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Abstract Clostridioides difficile infection (CDI) imposes a substantial burden on the health care 
system in the United States. Understanding the biological basis for the spectrum of C. difficile-
related disease manifestations is imperative to improving treatment and prevention of CDI. Here, we 
investigate the correlates of asymptomatic C. difficile colonization using a multi-omics approach. We 
compared the fecal microbiome and metabolome profiles of patients with CDI versus asymptomat-
ically colonized patients, integrating clinical and pathogen factors into our analysis. We found that 
CDI patients were more likely to be colonized by strains with the binary toxin (CDT) locus or strains 
of ribotype 027, which are often hypervirulent. We find that microbiomes of asymptomatically colo-
nized patients are significantly enriched for species in the class Clostridia relative to those of symp-
tomatic patients. Relative to CDI microbiomes, asymptomatically colonized patient microbiomes 
were enriched with sucrose degradation pathways encoded by commensal Clostridia, in addition 
to glycoside hydrolases putatively involved in starch and sucrose degradation. Fecal metabolo-
mics corroborates the carbohydrate degradation signature: we identify carbohydrate compounds 
enriched in asymptomatically colonized patients relative to CDI patients. Further, we reveal that 
across C. difficile isolates, the carbohydrates sucrose, rhamnose, and lactulose do not serve as 
robust growth substrates in vitro, consistent with their enriched detection in our metagenomic and 
metabolite profiling of asymptomatically colonized individuals. We conclude that pathogen genetic 
variation may be strongly related to disease outcome. More interestingly, we hypothesize that in 
asymptomatically colonized individuals, carbohydrate metabolism by other commensal Clostridia 
may prevent CDI by inhibiting C. difficile proliferation. These insights into C. difficile colonization 
and putative commensal competition suggest novel avenues to develop probiotic or prebiotic thera-
peutics against CDI.
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Editor's evaluation
Not everyone colonized by C. difficile has gut symptoms, but the reasons why are unclear. This 
article uses the combination of sequencing and mass spectrometry to compare patients with or 
without symptoms, revealing links between specific gut bacteria and diet, which could lead to diet 
or bacterial treatment or prevention strategies.

Introduction
Clostridioides difficile infection (CDI) remains a significant cause of morbidity and mortality in the 
health care setting and in the community (Guh et al., 2020). Antibiotic treatments, among other risk 
factors associated with weakened colonization resistance, increase susceptibility to CDI (Dubberke 
and Olsen, 2012; Eze et al., 2017). C. difficile residence in the human gastrointestinal (GI) tract may 
result in a spectrum of clinical manifestations, from asymptomatic colonization to severe CDI-related 
colitis and fatal toxic megacolon (Crobach et al., 2018). Diagnosis of CDI relies on detection of the 
protein toxin, most commonly by enzyme immunoassay (EIA), or the detection of the toxin-encoding 
genes tcdA and tcdB, by nucleic acid amplification test (NAAT). These diagnostic tools serve as rough 
benchmarks for assessing the severity of disease. Discrepancies between the results of these assays, 
as in the case of patients with clinically significant diarrhea (CSD) who are EIA negative (EIA-) but 
NAAT positive for toxigenic C. difficile (Cx+), highlight the complexity of states in which C. difficile 
can exist in the GI tract. Because CDI is a multi-factorial interaction between the host, pathogen, and 
microbiome, clarifying the differences in biological correlates between asymptomatic colonization 
(Cx+/EIA-) and CDI (Cx+/EIA+) is critical for identifying mechanisms of colonization resistance, and for 
defining novel probiotic or prebiotic avenues for treatment or prevention of CDI (Kondepudi et al., 
2012; Rätsep et al., 2017).

C. difficile enters the GI tract as a spore, germinates in the presence of primary bile acids, and repli-
cates through consumption of amino acids and other microbiota or host-derived nutrients (Hrycko-
wian et al., 2017). Notably, many of these metabolic cues are characteristic of a perturbed microbiome 
(Nagao-Kitamoto et al., 2020; Battaglioli et al., 2018). The hallmark of C. difficile pathogenesis is 
the expression of the toxin locus encoded on the tcd operon; this locus is tightly regulated by nutrient 
levels (Martin-Verstraete et  al., 2016). Correspondingly, it is hypothesized that an environment 
replete of nutrients induces toxinogenesis, allowing C. difficile to restructure the gut environment and 
acquire nutrients through inflammation (Fletcher et al., 2018; Fletcher et al., 2021). The instances of 
patients who are colonized but have no detectable C. difficile toxin in their stool suggests that these 
patients’ microbiomes may be less permissive towards CDI development. Identification of metabolic 
traits within the microbiome of asymptomatic, C. difficile-colonized patients could reveal a number of 
potential therapeutic pathways toward precise amelioration of symptomatic C. difficile disease.

A multitude of probiotic and prebiotic approaches have demonstrated efficacy to curb C. difficile 
proliferation in vivo (Rätsep et al., 2017; Chen et al., 2020; Pereira et al., 2020). While restoration 
of the microbiota through fecal microbiota transplantation can provide colonization resistance (Laffin 
et al., 2017), the molecular mechanisms of how this resistance is conferred remain unclear. Recent 
studies using a murine model of infection have indicated that the administration of carbohydrates 
(both complex and simple) in the diet can be used to curb or prevent CDI (Mefferd et al., 2020; 
Schnizlein et al., 2020; Hryckowian et al., 2018). Paradoxically, integrated metabolomics and tran-
scriptomics data collected during murine C. difficile colonization indicates that simple carbohydrates 
are imperative for pathogen replication (Fletcher et al., 2018). It is critical to understand the mecha-
nism by which catabolism of specific carbohydrates could inhibit C. difficile proliferation in the human 
GI tract.

Here, we perform a multi-level investigation of two relevant patient populations, those colonized 
with C. difficile but EIA negative (asymptomatically colonized) and those who are EIA positive (CDI) 
to understand the microbial and metabolic features that may underlie protection from CDI. First, we 
use microbiome analyses to identify a number of non-C. difficile, clostridial species that are nega-
tively correlated with C. difficile in asymptomatically colonized individuals. Secondly, interrogation of 
a metabolomics dataset from the same patient population (Robinson et al., 2019) reveals increased 
abundance of a number of carbohydrate metabolites in asymptomatically colonized patients. Finally, 
we show that some metabolites enriched in asymptomatically colonized individuals are largely 
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non-utilizable by C. difficile isolates. Together, these datasets reveal that asymptomatically colonized 
patients are defined by an interaction of clostridial species and carbohydrate metabolites that may 
serve as a last-line of resistance against CDI in colonized patients.

Results
The clinical manifestation of C. difficile colonization in a host gastrointestinal tract is determined by a 
multi-factorial interaction between the host, their microbiome, and the pathogen. We hypothesized 
that, among these factors, natural variation in C. difficile strains infecting patients might differentiate 
asymptomatic from CDI patients (Dubberke et al., 2018). Through retrospective analysis of a human 
cohort of 124  patients (Supplementary file 1) with clinically significant diarrhea (CSD) and stool 
submitted for C. difficile toxin testing, we defined two cohorts: those diagnosed with CDI (Cx+/EIA+) 
or those asymptomatically colonized (Cx+/EIA-) (Robinson et al., 2019). EIA status (EIA+ or EIA-) was 
determined by the result of the clinical toxin EIA performed on the stool specimen, and a positive toxi-
genic culture (a C. difficile isolate with with tcdA and/or tcdB; Cx+) (Dubberke et al., 2018). In-depth 
analysis of C. difficile isolate factors related to EIA status was performed on the isolates corresponding 
to the 102 metagenomic samples analyzed (see Materials and Methods, Supplementary file 2). Multi-
plex PCR was used to identify isolates with cdtAB, the binary toxin locus (Cowardin et al., 2016). 
Notably, there was a significant enrichment of isolates with cdtAB in the stools of patients with CDI 
(Figure 1A; p = 0.0012, Fisher’s exact test). Additionally, there were differences in the distribution of 
C. difficile strains associated with the two patient cohorts; CDI patients were more likely to be infected 
by a C. difficile isolate of the ribotype 027 lineage (Figure 1A; p = 0.0058, Fisher’s exact test), a 
clade likely to contain virulent members (Merrigan et al., 2010). Interestingly, of the isolates positive 
for cdtAB (22 out of 102 isolates), 36% were considered a ribotype 027 strain. Given these genetic 
indicators of potential differences in virulence, we asked if strains from both groups were capable 
of producing toxin, using culture supernatants from in vitro broth culture. We found that 56% of 
isolates expressed detectable TcdA/B, with no significant different (p = 0.86) in the capacity of strains 
from Cx+/EIA- stools (24 out of 54 isolates) or Cx+/EIA+ (24 out of 48 isolates) to elaborate toxin 
(Figure 1—figure supplement 1A). Predictably, differences in genetic indicators of strain virulence 
(as indicated by prevalence of both a prominent ribotype and a second toxin locus) were significant 
correlates of EIA status.

As antibiotics are a well-known risk factor for CDI, we analyzed previous inpatient antibiotic orders 
(within one month prior to diagnosis) for patients in the Cx+/EIA- and Cx+/EIA+ cohort, as a proxy for 
antibiotic exposure (Table 1). Fitting antibiotic exposure to a logistic regression model (McFadden’s 
R2 = 0.306) revealed that CDI was significantly associated with cephalosporin exposure. Analysis of 
potential antibiotic exposures in our patient cohort confirms the risk that antibiotics pose for CDI 
development (Mullish and Williams, 2018; Webb et al., 2020).

Antibiotics increase susceptibility to CDI through disruption of colonization resistance, mainly 
conferred to the host via the gut microbiome (Theriot et  al., 2014). To determine the microbial 
correlates of disease state, we performed shotgun metagenomic sequencing on patient stool samples 
from the asymptomatic (n = 54) and CDI (n = 48) groups, and classified species using MetaPhlAn2. 
Given the strong association with antibiotic exposure in our CDI cohort, we hypothesized that our 
asymptomatically colonized patients would have increased microbiome-mediated colonization resis-
tance relative to CDI patients. We examined community structure in stool metagenomes and found 
that there was no significant difference in Faith’s diversity (Faith and Baker, 2007), a measure of 
alpha-diversity that incorporates phylogenetic relationships, between patient groups (Figure  1—
figure supplement 1B, Wilcoxon rank-sum test, p = 0.1602). There were no significant differences in 
beta-diversity, as measured by weighted Unifrac distance, between EIA status (p = 0.233, permuta-
tional analysis of variance test [PERMANOVA]) (Figure 1B). Although we hypothesized that increased 
virulence (through additional toxin allele or ribotype) associated with EIA+ could affect microbiome 
structure, we found no significant association between beta-diversity and cdtAB presence (Figure 1—
figure supplement 1C; p = 0.799, PERMANOVA) or ribotype distribution (Figure 1—figure supple-
ment 1D; p = 0.982, PERMANOVA). Previous comparative microbiome studies have revealed 
phylum-level differences in Bacteroides and Firmicutes in CDI cases versus controls not colonized with 
C. difficile (Kachrimanidou and Tsintarakis, 2020). In contrast, we found no significant differences in 
relative abundance of bacterial phyla between asymptomatically colonized patients and patients with 
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Figure 1. Pathogen and microbiome determinants of C. difficile-colonized patients. (A) Clostridioides difficile isolate distribution based on PCR 
and ribotyping data for each isolate cultured from patient stools. **, p < 0.001 as measured by a Fisher’s exact test. (B) Principal coordinate analysis 
(PCoA) of weighted Unifrac distances between stool microbiomes. Colors indicate EIA status. Groups were not significantly different as measured by a 
PERMANOVA (p = 0.69). (C) Significant microbial taxa associated with disease state, where a positive coefficient is associated with Cx+/EIA+ state and 
a negative coefficient is associated with Cx+/EIA- state. Colors indicate taxonomic Class of the microbial feature, and the size of circle corresponds to 
magnitude of statistical significance. Features with q-value of <0.25 were plotted. (D) Network of features associated with antibiotic exposure or EIA 

Figure 1 continued on next page
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CDI (Figure 1—figure supplement 1E). These data indicate that there were no gross differences in 
microbiome structure related to either EIA status or pathogen features.

Instead, we hypothesized that differences between these states may manifest at higher resolution. 
We used a multivariable regression model, as implemented by MaAslin2 (Mallick et  al., 2021) to 
identify microbial taxa predictive of either group. Interestingly, species from class Clostridia were most 
enriched in taxa significantly altered by EIA status (Fisher’s exact test, p = 0.0022). C. difficile was the 
strongest predictor of CDI state, whereas non-C. difficile clostridial taxa were predictive of asymp-
tomatic state (Figure 1C, FDR < 0.25). Correspondingly, we saw increased C. difficile relative abun-
dance in CDI patients and increased levels of a number of non-C. difficile clostridial species, including 
Eubacterium spp., Dorea spp., and Lachnospiraceae spp. in asymptomatic patients (Figure 1—figure 
supplement 1F). Given our inability to detect C. difficile in all sequenced stools (70 out of 102 culture-
positive stool samples), we utilized an alternative metagenomic species classifier Kraken (Wood and 
Salzberg, 2014), to validate our findings. Using Kraken, we detected C. difficile in nearly all stool 
metagenomes (101 out of 102). Using the identical linear mixed modeling approach (MaAsLin2), we 
recapitulated data indicating that C. difficile abundance was the strongest predictor of EIA status and 
increased in Cx+/EIA+ patients. Additionally, a number of commensal clostridial taxa from the Eubac-
terium genus and Anaerostipes genus were strongly associated with EIA- status, confirming prior 
MetaPhlAn2 predictions (Figure 1—figure supplement 2A,B).

Using our microbiome data, we examined the association between C. difficile levels and pathogen 
markers previously associated with EIA status. We found that C. difficile relative abundance was not 
significantly different when stratified by isolate CDT status (Figure 1—figure supplement 2C; p = 
0.3, Wilcoxon rank sum) or isolate ribotype (p = 0.78, Kruskal-Wallis). Notably, there was a slight, yet 
insignificant increase in C. difficile abundance in microbiomes associated with a ribotype 027 isolate 
(Figure  1—figure supplement 2D) relative to microbiomes associated with C. difficile isolates of 
other ribotypes. We also interrogated taxonomic features that were predictive of antibiotic exposure. 
Expectedly, we found that taxonomic features predictive of CDI state were also associated with antibi-
otic exposure (Figure 1D). Our data indicate that patients with asymptomatic C. difficile colonization 
or CDI do not have grossly different gut microbiome community structures but instead have distinc-
tive alterations in a subset of species from class Clostridia and class Bacilli in the microbiota.

C. difficile pathogenesis is heavily affected by carbohydrate, amino acid, and bile acid levels in the 
gastrointestinal tract, related to the metabolism 
of competitive commensals (Sorbara and Pamer, 
2019). To identify metabolic pathways in other 
clostridia that might enable them to outcompete 
C. difficile, we defined metabolic potential in 
patient microbiomes using HUMAnN2 to quan-
tify microbial pathway abundances. We found no 
significant differences in alpha- or beta-diversity 
between overall metabolic pathway composition 
in the two patient microbiome groups (Figure 2—
figure supplement 1A,B; p = 0.2393, Wilcoxon 
rank sum and p = 0.054, PERMANOVA). Therefore, 
we trained an elastic net model to identify specific 
pathways associated with EIA status (Figure 2A). 
We found a number of carbohydrate degradation 
pathways and amino acid biosynthetic pathways 

status. Species nodes are connected to metadata nodes by edged colored with the feature weight (coefficient) computed using linear mixed modeling 
(MaAslin2). All taxa displayed had a q-value of <0.25 in respective analyses.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw absorbance value for in vitro toxin ELISA of 102 C.difficile isolates.

Figure supplement 1. Microbiome configuration of C. difficile-colonized patients.

Figure supplement 2. Kraken analysis of metagenomic data.

Figure 1 continued

Table 1. Logistic regression coefficients for 
antibiotic exposures associated with Cx+/EIA+ 
in patient cohort.

Antibiotic Coefficient
Standard 
error p-Value

Cephalosporin 2.68 0.74 2.70E-04

Fluoroquinolone 0.19 1.09 0.86

Carbapenem 0.34 1.12 0.76

Metronidazole 1.11 0.95 0.24

Vancomycin 
(intravenous) 1.44 0.95 0.13

*Hosmer and Lemeshow Goodness of fit test p = 
0.7536.
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associated with the asymptomatically-colonized (Cx+/EIA-) patients, including sucrose degradation 
III and fucose and rhamnose degradation. Investigation of the genera that encode such pathways 
revealed that the sucrose degradation III pathway was increased in asymptomatic patients, largely 
due to Blautia spp. and Faecalibacterium spp. of the class Clostridia (Figure 2B). Interestingly, the 
fucose and rhamnose degradation pathways were entirely defined by Escherichia spp., presum-
ably E. coli. This suggests that metabolic functions such as fucose and rhamnose degradation may 
be confined to a smaller number of taxa than carbohydrate degradation pathways such as sucrose 
degradation. Using the HUMAnN2 (Franzosa et al., 2018) gene family information, we used linear 
mixed modeling to identify carbohydrate-active enzymes differentially associated with EIA status 
(Figure 2C). Supporting the pathway analysis, we found an increased abundance of a subset of glyco-
side hydrolase genes, specifically involved in sucrose and starch metabolism in the asymptomatically 
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The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Growth curve data for C. difficile isolates.

Figure supplement 1. Validation of significantly associated metabolites.

where circles represent KEGG pathway classification.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Compositional measurements of metabolic pathways and metabolites.

Figure 2 continued
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colonized patients. Our metabolic pathway analyses highlight differentially abundant carbohydrate 
degradation processes in clostridial taxa that could contribute to colonization resistance against C. 
difficile in patient microbiomes.

We hypothesized that differences in metabolic potential of fecal microbiome communities might be 
reflected in metabolomic profiles, and therefore sought to identify metabolites that are altered in CDI 
patients relative to those asymptomatically colonized with C. difficile (Robinson et al., 2019). Ordina-
tion of Euclidean distances between Cx+/EIA- and Cx+/EIA+ stool metabolomes revealed no signifi-
cant differences in metabolome structure (Figure 2—figure supplement 1C, PERMANOVA = 0.426). 
We again used MaAslin2 to determine metabolites associated with each disease state. Consistent with 
previous analysis, a number of end-product Stickland fermentation metabolites (4-methypentanoic 
acid and 5-aminovalerate) were associated with CDI patients. While 4-hydroxyproline was the stron-
gest predictor of asymptomaticallycolonized patients, many of the significant metabolites that were 
associated with asymptomatic patients were predicted to be carbohydrates (Figure 3A, FDR < 0.25; 
Supplementary file 3). Putative metabolite identities were initially annotated by matching metab-
olite spectra to the NIST14 GC-MS spectral library. The preponderance of carbohydrates in asymp-
tomatically colonized patients and the substantial similarity of carbohydrate spectra prompted us 
to rigorously validate the identities of these metabolites by comparing EI spectra and GC retention 
times against authentic standards, where commercially available (Supplementary file 3, Figure 3—
figure supplement 1). These data reveal a carbohydrate signature that is depleted in CDI patients. 
Notably, fructose and rhamnose are either substrates or products of the sucrose degradation III and 
fucose and rhamnose degradation pathways, which we found to be enriched in asymptomatically 
colonized patients. The co-occurrence of these microbial pathways and their corresponding metabo-
lites in asymptomatically colonized patients suggests that a commensal carbohydrate catabolism may 
contribute to suppression of C. difficile pathogenesis.

Our examination of taxa, metabolic pathways, and metabolites revealed a number of carbohydrates 
which we predict are undigestible by C. difficile or are end-products of a more complex commensal 
metabolism that is exclusionary to C. difficile. Using a set of clinical C. difficile isolates cultured from 
this patient cohort (8 isolates representing six different ribotypes), we examined growth of C. diffi-
cile on carbohydrates associated with asymptomatically colonized patients. Using a defined minimal 
media (CDMM)( Karasawa et al., 1995) to test nutrient utilization, we found that C. difficile isolates 
grew robustly on fructose as expected (median maximum A600 of 0.90), but did not proliferate on 
rhamnose or lactulose (median maximum A600 of 0.19 and 0.24, respectively). Notably, in the case of 
sorbitol, we found that a subset of strains, including the reference strain C. difficile 630 and C. difficile 
VPI10643, grew to a maximum A600 of greater than 0.47 (Figure 3B). Given that we had found sucrose 
degradation as a metabolic pathway enriched in asymptomatically colonized patients, we hypothe-
sized that C. difficile would be unable to use this carbohydrate. Indeed, when grown on sucrose as 
the sole carbon source, strains achieved a median maximum A600 ~4.7-fold less than that of growth on 
fructose. C. difficile’s restricted carbohydrate metabolism, coupled with the presence of commensal 
Clostridia could hamper progression to CDI.

We hypothesized that the differential abundance of identified stool metabolites in these patient 
cohorts is related to the metabolism of specific microbes or host processes. We performed a sparse 
partial least-squares-discriminatory analysis (sPLS-DA) with the mixOmics package to define rela-
tionships between the most predictive features of patient metabolomes and microbiomes. We opti-
mized the number of latent components (Figure 4—figure supplement 1A) and number of variables 
(Figure 4—figure supplement 1B). Our final model contained two latent components, with the first 
one composed of 15 metabolites and 25 microbial species. Of the largest metagenomic variable 
weights, four out of five species (C. difficile, a Lachnospiraceae spp., Anaerostipes hadrus, and Clos-
tridium clostridioforme) were also significantly associated with an EIA state (Figure 1). Of the metab-
olomic variable weights (Figure 4A), the 10 highest-weighted metabolites were also discovered by 
previous analyses (Figure 2). The predictive value of each of the components per block was greater 
that an area under the curve (AUC) of 0.85, with the second metagenomic block component having 
the best performance (AUC = 0.94, Figure 4—figure supplement 1C). The strong performance of 
the latent components in classifying samples via EIA status validated our previous findings. Using 
the variables defining the first latent component, we performed correlational analyses (Figure 4B) 
and found a number of striking correlations. C. difficile abundance was positively correlated with a 

https://doi.org/10.7554/eLife.72801
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number of well-known Stickland metabolites (5-amino-valeric acid and 4-methylpentanoic acid, rho 
= 0.48 and 0.36, respectively)(Robinson et al., 2019), whereas C. difficile had negative correlations 
with fructose, rhamnose, and hydroxyproline (rho = –0.27, 0.36, and –0.34, respectively). Given our 
metagenomic data suggesting that Kraken metagenomic profiling yielded more sensitive estimates of 
C. difficile abundance, we performed an independent multi-omics analysis on the same dataset using 
the Kraken metagenomic data. Using a similar process of model building as above, the final model 
consisted of two latent components, with 15 metabolites and 15 microbes in the first component 
(Figure 4—figure supplement 1C). C. difficile was also most positively correlated to 5-amino-valeric 
acid and 4-methylpentanoic acid, with corresponding negative correlations to fructose, rhamnose, 
and hydroxyproline (Figure 4—figure supplement 1D). These microbe-metabolite relationships high-
light the known pathophysiology of CDI, and identify novel C. difficile-carbohydrate relationships that 
define asymptomatic colonization.

Given the anticorrelation between C. difficile and rhamnose, we sought to explain the enrichment 
of this carbohydrate in asymptomatically colonized patients. Though C. difficile cannot grow on rham-
nose as the sole carbohydrate, in other organisms rhamnose has substantial transcriptional influence 
over carbon catabolite gene clusters (Egan and Schleif, 1993; Hirooka et al., 2015). We wanted to 
rule out the possibility that rhamnose may impact C. difficile through possibly cryptic transcriptional 
reprogramming, perhaps contributing to C. difficile repression in vivo. Accordingly, we performed 
whole transcriptome RNA sequencing on C. difficile cultures exposed to a metabolizable substrate, 
fructose, or a non-metabolizable substrate, rhamnose. In the presence of fructose, we found 555 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Multi-omics analysis performance.
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genes significantly altered (adjusted p-value < 0.05 and |fold-change| > 2) (Supplementary file 4). 
Some of the most altered genes were indicative of carbon catabolite repression of sugar transport 
and upregulation of glycolytic processes to metabolize fructose. In contrast, we found only three 
genes significantly increased in the rhamnose condition. The lack of striking systems-level or targeted 
(toxin expression, sporulation) regulation by rhamnose, and C. difficile’s inability to utilize it, leads 
us to conclude that its association with asymptomatically colonized patients’ microbiomes is not 
through direct interaction or suppression of C. difficile. Instead, we speculate that rhamnose may be 
the byproduct of a complex commensal metabolism of other dietary polysaccharide substrates, which 
could exclude C. difficile from the GI tract.

Discussion
Factors affecting the outcome of C. difficile colonization
Susceptibility to CDI is the result of a complex interaction between host factors (variation in bile acid 
metabolism, adaptive immunity) and abiotic factors such as antibiotic treatment and diet (Mullish 
and Allegretti, 2021; Littmann et al., 2021). These variables largely affect colonization resistance in 
the gut microbiome community and influence pathogen proliferation (germination rate, variation in 
toxin activity, and metabolic capacity). Our study endeavored to identify gut microbiome signatures 
(both taxonomic and metabolic), bacteriologic traits, and antibiotic exposure histories that might 
help explain Cx+/EIA- C. difficile colonization. Clinically, this manifestation is an intermediate state on 
the spectrum of C. difficile- associated disease and correspondingly, a diagnostic conundrum. One 
limitation of this study is our inability to assess dietary histories of patients leading up the diagnostic 
event. The metabolomic data provides a snapshot in time. While we hypothesize the increase in 
monosaccharides is due to an increase in carbohydrate degradation within the community, it is unclear 
whether the carbohydrate signature is due to microbial community differences in cross-feeding rates 
or differences in host diet.

Another important limitation to this study is our inability to control for C. difficile strain differences 
and correspondingly, heterogeneity in processes such as spore germination, nutrient utilization, and 
toxin expression in vivo (Kumar et al., 2019; Hunt and Ballard, 2013). Strains infecting Cx+/EIA+ 
patients were more likely to contain the cdtAB toxin locus, and the distribution of ribotypes was 
qualitatively different between the two cohorts (indicating significant pathogen variation). In vitro 
examination of toxin production (TcdA and TcdB) using a commercial ELISA indicated that over half 
of isolates expressed detectable levels of toxins. Toxin expression is well-known to be regulated by 
nutrient conditions and although our in vitro data indicate that both cohorts contain similar numbers 
of strains capable of producing toxin in vitro, such conditions are considered inadequate to predict in 
vivo levels of toxin production (Burnham and Carroll, 2013; Akerlund et al., 2006). Further, we found 
that a diverse set of clinical C. difficile strains might have variation in their ability to utilize nutrients 
such as sorbitol, which contrasts with reports of model C. difficile strains harboring more flexibility 
in their ability to utilize nutrients (Theriot et al., 2014; Jenior et al., 2017; Scaria et al., 2014). The 
outcome of strain level differences in metabolism and virulence is further complexified by in vivo 
conditions that might influence pathogen proliferation. Yet, we speculate that certain gastrointestinal 
environments both encourage some growth of C. difficile and discourage the elaboration of toxin, as 
toxin expression is actively repressed in nutrient-rich conditions.

Antibiotic treatment is the most well-understood risk factor for CDI (Stevens et al., 2011; Desh-
pande et al., 2013), and antibiotic exposure in our cohort likely results in loss of the species we find 
depleted from CDI patients. Here, we confirm that exposure to a number of antibiotics is associated 
with CDI patients, including cephalosporins (significantly associated) and intravenous vancomycin 
(weakly associated). Clindamycin and quinolones, two antibiotics also associated with CDI in other 
human cohorts (Teng et al., 2019) are likely not significantly associated in our population due to the 
low prevalence of their exposure. Our microbiome data reveals decreased levels of Streptococcus, 
Ruminococcus, and Eubacterium spp. in CDI patients. Findings from both human cohorts and mouse 
models of antibiotic treatment indicate that a number of clostridial taxa are depleted upon adminis-
tration of a variety of antibiotic treatments (Palleja et al., 2018; Rashid et al., 2015). It is also posited 
that some of these taxa are integral to protection from CDI (Mills et al., 2018). Given the attempts 
to use FMTs or Firmicutes-enriched probiotics to prevent CDI, we hypothesize that the restoration of 

https://doi.org/10.7554/eLife.72801
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lost species from class Clostridia after high-risk antibiotic treatment could be a novel avenue for CDI 
prevention (McGovern et al., 2021).

Gut metabolites as markers of C. difficile proliferation and the 
microbiome
While metabolites associated with CDI and correlated with C. difficile abundance (4-methyl-pentanoic 
acid and 5-amino-valeric acid) clearly reflect C. difficile proliferation (Akerlund et  al., 2006), the 
metabolites associated with Cx+/EIA- patients could reflect a number of non-mutually exclusive 
biological scenarios, indicating either the absence of C. difficile proliferation or the presence of a 
stable community where C. difficile pathogenesis is prevented by community metabolic elements.

In the one scenario, we reference two metabolites, 4-hydroxyproline and sorbitol, which have been 
considered host products of collagen degradation and inflammation (Fletcher et al., 2021; Pruss 
and Sonnenburg, 2021). The abundance of 4-hydroxyproline in the stools of Cx+/EIA- and its anti-
correlation with C. difficile levels would suggest that it is a substrate consumed by C. difficile during 
pathogenesis. In a mouse model of CDI, sugar alcohols and amino acids observed before infection 
were considered representative of a ‘pre-colonized state’ (Fletcher et al., 2018; Theriot et al., 2014), 
as these nutrients declined as CDI progressed. However, we restricted our cohort to patients who 
were not on their way to developing CDI, by excluding patients with EIA- stool if they were subse-
quently diagnosed with CDI or received empiric CDI treatment within 10 days of initial stool collection 
(Dubberke et al., 2018).

In another scenario, the overlap of signatures between pathways, metabolites, and microbes high-
lights a number of possible metabolic pathways that might be exclusionary to C. difficile, namely 
starch/sucrose degradation and rhamnose degradation. The combination of our microbiome data, 
which shows enrichment of number of commensal Clostridia such as Eubacterium spp.(Desai et al., 
2016), starch/sucrose degradation pathways, and our in vitro data highlights a possible microbe-
metabolite combination that could prevent C. difficile proliferation. Rhamnose is a major component 
of plant and some bacterial cell-wall polysaccharides (Silva et al., 2020). Metabolic pathway profiling 
revealed an enrichment of fucose and rhamnose degradation pathways in asymptomatically colonized 
patients, represented by Enterobacterales taxa. Therefore, we propose that the detected rhamnose is 
a byproduct of commensal catabolism of more complex polysaccharides containing rhamnose (Porter 
and Martens, 2017; Mistou et al., 2016). These findings are of course limited by the scope of the 
in vitro experiment and the correlative nature of our microbiome data. Future work examining in 
vivo competition between diverse C. difficile isolates and commensal isolates with critical metabolic 
elements would be required.

Lactulose was a carbohydrate associated with asymptomatically-colonized patients and not a 
robust growth substrate for C. difficile. Interestingly, lactulose has been previously associated with a 
decrease in C. difficile-related diarrhea (Maltz et al., 2020) and decreased risk of CDI (Maltz et al., 
2020; Agarwalla et al., 2017). Lactulose is a disaccharide product from heat treatment of lactose 
(a common sugar in dairy products), but it is also a component of some laxatives (Adachi, 1958). 
However, patients were screened and excluded from this cohort if they were prescribed laxatives in 
the 24 hr prior to sample collection. In addition to this screening/exclusion criteria, lactulose is almost 
exclusively prescribed to liver failure patients (there were none reported in this study), thus it is more 
likely to be present from consumption of heated milk (containing lactose). Other in vitro work demon-
strates that addition of ‘non-digestible’ oligosaccharides, such as lactulose, provides a competitive 
advantage to Bifidobacterium spp. over C. difficile (Kondepudi et al., 2012; Hopkins and Macfar-
lane, 2003). While we do not recommend lactulose, a laxative, as such a prebiotic, there are a number 
of other ‘non-digestible’ oligosaccharides that might serve similar purposes in future interventions 
(Hopkins and Macfarlane, 2003). Taken together, these data emphasize the potential for synthetic or 
natural prebiotic interventions to shift a vulnerable microbiota away from CDI.

Strategies to ameliorate toxigenic C. difficile proliferation
Our multi-omics analyses of a colonized asymptomatic patient population support a growing body of 
literature concerning commensal metabolism as a tool against C. difficile. Evidence from both mouse 
models of disease and human studies indicate that administration of polysaccharides or ‘microbial 
accessible carbohydrates’ may prevent C. difficile proliferation or decrease the risk of CDI (Mefferd 
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et al., 2020; Schnizlein et al., 2020; Hryckowian et al., 2018; Maltz et al., 2020; Lewis et al., 2005). 
Recently, a probiotics-based attempt to design a consortium of mucosal sugar utilizers revealed its 
ability to decrease C. difficile colonization in vivo (Pereira et al., 2020), indicating that increasing 
mucosal metabolism, or carbohydrate catabolism, may be another route to strengthening commensal 
resistance to C. difficile. Interestingly, previous attempts to combinatorically assemble species and 
nutrient combinations that might inhibit C. difficile indicate that success is afforded by species able 
to competitively utilize carbohydrates such as sorbitol and mannitol (Ghimire et al., 2020). Given the 
plethora of prebiotics and probiotics explored in the C. difficile field, we emphasize the need for an 
approach that harnesses both probiotic- and prebiotic-based components to inhibit the proliferation 
of C. difficile and toxin-mediated pathogenesis.

Materials and methods
Patient cohort analysis
A previous retrospective cohort study was conducted to understand C. difficile colonization. In that 
study, C. difficile isolates were cultured from patient stool as described. Ribotyping was performed 
using the DiversiLab Bacterial Barcodes software (bioMerieux) (Dubberke et al., 2018; Westblade 
et al., 2013). Analysis of isolate genetic traits and in vitro toxin production was performed on the 102 
isolates for which we had corresponding metagenomic sequencing data (see below). Data concerning 
isolate ribotype was aggregated into the three most abundant ribotypes (ribotype 027, ribotype 106, 
ribotype 14/20), where all other ribotypes or unclassified strains were grouped into ‘Other’. For the 
purposes of this study, data concerning inpatient antibiotic orders were retrospectively collected from 
the electronic medical informatics database for patients with toxin EIA positive (Cx+/EIA+) stool (n 
= 62) or toxin EIA negative (Cx+/EIA-) stool (n = 62). The presence of antibiotic orders was classified 
into three dichotomous groups by timing of exposure: antibiotics in 0–7 days before stool collection 
(1 week), antibiotics in >7–14 days before stool collection (2 weeks), and antibiotics in >14–30 days 
before stool collection (1 month). To understand the specific antibiotics associated with EIA status in 
our patient cohort, raw antibiotic exposure data was aggregated by time. Additionally, low-prevalent 
antibiotics ( < 10% exposure in patients) were removed from analysis. Logistic regression analysis 
was performed using the glm function in R. To understand overall antibiotic exposure as it relates to 
EIA status, any antibiotic exposure was considered ‘1’ and zero antibiotic exposure in a patient was 
considered ‘0’. The binary antibiotic exposure variable was then used in linear mixed modeling anal-
ysis to understand species associated with antibiotic exposure.

Metagenomic sequencing and analysis of patient stool
Metagenomic DNA was extracted from patient stools as previously described (Fishbein et al., 2021a). 
C. difficile was isolated from patient stools as previously described (Fishbein et al., 2021a). Illumina 
libraries of patient stool metagenomic DNA were prepared and pooled as previous described (Fish-
bein et al., 2021a; Baym et al., 2015). Fecal metagenomic libraries were submitted for 2 × 150 bp 
paired-end sequencing on an Illumina NextSeq High-Output platform. Reads were binned by index 
sequences and reads were trimmed and quality filtered using Trimmomatic v.0.38 (Bolger et al., 2014) 
to remove adapter sequences and DeconSeq (Schmieder and Edwards, 2011) to remove human 
sequences. Samples that were less than 15% bacterial DNA during initial sequencing were discarded, 
and all samples were sequenced to a depth of at least 5 million reads. Sample loss due to low bacterial 
DNA resulted in a smaller cohort than originally reported (Dubberke et al., 2018), with the final set 
of metagenomes representing 54 Cx+/EIA- and 48 Cx+/EIA+ patients.

We performed taxonomic profiling of metagenomic sequences using MetaPhlAn2 (Truong et al., 
2015), and functional pathway profiling using HUMAnN2 (Franzosa et al., 2018). MetaCyc pathway 
abundances were normalized to relative abundances using the ​humann2_​renorm.​py function. The ​
humann​2_​barplot.​py function was used to assess taxonomic composition of metabolic pathways. 
Custom python scripts were used to parse MetaPhlAn2 ‘_​profiled_​metagenome.​txt’ and HUMAnN2 
‘​pathwayabundance.​txt’ files. Data were imported to R to analyze community composition and 
differential associations. To analyze carbohydrate-active enzymes, we used ​humann2_​regroup.​py 
and ​humann2_​rename.​py function to reannotate the ‘_​genefamilies.​txt’ files and identify genes with 
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the enzyme classification number EC:3.2.1.*, representing glycosidases, enzymes that participate in 
carbohydrate degradation (Ghimire et al., 2020).

Metagenomic data analysis
For both microbiome and metabolomic data, the nearZeroVar function of the caret package was used 
to remove low-prevalent or invariant taxa/pathways/metabolites (Kuhn, 2008). These filtered data 
sets were analyzed for differential association and multi-omics modeling. Alpha-diversity and beta-
diversity were calculated using the vegan package. Weighted UniFrac distance was used as a beta-
diversity metric for microbial taxa and Bray Curtis dissimiliarity was used as a beta-diversity metric for 
metabolic pathways, while Euclidean distance was used as a beta-diversity metric for metabolomes. 
The MaAslin2 package was used for linear mixed modeling to identify microbial taxa, gene families, 
and metabolites associated with EIA/antibiotic exposure status.

To analyze HUMAnN2 pathways enriched in cohorts, we used statistical inference of associations 
between microbial communities and host phenotypes (SIAMCAT) (Wirbel et  al., 2021), using the 
siamcat package in R, to fit an elastic net model to the data. We used the following parameters: ​log.​
std normalization, 10 folds and 10 resamples for data splitting. The ​model.​interpretation.​plot function 
was used to display features weights for features used in >70% of models generated in training.

Determination of candidate metabolites
Putative identification of metabolites of interest (Supplementary file 3) was initially performed 
through spectral matching against the NIST14 electron ionization spectrum library. Several features 
were previously identified by our group (see Robinson et al., 2019). Features predicted to be sugars 
or sugar alcohols were compared to a panel of authentic standards (D-sorbitol, D-mannitol, D-fruc-
tose, L-rhamnose, L-fucose, lactulose, glucose, mannose, D-galactose, D-talose, myo-inositol, and 
L-sorbose). Because isomeric sugars generate very similar spectra, we utilized both spectral similarity 
and retention time to identify sugar metabolites (Figure 3—figure supplement 1).

Multi-omics analysis
The metagenomic relative abundance data was imputed with min(abundance >0)/2, and the metab-
olomic data was imputed with a value of 1. For both filtered datasets, a centered log-ratio transfor-
mation was used to analyze filtered metagenomic and metabolomic datasets above. The mixOmics 
(Rohart et al., 2017) package in R was used for multi-omics analysis of both MetaPhlAn and Kraken 
metagenomic relative abundance data. To avoid over-fitting on the large number of variables in our 
datasets, we utilized sPLS-DA. Briefly, to determine the number of variables from each dataset to keep 
in the final model, we estimated model error rates for all combinations of seq(15,30,5) variables for 
both metagenomic and metabolomic datasets, using the function ​tune.​block.​splsda (10-fold cross-
validation, repeated 50 times, “​max.​dist” distance metric). Spearman correlations were calculated 
between CLR-transformed microbial taxa and metabolite abundances, from the variables defining the 
first latent components, and plotted using the cim package.

Bacteriology and in vitro growth assays
C. difficile strains were isolated from patient stools by plating on cycloserine-cefoxitin fructose agar 
as previously described; strains were stored at –80°C (Fishbein et al., 2021a). C. difficile VPI10643 
and C. difficile 630 reference strains were purchased from ATCC, and included in the assays described 
below using the same conditions as clinical isolates. For in vitro growth assays, CDMM was prepared 
as previously described (Karasawa et al., 1995) and 20 mM of specified carbohydrates were added. 
Clinical isolates were inoculated into tryptone-yeast extract (TY) broth and grown for 16  hr, then 
washed with PBS and diluted 1:100 into media with different carbohydrates sources. Growth was 
measured in a shaking, 96-well plate at 37°C for 48 hours.

In vitro ELISAs to assess toxin production in each isolate were performed on using TGCbiomics 
kits for ‘Simultaneous detection of TcdA and TcdB’ and ‘C. difficile GDH detection kit’ as a control 
ELISA. Cultures were grown for 24 hr in TY media in deep 96-well plate. Following, cultures were spun 
down and culture supernatants were diluted 1:5 in dilution buffer and loaded onto ELISA plates for 
detection of both toxin and control protein (GmbH), per manufacturer’s instructions. Isolates were 
considered positive for toxin if they had greater absorbance than that of the negative control.

https://doi.org/10.7554/eLife.72801
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RNA sequencing and data analysis
Five mL of each strain (in biological triplicate) were grown to log-phase (OD600  ~0.4)in TY and 
exposed to TY- rhamnose or TY-fructose (with each carbohydrate at 30 mM). Cells were harvested 
by adding one volume of 1:1(v/v) acetone/ethanol to the culture to arrest growth and RNA degra-
dation. Sample were spun at 4000 x g for 5 min. The cell pellet was washed with 500 µl TE buffer 
(0.5 M EDTA, 1 M Tris pH 7.4) and spun down to remove the supernatant. The cell pellet was resus-
pend in one mL Trizol and two rounds of bead-beating at 4500 rpm for 45 s were performed. A 
total of 300 µl of chloroform was added to the suspension, lysates were vortexed, and centrifuged 
at 4000 rpm for 10 min at 4°C. The aqueous layer was removed and RNA was precipitated using 
isopropanol, washed with 70% ethanol, and resolubilized in TE buffer. Total RNA was treated with 
Turbo DNase (for two rounds of digestion). rRNA depletion was performed using the QiaFast-
Select kit (Hilden, Germany), following manufacturer’s instructions. Libraries were prepared using 
the rRNA-depleted RNA as input for NEBNext Ultra II RNA Library Prep Kit (NEB, Ipswich, MA). 
Libraries were pooled and submitted for 2 × 150 bp paired-end sequencing on an Illumina NextSeq 
High-Output platform at the Center for Genome Sciences and Systems Biology at Washington 
University in St. Louis.

Raw reads were trimmed using Trimmomatic v. 0.38, and aligned to a C. difficile VPI10643 reference 
genome (GCF_000155025.1) using Bowtie2. SAM files were converted to BAM format and indexed 
using samtools. Read counts for each gene feature were obtained using the featureCounts function 
of subread-1.6.5 package. Counts were manually imported into R, and DEseq2 was used to identify 
differentially expressed gene products in the case of TY-fructose relative to TY and TY-rhamnose rela-
tive to TY.

Data deposition
Metagenomic reads were deposited under BioProject accession number PRJNA748262 and RNA 
sequencing reads were deposited under BioProject accession number PRJNA748261. All R code and 
metadata used to generate figures is deposited at https://github.com/srsfishbein/2021EIACdiff_multio-
mics, (Fishbein, 2021b copy archived at swh:1:rev:0c2a33d873e43194afb5818733e46c6ff28d6947).
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