

https://doi.org/10.7554/eLife.72350
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Figure 3. Sex- specific regulation of Akh and the Akh signaling pathway. (A) Akh mRNA levels were significantly higher in w1118 males compared with 
genotype- matched females (p<0.0001, Student’s t- test). n=8 biological replicates. (B) AkhR mRNA levels were significantly higher in w1118 males than 
in females (p=0.0002, Student’s t- test). n=4 biological replicates. (C) Expression of UAS- nGFP in Akh- producing cells (APCs) (Akh- GAL4>UAS - nGFP) 
revealed no significant difference in APC cell number between males and females (p=0.1417; Student’s t- test). n=8–12 animals. (D) GFP intensity 
produced as a readout of calcium activity in the APCs (Akh- GAL4>LexAop- CD8- GFP;UAS- LexA- VP16- NFAT (UAS- CaLexA)) was significantly higher in 
males compared with females (p=0.0438; Student’s t- test). n=6–8 biological replicates. (E–H) Maximum Z- projections of representative images showing 
GFP produced as a readout for APC calcium activity from both Akh- GAL4>UAS- CaLexA males and females. Scale bars=50 μm, n=6–8 biological 
replicates. (I–K) Whole- body p- Ire1 levels were higher in w1118 males compared with w1118 females in three biological replicates. * indicates p<0.05, *** 
indicates p<0.001, **** indicates p<0.0001, ns indicates not significant; error bars represent SEM. Original images for (C) are found in Figure 3—source 
data 1. Original images for (D–H) are found in Figure 3—source data 2. Original images for (I–K) are found in Figure 3—source data 3.

Figure 3 continued on next page

https://doi.org/10.7554/eLife.72350
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Figure 2—figure supplement 5C), we focused our analysis on triglyceride storage rather than mobi-
lization. Triglyceride levels were significantly higher in 5- day- old Akh- GAL4>UAS  - rpr males than 
in Akh- GAL4>+ and +>UAS- rpr control males (Figure 4A). In contrast, triglyceride levels in 5- day- 
old Akh- GAL4>UAS - rpr females were not significantly different from Akh- GAL4>+ and +>UAS- rpr 
control females (Figure 4—figure supplement 1A). This suggests that the male bias in Akh pathway 
activity normally contributes to the sex difference in fat storage by limiting triglyceride accumulation 
in males via the established intracellular signaling cascade known to regulate lipid droplet breakdown 
(Arrese et al., 2008; Heier and Kühnlein, 2018; Heier et al., 2021; Kühnlein, 2012; Patel et al., 
2005). Importantly, we reproduced the male- biased effects on fat storage in flies carrying loss- of- 
function Akh and AkhR alleles (AkhA and AkhR1, respectively) (Figure 4B and C; Figure 4—figure 
supplement 1B, C), and show that APC- specific knockdown of Lst had no effect on fat storage in 
either sex (Figure 4—figure supplement 1D, E). These findings support a model in which it is Akh 
production by the APCs that plays a role in regulating the male- female difference in fat storage. While 
the mechanisms underlying the regulation of intracellular fat breakdown by Akh in the fat body have 
been well- documented (Bharucha et al., 2008; Gáliková et al., 2015; Grönke et al., 2007; Heier 
and Kühnlein, 2018; Heier et al., 2021; Kubrak et al., 2020; Lee and Park, 2004; Lehmann, 2018; 
Scopelliti et al., 2019; Zhao and Karpac, 2017), our findings reveal a new role for Akh in regulating 
the sex difference in fat storage. Notably, this Akh- mediated regulation of the male- female differ-
ence in fat storage operates in a parallel pathway to the previously described sex- specific role of 
triglyceride lipase bmm (Figure 4—figure supplement 2A, B; Wat et al., 2020).

Beyond the APC ablation or complete loss of Akh, we next wanted to test whether the sex- specific 
Akh regulation we uncovered contributes to the male- female difference in fat storage. To this end, we 
used a genetic approach to manipulate Akh mRNA levels or APC activity, and measured whole- body 
fat storage in both sexes. To determine whether the male bias in Akh mRNA levels contributes to the 
sex difference in fat storage, we measured whole- body triglyceride levels in flies with APC- specific 
expression of Akh- RNAi (Akh- GAL4>UAS- Akh- RNAi). Importantly, this manipulation effectively 
reduced Akh mRNA levels in both sexes (Figure 4—figure supplement 3A,B). In males, whole- body 
triglyceride levels were significantly higher in Akh- GAL4>UAS- Akh- RNAi flies compared with Akh- 
GAL4>+ and +>UAS- Akh- RNAi control flies (Figure 4D). Akh- GAL4>UAS- Akh- RNAi female flies, in 
contrast, showed no significant change in whole- body fat storage compared with Akh- GAL4>+ and 
+>UAS- Akh- RNAi control females (Figure 4—figure supplement 3C). This indicates a strongly male- 
biased effect on fat storage due to reduced Akh mRNA levels, suggesting that the sex difference in 
Akh mRNA levels contributes to the male- female difference in whole- body fat storage.

To determine whether the male bias in APC activity also influences the sex difference in fat storage, 
we silenced the APCs by APC- specific overexpression of an inwardly rectifying potassium channel 
Kir2.1 (Baines et al., 2001) and measured whole- body triglyceride levels. Whole- body fat storage in 
Akh- GAL4>UAS- Kir2.1 adult males was significantly higher compared with Akh- GAL4>+ and +>UAS- 
Kir2.1 control males (Figure 4E). In females, while we observed significantly elevated whole- body fat 
storage in Akh- GAL4>UAS- Kir2.1 adults compared with Akh- GAL4>+ and +>UAS- Kir2.1 controls 
(Figure 4—figure supplement 3D), the magnitude of this increase was larger in males (sex:genotype 
interaction p=0.0455; Supplementary file 1). Taken together, these data suggest that the male bias 
in APC activity contributes to the sex difference in fat storage by limiting triglyceride accumulation in 
males. Indeed, augmenting APC activity in females using a bacterial voltage- gated sodium channel 
(UAS- NaChBac) significantly reduced fat storage in females (Figure 4F; Figure 4—figure supplement 
3E). While Akh affects food- related behaviors in some contexts (Choi et al., 2015; Hentze et al., 2015; 
Huang et al., 2020), we observed no significant effects of altered APC activity on feeding behavior 

The online version of this article includes the following figure supplement(s) for figure 3:

Source data 1. Images used to quantify number of Akh- producing cells.

Source data 2. Images used to quantify neuronal activity of Akh- producing cells.

Source data 3. Original blots for p- Ire1 and actin in males and females.

Figure supplement 1. Akh- GAL4 drives equivalent GAL4 mRNA levels in both sexes.

Figure supplement 1—source data 1. Original blots for p- Ire1 and actin in male versus female.

Figure 3 continued

https://doi.org/10.7554/eLife.72350
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in either sex (Figure 4—figure supplement 4A- D). This suggests that the male- biased effect of APC 
manipulation on fat storage cannot be fully explained by effects on food intake. Thus, in addition to the 
contribution of elevated Akh mRNA levels in males to the sex difference in fat storage, we also identify 
a role for the male bias in APC activity in the sex- specific regulation of whole- body triglyceride levels.

Figure 4. Sex- specific regulation of Akh and APC activity influence the sex difference in fat storage. (A) Whole- body triglyceride levels were significantly 
higher in Akh- GAL4>UAS- reaper (rpr) males compared with Akh- GAL4>+ and +>UAS- rpr controls (p=0.0002 and p=0.0215, respectively; one- way 
ANOVA followed by Tukey’s HSD). n=8 biological replicates. (B) Whole- body triglyceride levels were significantly higher in AkhA males compared with 
w1118 controls (p<0.0001; one- way ANOVA followed by Tukey’s HSD). n=8 biological replicates. (C) Whole- body triglyceride levels were significantly 
higher in AkhR1 males compared with AkhRrev controls (p<0.0001; one- way ANOVA followed by Tukey’s HSD). n=8 biological replicates. (D) Whole- 
body triglyceride levels were significantly higher in Akh- GAL4>UAS- Akh- RNAi males compared with Akh- GAL4>+ and +>UAS- Akh- RNAi controls 
(p=0.0015 and p=0.0002, respectively; one- way ANOVA followed by Tukey’s HSD). n=8 biological replicates. (E) Whole- body triglyceride levels were 
significantly higher in Akh- GAL4>UAS- Kir2.1 males compared with Akh- GAL4>+ and +>UAS- Kir2.1 controls (p<0.0001 and p<0.0001, respectively; one- 
way ANOVA followed by Tukey’s HSD). n=8 biological replicates. (F) Whole- body triglyceride levels were significantly lower in Akh- GAL4>UAS- NaChBac 
females compared with Akh- GAL4>+ and +>UAS- NaChBac controls (p<0.0001 and p<0.0001, respectively; one- way ANOVA followed by Tukey’s HSD). 
n=8 biological replicates. Due to independent experiments with a shared GAL4 control, Akh- GAL4>+ males are shared between (E) and Figure 4—
figure supplement 3E. Akh- GAL4>+ females are shared between (F) and Figure 4—figure supplement 3D. Black circles indicate the presence of a 
transgene and open circles indicate the lack of a transgene; * indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001; error 
bars represent SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. APC- derived Limostatin does not regulate the sex difference in fat storage.

Figure supplement 2. Akh and brummer operate in parallel pathways to regulate the sex difference in fat storage.

Figure supplement 3. RNAi- mediated Akh knockdown effectively reduced Akh transcripts in both sexes.

Figure supplement 4. Activity of the Akh- producing cells does not regulate food consumption in either sex.

https://doi.org/10.7554/eLife.72350
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transformer regulates the sex difference in fat storage via the 
adipokinetic hormone pathway
Given that Tra function and the Akh pathway both contribute to the male- female difference in fat 
storage, we asked whether the presence of Tra affects the sex bias in Akh pathway activity. In 5- day- 
old tra1/Df(3 L)st- j7 females, levels of p- Ire1 were higher than in w1118 control females in three out 
of four biological replicates (Figure  5A–C; Figure  5—figure supplement 1A). This suggests the 
presence of Tra in females normally represses Akh pathway activity. Indeed, loss of Tra significantly 
increased Akh mRNA levels in females (Figure 5D). Given Tra’s effects on Akh pathway activity, we 
next tested whether the change in Akh pathway function was significant for Tra’s effects on whole- 
body triglyceride levels. We predicted that if increased Akh pathway activity caused the lower fat 
storage in tra mutant females, genetic manipulations that reduce Akh pathway activity should block 
this reduction in whole- body triglyceride levels. While all female genotypes lacking tra function had 
reduced fat storage compared with control females (Figure 5E), APC ablation in tra mutant females 

Figure 5. transformer regulates the sex difference in fat storage via the Akh signalling pathway. (A–C) Whole- body p- Ire1 levels were higher in tra1/
Df(3 L)st- j7 females compared with w1118 controls in three biological replicates. (D) Whole- body Akh mRNA levels were significantly higher in tra1/Df(3 L)
st- j7 females compared with w1118 controls (p<0.0001; Student’s t- test). n=8 biological replicates. (E) Whole- body triglyceride levels were significantly 
lower in traKO/Df(3 L)st- j7 females carrying either Akh- GAL4>+ or +>UAS- reaper (rpr) transgenes compared with w1118 controls carrying a functional Tra 
protein (p<0.0001 and p<0.0001, respectively; one- way ANOVA followed by Tukey’s HSD). Whole- body triglyceride levels were not significantly different 
between traKO/Df(3 L)st- j7 females lacking APCs (Akh- GAL4>UAS- rpr ) and w1118 controls (p=0.9384; one- way ANOVA followed by Tukey’s HSD). n=8 
biological replicates. (F) Whole- body triglyceride levels were significantly higher in traF K- IN males carrying either Akh- GAL4>+ or +>UAS- NaChBac 
transgenes compared with w1118 control males lacking Tra function (p<0.0001 and p<0.0001, respectively; one- way ANOVA followed by Tukey’s HSD). 
Whole- body triglyceride levels in traF K- IN males with APC activation (Akh- GAL4>UAS- NaChBac) were significantly lower than traF K- IN males carrying 
either the Akh- GAL4>+ or +>UAS- NaChBac transgenes alone (p<0.0001 and p<0.0001, respectively; one- way ANOVA followed by Tukey’s HSD). n=5 
biological replicates. Black circles indicate the presence of a transgene or mutant allele and open circles indicate the lack of a transgene or mutant 
allele. **** indicates p<0.0001, ns indicates not significant; error bars represent SEM. Original images for (A–C) are found in Figure 5—source data 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Source data 1. Original blots for p- Ire1 and actin in females with whole- body loss of transformer.

Figure supplement 1. Whole- body p- Ire1 levels in transformer mutant flies.

Figure supplement 1—source data 1. Original blots for p- Ire1 and actin in females with whole body loss of transformer.

https://doi.org/10.7554/eLife.72350
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rescued this decrease in whole- body triglyceride levels (Figure 5E). Indeed, fat storage in tra mutant 
females lacking APCs was not significantly different from w1118 control females (p=0.9384; Supplemen-
tary file 1; Figure 5E), indicating that the increased Akh pathway activity we observed in tra mutant 
females was one reason for their reduced fat storage. Given that APC activation in males expressing 
physiological levels of Tra similarly rescued the Tra- induced increase in whole- body triglyceride levels 
(Figure 5F), these findings suggest that the sex- specific regulation of Akh pathway activity represents 
one way tra influences the male- female difference in fat storage.

Loss of adipokinetic hormone has opposite effects on reproductive 
success in each sex and mediates a fecundity-lifespan tradeoff in 
females
Our results suggest that adult females show lower Akh pathway activity and higher fat storage, 
whereas males maintain a higher level of Akh activity and lower fat storage. Because the correct regu-
lation of fat storage in each sex influences reproduction (Buszczak et al., 2002; Grönke et al., 2005; 
Sieber and Spradling, 2015; Wat et al., 2020), we tested how complete loss of this critical regulator 
of the sex difference in fat storage impacted offspring production in each sex. In AkhA mutant males, 
we found that the proportion of males copulating with a Canton- S (CS) virgin female was lower than 
in control w1118 males at each 10 min interval during a  60- min observation period (Figure 6A). When 
we counted viable offspring from these copulation events, we found that AkhA mutant males had 
significantly fewer overall progeny than w1118 control males (Figure 6B). These results suggest that Akh 

Figure 6. Sex- specific regulation of Akh signalling pathway promotes reproductive success in each sex. (A) At all observation points, a lower proportion 
of AkhA males were successfully copulating with a wildtype Canton- S (CS) female compared with w1118 controls. n=31 males. (B) The number of pupae 
produced from a  60- min mating period was significantly lower in AkhA males compared with w1118 controls (p=0.0003; Student’s t- test). n=24–26 males. 
(C) The number of pupae produced from a  24- hr mating period was not significantly different between AkhA males and w1118 control males (p=0.2501; 
Student’s t- test). n=24–25 males. (D) The number of pupae produced from a  24- hr mating period was significantly higher in AkhA females compared 
with w1118 controls (p=0.0006; Student’s t- test). n=28–36 females. (E) Lifespan was significantly shorter in Akh- GAL4>UAS- Kir2.1 females compared with 
Akh- GAL4>+ and +>UAS- Kir2.1 controls (p<2×10–16 and p=0.0015, respectively; log- rank test, Bonferroni’s correction for multiple comparisons). n=160–
198 females. (F) Lifespan of Akh- GAL4>UAS- Kir2.1 males was intermediate between Akh- GAL4>+ and +>UAS- Kir2.1 controls, indicating no overall 
effect of inhibiting APC neuronal activity on male lifespan (p=0.00013 and p=7.0×10–6, respectively; log- rank test, Bonferroni’s correction for multiple 
comparisons). n=196–200 males. ** indicates p<0.01, *** indicates p<0.001, **** indicates p<0.0001, ns indicates not significant; error bars represent 
SEM; shaded areas represent the  95% confidence interval.

https://doi.org/10.7554/eLife.72350
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function normally promotes reproductive success in males; however, it is important to note that Akh 
function is not absolutely required for male fertility, as a prolonged 24 hr period of contact between 
AkhA mutant males and CS females allowed the production of normal progeny numbers (Figure 6C).

In contrast to males, Akh loss- of- function mutations in females increased fecundity (Figure 6D). 
Specifically, AkhA mutant females produced a significantly higher number of offspring compared with 
w1118 controls (Figure 6D). Thus, in females, a low level of Akh pathway activity promotes fecundity. 
Given that a change in one life- history trait such as reproduction often affects traits such as longevity 
(Chapman et al., 1995; Flatt, 2011; Fowler and Partridge, 1989; Hansen et al., 2013), we also 
measured lifespan in females with reduced Akh pathway function. We found that lifespan was signifi-
cantly shorter in Akh- GAL4>UAS- Kir2.1 females compared with Akh- GAL4>+ and +>UAS- Kir2.1 
control females (Figure 6E). In contrast, male lifespan was not significantly different between Akh- 
GAL4>UAS- Kir2.1 flies and Akh- GAL4>+ and +>UAS- Kir2.1 controls (Figure 6F). Our findings are in 
agreement with a previous study that demonstrated a female- specific lifespan reduction in response 
to whole- body loss of Akh (Bednářová et  al., 2018). This suggests that while low Akh activity in 
females promotes fertility, this benefit comes at the cost of a shorter lifespan, a possibility that will 

Figure 7. Sex- specific regulation of the Akh pathway by tra contributes to the sex difference in fat storage. (A) In wild- type females, Akh mRNA 
transcripts and APC activity are lower compared with wild- type males, leading to lower AkhR signaling. Given that AkhR signaling stimulates fat 
breakdown, lower AkhR signaling in females contributes to higher female fat storage. (B) In females lacking functional tra, Akh mRNA transcripts are 
higher compared with wild- type females, leading to higher AkhR signaling. Higher AkhR signaling in tra mutant females contributes to lower tra mutant 
female fat storage. (C) In wild- type males, Akh mRNA transcripts and APC activity are higher compared with wild- type females, leading to higher AkhR 
signaling. Higher AkhR signaling in males contributes to lower male fat storage.

https://doi.org/10.7554/eLife.72350
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be explored in future studies using additional strains to genetically augment, or inhibit, Akh pathway 
activity (e.g., APC activation, Akh mutants).

Discussion
In this study, we used the fruit fly Drosophila melanogaster to improve the knowledge of the mecha-
nisms underlying the male- female difference in whole- body triglyceride levels. We show that the pres-
ence of a functional Tra protein in females, which directs many aspects of female sexual development, 
promotes whole- body fat storage. Tra’s ability to promote fat storage arises largely due to its function 
in neurons, where we identified the APCs as one neuronal population in which Tra function influences 
whole- body triglyceride levels. Our examination of Akh/AkhR mRNA levels and APC activity revealed 
several differences between the sexes, where these differences lead to higher Akh pathway activity 
in males than in females (Figure 7A and C). Genetic manipulation of APCs and Akh pathway activity 
suggest a model in which the sex bias in Akh pathway activity contributes to the male- female differ-
ence in fat storage by limiting whole- body triglyceride storage in males (Figure 7C). Importantly, we 
show that Tra function influences Akh pathway activity, and that Akh acts genetically downstream of 
Tra in regulating whole- body triglyceride levels (Figure 7B). This reveals a previously unrecognized 
genetic and physiological mechanism that contributes to the sex difference in fat storage.

One key finding from our study was the identification of sex determination gene tra as an upstream 
regulator of the male- female difference in fat storage. In females, a functional Tra protein promotes 
fat storage, whereas lack of Tra in males leads to reduced fat storage. While an extensive body of 
literature has demonstrated important roles for tra in regulating neural circuits, behavior, abdominal 
pigmentation, and gonad development (Anand et al., 2001; Baker et al., 2001; Billeter et al., 2006; 
Brown and King, 1961; Burtis and Baker, 1989; Camara et al., 2008; Christiansen et al., 2002; 
Clough et al., 2014; Dauwalder, 2011; Demir and Dickson, 2005; Goodwin et al., 2000; Hall, 1994; 
Heinrichs et al., 1998; Hoshijima et al., 1991; Inoue et al., 1992; Ito et al., 1996; Nagoshi et al., 
1988; Neville et al., 2014; Nojima et al., 2014; Pavlou et al., 2016; von Philipsborn et al., 2014; 
Pomatto et al., 2017; Rezával et al., 2014; Rezával et al., 2016; Rideout et al., 2007; Rideout 
et al., 2010; Ryner et al., 1996; Sturtevant, 1945), uncovering a role for tra in regulating fat storage 
significantly extends our understanding of how sex differences in metabolism arise. Given that sex 
differences exist in other aspects of metabolism (e.g., oxygen consumption) (Wat et al., 2020), this 
new insight suggests that more work will be needed to determine whether tra contributes to sexual 
dimorphism in additional metabolic traits. Indeed, one study showed that tra influences the sex differ-
ence in adaptation to hydrogen peroxide stress (Pomatto et al., 2017). Beyond metabolism, Tra also 
regulates multiple aspects of development and physiology such as intestinal stem cell proliferation 
(Ahmed et al., 2020; Hudry et al., 2016; Millington and Rideout, 2018), carbohydrate metabolism 
(Hudry et al., 2019), body size (Mathews et al., 2017; Rideout et al., 2015), phenotypic plasticity 
(Millington et al., 2021), and lifespan responses to dietary restriction (Regan et al., 2016). Because 
some, but not all, of these studies identify a cell type in which Tra function influences these diverse 
phenotypes, future studies will need to determine which cell types and tissues require Tra expression 
to establish a female metabolic and physiological state. Indeed, recent single- cell analyses reveal 
widespread gene expression differences in shared cell types between the sexes (Li et al., 2021).

Identifying neurons as the anatomical focus of Tra’s effects on fat storage was another key finding 
from our study. While many sexually dimorphic neural circuits related to behavior and reproduction 
have been identified (Anand et al., 2001; Auer and Benton, 2016; Baker et al., 2001; Billeter et al., 
2006; Clyne and Miesenböck, 2008; Dauwalder, 2011; Demir and Dickson, 2005; Evans and Cline, 
2007; Goodwin et al., 2000; Hall, 1994; Inoue et al., 1992; Ito et al., 1996; Kimura et al., 2019; 
Kvitsiani and Dickson, 2006; Neville et al., 2014; Nojima et al., 2014; Pavlou et al., 2016; von 
Philipsborn et al., 2014; Rezával et al., 2014; Rezával et al., 2016; Rideout et al., 2007; Rideout 
et al., 2010; Ryner et al., 1996; Sato et al., 2019; Shirangi et al., 2016; Wang et al., 2020), less 
is known about sex differences in neurons that regulate physiology and metabolism. Indeed, while 
many studies have identified neurons that regulate fat metabolism (Al- Anzi and Zinn, 2018; Al- Anzi 
et al., 2009; Chung et al., 2017; Li et al., 2016; May et al., 2020; Min et al., 2016; Mosher et al., 
2015; Zhan et al., 2016), these studies were conducted in single- or mixed- sex populations. Because 
male- female differences in neuron number (Billeter et al., 2006; Castellanos et al., 2013; Demir 
and Dickson, 2005; Garner et al., 2017; Lee and Hall, 2001; Rideout et al., 2007; Rideout et al., 
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2010; Robinett et al., 2010; Taylor and Truman, 1992), morphology (Cachero et al., 2010; Kimura 
et al., 2019), activity (Guo et al., 2016), and connectivity (Cachero et al., 2010; Nojima et al., 2021) 
have all been described across the brain and ventral nerve cord (Mellert et al., 2010; Mellert et al., 
2016), a detailed analysis of neuronal populations that influence metabolism will be needed in both 
sexes to understand how neurons contribute to the sex- specific regulation of metabolism and physi-
ology. Indeed, while our identification of a role for APC sexual identity in regulating the male- female 
difference in fat storage represents a significant step forward in understanding how sex differences 
in neurons influence metabolic traits, more knowledge is needed of how Tra regulates sexual dimor-
phism in this critical neuronal subset. For example, while we show that females normally have lower 
Akh mRNA levels and APC activity, it remains unclear how the presence of Tra regulates these distinct 
traits. Tra may regulate Akh mRNA levels via known target genes fruitless (fru; FBgn0004652) and 
doublesex (dsx; FBgn0000504) (Burtis and Baker, 1989; Heinrichs et al., 1998; Hoshijima et al., 
1991; Inoue et al., 1992; Nagoshi et al., 1988; Ryner et al., 1996), or alternatively through a fru- and 
dsx- independent pathway (Hudry et al., 2016; Rideout et al., 2015). To influence the sex difference 
in APC activity and Akh release, Tra may regulate factors such as ATP- sensitive potassium (KATP) chan-
nels and 5′ adenosine monophosphate- activated protein kinase (AMPK)- dependent signaling, both 
of which are known to modulate APC activity (Braco et al., 2012; Kim and Rulifson, 2004). Future 
studies will therefore need to investigate Tra- dependent changes to KATP channel expression and func-
tion in APCs, and characterize Tra’s effects on ATP levels and AMPK signaling within APCs.

Additional ways to learn more about the sex- specific regulation of fat storage by the APCs will 
include examining how sexual identity influences physical connections between the APCs and other 
neurons, and monitoring APC responses to circulating hormones. For example, there are physical 
connections between corazonin- and neuropeptide F (NPF; FBgn0027109)- positive (CN) neurons and 
APCs in adult male flies (Oh et al., 2019), and between the APCs and a bursicon-α-responsive subset 
of DLgr2 neurons in females (Scopelliti et  al., 2019). These connections inhibit APC activity: CN 
neurons inhibit APC activity in response to high hemolymph sugar levels (Oh et al., 2019), whereas 
binding of bursicon-α to DLgr2 neurons inhibits APC activity in nutrient- rich conditions (Scopelliti 
et al., 2019). Future studies will therefore need to determine whether these physical connections exist 
in both sexes. Further, it will be important to identify male- female differences in circulating factors that 
regulate the APCs. While gut- derived Allatostatin C (AstC; FBgn0032336) was recently shown to bind 
its receptor on the APCs to trigger Akh release, loss of AstC affects fat metabolism and starvation 
resistance only in females (Kubrak et al., 2020). This suggests sex differences in AstC- dependent 
regulation of fat metabolism may exist.

Given that gut- derived NPF binds to its receptor on the APCs to inhibit Akh release (Yoshinari et al., 
2021),that skeletal muscle- derived unpaired 2 (upd2; FBgn0030904) regulates hemolymph Akh levels 
(Zhao and Karpac, 2017), and that circulating peptides such as Allatostatin A (AstA; FBgn0015591), 
Drosophila insulin- like peptides (Dilps), and activin ligands influence Akh pathway activity (Ahmad 
et al., 2020; Hentze et al., 2015; Post et al., 2019; Song et al., 2017), it is clear that a systematic 
survey of circulating factors that modulate Akh production, release, and Akh pathway activity in each 
sex will be needed to fully understand the sex- specific regulation of fat storage. Another important 
point to address in future studies will be confirming results from previous studies that the fat body 
is the main anatomical focus of Akh- dependent regulation of fat storage (Bharucha et  al., 2008; 
Grönke et al., 2007). Given that the sex- biased effects of triglyceride lipase bmm arise from a male- 
female difference in the cell type- specific requirements for bmm function (Wat et al., 2020), it will 
be important to determine which cell types mediate Akh’s effects on fat storage in each sex. This line 
of enquiry will also clarify the underlying processes that support increased fat storage in females. At 
present, it remains unclear whether the higher whole- body fat storage in females is caused by lower 
fat breakdown (Wat et al., 2020), increased lipogenesis, or both. Given that Akh pathway activity 
plays a role in regulating both lipolysis and lipogenesis in Drosophila and other insects (Grönke et al., 
2007; Lee and Goldsworthy, 1995; Lorenz, 2003), it will be important to identify the cellular mech-
anism underlying Akh’s effects on the sex difference in fat storage.

Beyond fat metabolism, it will be important to extend our understanding of how sex- specific Akh 
regulation affects additional Akh- regulated phenotypes. Given that we and others show Akh affects 
fertility and fecundity (Liao et al., 2021), future studies will need to determine whether these pheno-
types are due to Akh- dependent regulation of fat metabolism, or due to direct effects of Akh on 
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gonads. Similarly, while Akh has been linked with the regulation of lifespan (Bednářová et al., 2018; 
Liao et al., 2021), carbohydrate metabolism (Kim and Rulifson, 2004; Lee and Park, 2004), starva-
tion resistance (Isabel et al., 2005; Kubrak et al., 2020; Mochanová et al., 2018), locomotion (Isabel 
et al., 2005; Lee and Park, 2004), immune responses (Adamo et al., 2008), cardiac function (Isabel 
et al., 2005; Noyes et al., 1995), and oxidative stress responses (Gáliková et al., 2015), most studies 
were performed in mixed- or single- sex populations. Additional work is therefore needed to deter-
mine how changes to Akh pathway function affect physiology, carbohydrate levels, development, 
and life history in each sex. Importantly, the lessons we learn may also extend to other species. Akh 
signalling is highly conserved across invertebrates (Gäde and Auerswald, 2003; Lorenz and Gäde, 
2009; Staubli et al., 2002), and is functionally similar to the mammalian β-adrenergic and glucagon 
systems (Grönke et al., 2007; Lee and Park, 2004; Staubli et al., 2002). Because sex- specific regu-
lation of both glucagon and the β-adrenergic systems have been described in mammalian models 
and in humans (Al- Gburi et al., 2017; Bell et al., 2001; Bilginoglu et al., 2007; Brooks et al., 2015; 
Claustre et al., 1980; Dart et al., 2002; Davis et al., 2000; Drake et al., 1998; Freedman et al., 
1987; Hinojosa- Laborde et al., 1999; Hoeker et al., 2014; Hogarth et al., 2007; Lafontan et al., 
1997; Luzier et al., 1998; McIntosh et al., 2011; Ng et al., 1993), detailed studies on sex- specific 
Akh regulation and function in flies may provide vital clues into the mechanisms underlying male- 
female differences in physiology and metabolism in other animals.

Materials and methods
Fly husbandry
Fly stocks were maintained at  25°C in a 12:12 light:dark cycle. All larvae were reared at a density of 
50 larvae per 10 ml of fly media (recipe in Supplementary file 4). Males and females were separated 
either as early pupae by gonad size, or late pupae by the presence of sex combs. Sex- transformed 
males and females were distinguished by the presence (males) or absence (females) of BSY. Single- sex 
groups of 20 pupae were transferred to damp filter paper within a food vial until eclosion. Unless 
otherwise stated, all experiments used 5- to 7- day- old flies.

Fly strains
We obtained the following strains from the Bloomington Drosophila Stock Center: Canton- S (#64349), 
w1118 (#3605), UAS- nGFP (#4775), UAS- Akh- RNAi (#27031), UAS- traF (#4590), tra1 (#675), Df(3 L)st- j7 
(#5416), UAS- NaChBac (#9468), UAS- Kir2.1 (#6595), UAS- reaper (#5823), and UAS- CaLexA (#66542). 
We obtained AkhA, AkhRrev, AkhR1, bmm1, and AkhR1;bmm1 as kind gifts from Dr. Ronald Kühnlein 
(Gáliková et al., 2015; Grönke et al., 2005; Grönke et al., 2007), traKO and traF K- IN as kind gifts 
from Dr. Irene Miguel- Aliaga (Hudry et al., 2016; Hudry et al., 2019), and Mex- GAL4 as a kind gift 
from Dr. Claire Thomas (Phillips and Thomas, 2006). The authors acknowledge critical resources and 
information provided by Flybase (Thurmond et al., 2019). The following GAL4 lines were used for 
tissue- specific expression: da- GAL4 (ubiquitous), cg- GAL4 (fat body), r4- GAL4 (fat body), Lsp2- GAL4 
(fat body), Myo1A- GAL4 (enterocytes), Mex- GAL4 (enterocytes), dMef2- GAL4 (skeletal muscle), 
repo- GAL4 (glia), elav- GAL4 (neurons), c587- GAL4 (somatic cells of the gonad), tj- GAL4 (somatic cells 
of the gonad), nos- GAL4 (germ cells of the gonad), dimmed- GAL4 (peptidergic neurons), TH- GAL4 
(dopaminergic neurons), Tdc2- GAL4 (octopaminergic neurons), VT030559- GAL4 (mushroom body 
neurons), dilp2- GAL4 (insulin- producing cells), and Akh- GAL4 (APCs). All transgenic stocks were back-
crossed into a w1118 background for a minimum of five generations.

Adult weight
To measure adult weight, groups of 10 flies were weighed in 1.5 ml microcentrifuge tubes on an 
analytical balance (Mettler- Toledo, ME104).

RNA extraction, cDNA synthesis, and qPCR
One biological replicate consisted of five flies homogenized in 200 μl of TRIzol. RNA was extracted 
following the manufacturer’s instructions, as previously described (Wat et  al., 2020). cDNA was 
synthesized from RNA using the Quantitect Reverse Transcription Kit (Qiagen, 205311). qPCR was 
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used to quantify relative mRNA transcript levels as previously described (Wat et  al., 2020). See 
Supplementary file 3 for a full list of primers.

Whole-body triglyceride measurements
One biological replicate consisted of five flies homogenized in 200  μl of   0.1% Tween (AMresco, 
0777- 1 L) in  1× phosphate- buffered saline (PBS) using 50 μl of glass beads (Sigma- Aldrich, 11079110) 
agitated at 8 m/s for 5 s (OMNI International Bead Ruptor 24). Assay was performed according to 
established protocols (Tennessen et al., 2014) as previously described (Wat et al., 2020).

Gonad excision
 Five- day- old adult flies were individually anesthetized with CO2. The gonads or ovaries were removed 
from the distal end of the abdomen in cold  1× PBS and the carcass was snap- frozen in a 1.5 ml micro-
centrifuge tube on dry ice.

Western blotting
One biological replicate consisted of 10 flies homogenized in extraction buffer (females=200  μl, 
males=125 μl) containing 20 mM Hepes (pH 7.8), 450 mM NaCl,  25% glycerol, 50 mM NaF, 0.2 mM 
EDTA,  0.5% Triton X- 100, 1 mM PMSF, 1 mM DTT,  1× cOmplete Protease Inhibitor Cocktail (Roche), 
and  1× PhosSTOP (Roche) using 50 μl of glass beads (Sigma- Aldrich, 11079110) agitated at 8 m/s 
for 5 s (OMNI International Bead Ruptor 24). Samples were incubated on ice for 5 min before cellular 
debris was pelleted by centrifugation at 10,000 rpm for 5 min at 4 °C and supernatant was removed 
(Thermo Fisher Scientific, Heraeus Pico 21 centrifuge). Centrifugation was repeated two times more 
to remove fat from the samples. Protein concentration of each sample was determined by a Bradford 
Assay (Bio- Rad, 550- 0205); 20 μg of protein per sample was loaded onto a  12% SDS- PAGE gel. Immu-
noblotting was performed as previously described (Millington et al., 2021). Primary antibodies used 
were rabbit anti- p- Ire1 (1:1000; Abcam #48187) and mouse anti- actin (1:200; Santa Cruz #sc- 8432). 
Secondary antibodies used were goat anti- rabbit (1:5000; Invitrogen #65- 6120) and horse anti- mouse 
(1:2000; Cell Signaling Technology #7076).

APC measurements
To isolate the APCs, individual flies were anesthetized on ice, and the brain and foregut were removed 
in cold  1× PBS. Samples were fixed in  4% paraformaldehyde for 30 min, followed by two 30 min 
washes in cold  1× PBS. Samples were incubated with Hoechst (Sigma- Aldrich, 33342) at a concentra-
tion of 1:500 for 5 min and mounted in SlowFade Diamond Antifade Mountant (Thermo Fisher Scien-
tific, S36967). Images were captured using a Leica TCS SP5 Confocal Microscope and processed using 
Fiji (ImageJ; Schindelin et al., 2012). To visualize APC neuronal activity (Akh- GAL4>UAS- CaLexA), the 
mean GFP intensity of one APC cluster was quantified by measuring average pixel intensity within the 
region of interest using Fiji (ImageJ; Schindelin et al., 2012). To determine APC cell number (Akh- 
GAL4>UAS - nGFP), GFP punctae were counted manually using Fiji (ImageJ; Schindelin et al., 2012). 
One biological replicate consists of one cluster of APCs, where only one APC cluster was measured 
per individual.

Capillary feeder assay
One biological replicate consisted of 10 flies placed into a specialized 15 ml conical vial with access to 
two capillary tubes. Capillary tubes were filled with fly food media containing  5% sucrose,  5% yeast 
extract,  0.3% propionic acid, and  0.15% nipagin. Approximately 0.5 μl of mineral oil was added to 
the top of each capillary tube to prevent evaporation. All vials were placed into fitted holes in the lid 
of a large plastic container. A shallow layer of water was poured into the base of the container to main-
tain high humidity throughout the experiment. The meniscus of the fly food media was marked before 
the start of the experiment and again after 24 hr. The distance between the marks is used to quantify 
the volume of fly food media that was consumed (1 mm=0.15 μl). The volume of fly food consumed 
was normalized to the weight of individual flies (protocol adapted from Stafford et al., 2012).

Male fertility
One singly housed male was placed with a group of three virgin Canton- S (CS) females and allowed to 
interact for 60 min. At 10 min intervals during the  60- min observation period, we recorded whether 
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a copulating male- female pair was present in the vial. After the  60- min observation period, the male 
was removed from the vial and the females were allowed to lay eggs for 72 hr (flies were transferred to 
new food every 24 hr). After 72 hr, the females were removed and progeny were allowed to develop. 
After 10 days, we counted the number of pupae in each vial. For the 24 hr mating assay, one singly 
housed male was allowed to interact with three virgin CS females for 24  hr before the male was 
removed and females were allowed to lay eggs for 72 hr as described above.

Female fecundity
One virgin female was placed with a group of three virgin CS males for 24 hr. The females were then 
transferred onto fresh food every 24 hr for 3 days and the number of pupae was counted as described 
above.

Starvation assays
Five- day- old flies were transferred to vials containing 2  ml of starvation media (  0.75 agar in   1× 
PBS). To measure fat breakdown post- starvation, biological replicates consisting of five flies each were 
collected in 1.5 ml microcentrifuge tubes and snap- frozen on dry ice at 0 hr  and 24 hr post- starvation. 
The percent change in fat storage between time points was calculated to determine fat breakdown 
over time. For starvation resistance, the number of deaths was recorded every 12 hr until no living 
flies remained in the vial.

Lifespan
Flies were transferred to new vials with 2 ml of fresh food every 2–3 days until no living flies remained 
in the vial. Deaths were recorded when the flies were transferred.

Statistics and data presentation
All figures and data were generated and analyzed using GraphPad Prism (v9.1.2). For experiments 
with two groups, a Student’s t- test was performed. For experiments with three or more groups, a one- 
way ANOVA with Tukey HSD post hoc test was performed. For fat breakdown experiments, a two- way 
ANOVA was used to determine the interaction between genotype and time. Starvation resistance 
and lifespan statistics were performed using RStudio and a script for a log- rank test with Bonferroni’s 
correction for multiple comparisons. Note, the lowest p- value given by RStudio is 2.0×10–16. The 
below packages and script were used: library ("survminer") library ("survival") data <-  read. csv(“ xxx. 
csv”) survfit(Surv(time, event)~ genotype, data) pairwise_survdiff(Surv(time, event)~ genotype, data,  
p. adjust. method = “bonferroni”) summary (data).
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