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Abstract Defining reference models for population variation, and the ability to study individual 
deviations is essential for understanding inter- individual variability and its relation to the onset and 
progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging 
data from 82 sites (N=58,836; ages 2–100) and used normative modeling to characterize lifespan 
trajectories of cortical thickness and subcortical volume. Models are validated against a manually 
quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. 
We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample 
(N=1985), showing they can be used to quantify variability underlying multiple disorders whilst 
also refining case- control inferences. These models will be augmented with additional samples and 
imaging modalities as they become available. This provides a common reference platform to bind 
results from different studies and ultimately paves the way for personalized clinical decision- making.

Editor's evaluation
This manuscript is of broad interest to the neuroimaging community. It establishes a detailed refer-
ence model of human brain development and lifespan trajectories based on a very large data set, 
across many cortical and subcortical brain regions. The model not only explains substantial variability 
on test data, it also successfully uncovers individual differences on a database of psychiatric patients 
that, in addition to group- level analyses, may be critical for diagnosis, thereby demonstrating high 
clinical potential. It presents a clear overview of the data resource, including detailed evaluation 
metrics, and makes code, models and documentation directly available to the community.

Introduction
Since their introduction more than a century ago, normative growth charts have become fundamental 
tools in pediatric medicine and also in many other areas of anthropometry (Cole, 2012). They provide 
the ability to quantify individual variation against centiles of variation in a reference population, which 
shifts focus away from group- level (e.g., case- control) inferences to the level of the individual. This 
idea has been adopted and generalized in clinical neuroimaging, and normative modeling is now 
established as an effective technique for providing inferences at the level of the individual in neuroim-
aging studies (Marquand et al., 2016; Marquand et al., 2019).

Although normative modeling can be used to estimate many different kinds of mappings—for example 
between behavioral scores and neurobiological readouts—normative models of brain development and 
aging are appealing considering that many brain disorders are grounded in atypical trajectories of brain 
development (Insel, 2014) and the association between cognitive decline and brain tissue in aging and 
neurodegenerative diseases (Jack et al., 2010; Karas et al., 2004). Indeed, normative modeling has 
been applied in many different clinical contexts, including charting the development of infants born pre- 
term (Dimitrova et al., 2020) and dissecting the biological heterogeneity across cohorts of individuals 

Table 1. Sample description and demographics.
mQC refers to the manual quality checked subset of the full sample. ‘All’ rows=Train+Test. Clinical 
refers to the transdiagnostic psychiatric sample (diagnostic details in Figure 2A).

N (subjects) N (sites) Sex (%F/%M) Age (Mean, S.D)

Full All 58,836 82

  Training set 29,418 82 51.1/48.9 46.9, 24.4

    Test set 29,418 82 50.9/49.1 46.9, 24.4

mQC All 24,354 59

    Training set 12,177 59 50.2/49.8 30.2, 24.1

  Test set 12,177 59 50.4/49.4 30.1, 24.2

Clinical Test set 1985 24 38.9/61.1 30.5, 14.1

Transfer Test set 546 6 44.5/55.5 24.8, 13.7

https://doi.org/10.7554/eLife.72904
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with different brain disorders, including schizophrenia, bipolar disorder, autism, and attention- deficit/
hyperactivity disorder (Bethlehem et al., 2020; Wolfers et al., 2021; Zabihi et al., 2019).

A hurdle to the widespread application of normative modeling is a lack of well- defined reference 
models to quantify variability across the lifespan and to compare results from different studies. Such 
models should: (1) accurately model population variation across large samples; (2) be derived from 
widely accessible measures; (3) provide the ability to be updated as additional data come online, (4) 
be supported by easy- to- use software tools, and (5) should quantify brain development and aging at 
a high spatial resolution, so that different patterns of atypicality can be used to stratify cohorts and 
predict clinical outcomes with maximum spatial precision. Prior work on building normative modeling 
reference cohorts (Bethlehem et al., 2021) has achieved some of these aims (1–4), but has modeled 
only global features (i.e., total brain volume), which is useful for quantifying brain growth but has 
limited utility for the purpose of stratifying clinical cohorts (aim 5). The purpose of this paper is to 
introduce a set of reference models that satisfy all these criteria.

To this end, we assemble a large neuroimaging data set (Table 1) from 58,836 individuals across 82 
scan sites covering the human lifespan (aged 2–100, Figure 1A) and fit normative models for cortical 
thickness and subcortical volumes derived from Freesurfer (version 6.0). We show the clinical utility 
of these models in a large transdiagnostic psychiatric sample (N=1985, Figure 2). To maximize the 
utility of this contribution, we distribute model coefficients freely along with a set of software tools 
to enable researchers to derive subject- level predictions for new data sets against a set of common 
reference models.

Results
We split the available data into training and test sets, stratifying by site (Table 1, Supplementary files 
1 and 2). After careful quality checking procedures, we fit normative models using a set of covariates 

Figure 1. Normative model overview. (A) Age density distribution (x- axis) of each site (y- axis) in the full model train and test, clinical, and transfer 
validation set. (B) Age count distribution of the full sample (N=58,836). (C, D) Examples of lifespan trajectories of brain regions. Age is shown on x- axis 
and predicted thickness (or volume) values are on the y- axis. Centiles of variation are plotted for each region. In (C), we show that sex differences 
between females (red) and males (blue) are most pronounced when modeling large- scale features such as mean cortical thickness across the entire 
cortex or total gray matter volume. These sex differences manifest as a shift in the mean in that the shape of these trajectories is the same for both 
sexes, as determined by sensitivity analyses where separate normative models were estimated for each sex. The explained variance (in the full test set) 
of the whole cortex and subcortex is highlighted inside the circle of (D). All plots within the circle share the same color scale. Visualizations for all ROI 
trajectories modeled are shared on GitHub for users that wish to explore regions not shown in this figure.

https://doi.org/10.7554/eLife.72904
https://github.com/predictive-clinical-neuroscience/braincharts
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Figure 2. Normative modeling in clinical cohorts. Reference brain charts were transferred to several clinical samples (described in (A)). Patterns of 
extreme deviations were summarized for each clinical group and compared to matched control groups (from the same sites). (B) Shows extreme 
positive deviations (thicker/larger than expected) and (C) shows the extreme negative deviation (thinner/smaller than expected) patterns. (D) Shows 
the significant (FDR corrected p<0.05) results of classical case- control methods (mass- univariate t- tests) on the true cortical thickness data (top row) and 
on the deviations scores (bottom row). There is unique information added by each approach which becomes evident when noticing the maps in (B–D) 
are not identical. ADHD, attention- deficit hyperactive disorder; ASD, autism spectrum disorder; BD, bipolar disorder; EP, early psychosis; FDR, false 
discovery rate; MDD, major depressive disorder; SZ, schizophrenia.

https://doi.org/10.7554/eLife.72904
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(age, sex, and fixed effects for site) to predict cortical thickness and subcortical volume for each parcel 
in a high- resolution atlas (Destrieux et al., 2010). We employed a warped Bayesian linear regression 
model to accurately model non- linear and non- Gaussian effects (Fraza et al., 2021), whilst accounting 
for scanner effects (Bayer et al., 2021; Kia et al., 2021). These models are summarized in Figure 1 
and Figure 3, Figure 3—figure supplements 1–3, and with an online interactive visualization tool for 
exploring the evaluation metrics across different test sets (overview of this tool shown in Video 1). The 
raw data used in these visualizations are available on GitHub (Rutherford, 2022a).

We validate our models with several careful procedures: first, we report out of sample metrics; 
second, we perform a supplementary analysis on a subset of participants for whom input data had 
undergone manual quality checking by an expert rater (Table 1 – mQC). Third, each model fit was eval-
uated using metrics (Figure 3, Figure 3—figure supplements 1–3) that quantify central tendency and 
distributional accuracy (Dinga et al., 2021; Fraza et al., 2021). We also estimated separate models 
for males and females, which indicate that sex effects are adequately modeled using a global offset. 

Figure 3. Evaluation metrics across all test sets. The distribution of evaluation metrics in four different test sets (full, mQC, patients, and transfer, see 
Materials and methods) separated into left and right hemispheres and subcortical regions, with the skew and excess kurtosis being measures that 
depict the accuracy of the estimated shape of the model, ideally both would be around zero. Note that kurtosis is highly sensitive to outlying samples. 
Overall, these models show that the models fit well in term of central tendency and variance (explained variance and MSLL) and model the shape of the 
distribution well in most regions (skew and kurtosis). Code and sample data for transferring these models to new sites not included in training is shared.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of the explained variance in cortical thickness across the different test sets.

Figure supplement 2. Showing the explained variance for each brain region across 10 randomized resampling of the full control test set.

Figure supplement 3. Per site explained variance across the different test sets.

https://doi.org/10.7554/eLife.72904
https://github.com/predictive-clinical-neuroscience/braincharts/tree/master/metrics
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Finally, to facilitate independent validation, we 
packaged pretrained models and code for trans-
ferring to new samples into an open resource for 
use by the community and demonstrated how to 
transfer the models to new samples (i.e., data not 
present in the initial training set).

Our models provide the opportunity for 
mapping the diverse trajectories of different brain 
areas. Several examples are shown in Figure 1C 
and D which align with known patterns of devel-
opment and aging (Ducharme et  al., 2016; 
Gogtay et al., 2004; Tamnes et al., 2010). More-
over, across the cortex and subcortex our model 
fits well, explaining up to 80% of the variance out 
of sample (Figure  3, Figure  3—figure supple-
ments 1–3).

A goal of this work is to develop normative 
models that can be applied to many different 
clinical conditions. To showcase this, we apply 
the model to a transdiagnostic psychiatric cohort 

(Table 1 – Clinical; Figure 2) resulting in personalized, whole- brain deviation maps that can be used 
to understand inter- individual variability (e.g., for stratification) and to quantify group separation 
(e.g., case- control effects). To demonstrate this, for each clinical group, we summarized the individual 
deviations within that group by computing the proportion of subjects that have deviations in each 
region and comparing to matched (same sites) controls in the test set (Figure 2B–C). Additionally, we 
performed case- control comparisons on the raw cortical thickness and subcortical volumes, and on 
the deviation maps (Figure 2D), again against a matched sample from the test set. This demonstrates 
the advantages of using normative models for investigating individual differences in psychiatry, that is, 
quantifying clinically relevant information at the level of each individual. For most diagnostic groups, 
the z- statistics derived from the normative deviations also provided stronger case- control effects than 
the raw data. This shows the importance of accurate modeling of population variance across multiple 
clinically relevant dimensions. The individual- level deviations provide complimentary information to 
the group effects, which aligns with previous work (Wolfers et al., 2018; Wolfers et al., 2020; Zabihi 
et al., 2020). We note that a detailed description of the clinical significance of our findings is beyond 
the scope of this work and will be presented separately.

Discussion
In this work, we create lifespan brain charts of cortical thickness and subcortical volume derived from 
structural MRI, to serve as reference models. Multiple data sets were joined to build a mega- site 
lifespan reference cohort to provide good coverage of the lifespan. We applied the reference cohort 
models to clinical data sets and demonstrated the benefits of normative modeling in addition to stan-
dard case- control comparisons. All models, including documentation and code, are made available to 
the research community. We also provide an example data set (that includes data from sites not in the 
training sample) along with the code to demonstrate how well our models can adapt to new sites, and 
how easy it is to transfer our pretrained models to users’ own data sets.

We identify three main strengths of our approach. First, our large lifespan data set provides high 
anatomical specificity, necessary for discriminating between conditions, predicting outcomes, and 
stratifying subtypes. Second, our models are flexible in that they can model non- Gaussian distribu-
tions, can easily be transferred to new sites, and are built on validated analytical techniques and soft-
ware tools (Fraza et al., 2021; Kia et al., 2021; Marquand et al., 2019). Third, we show the general 
utility of this work in that it provides the ability to map individual variation whilst also improving case- 
control inferences across multiple disorders.

In recent work, a large consortium established lifespan brain charts that are complementary to our 
approach (Bethlehem et al., 2021). Benefits of their work include precisely quantifying brain growth 
using a large cohort, but they only provide estimates of four coarse global measures (e.g., total brain 

Video 1. "Demonstation of the functionality of our 
interactive online visualization tool (https://brainviz-
app.herokuapp.com/) that is available for all evaluation 
metrics across all test sets. The code for creating 
this website can be found on GitHub (https://github.
com/saigerutherford/brainviz-app; copy archived at 
swh:1:rev:021fff9a48b26f2d07bbb4b3fb92cd52 
02418905; Rutherford, 2022b).

https://elifesciences.org/articles/72904/figures#video1

https://doi.org/10.7554/eLife.72904
https://github.com/predictive-clinical-neuroscience/braincharts
https://colab.research.google.com/github/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models.ipynb
https://colab.research.google.com/github/predictive-clinical-neuroscience/braincharts/blob/master/scripts/apply_normative_models.ipynb
https://pcntoolkit.readthedocs.io/en/latest/pages/tutorial_braincharts_apply_nm.html
https://github.com/predictive-clinical-neuroscience/braincharts
https://brainviz-app.herokuapp.com/
https://brainviz-app.herokuapp.com/
https://github.com/saigerutherford/brainviz-app
https://github.com/saigerutherford/brainviz-app
https://archive.softwareheritage.org/swh:1:dir:5172634bcf0ed341052462df7780d000c5bd4f9e;origin=https://github.com/saigerutherford/brainviz-app;visit=swh:1:snp:70e2db995b8f63e9bdcb233217089d22000d2147;anchor=swh:1:rev:021fff9a48b26f2d07bbb4b3fb92cd5202418905
https://archive.softwareheritage.org/swh:1:dir:5172634bcf0ed341052462df7780d000c5bd4f9e;origin=https://github.com/saigerutherford/brainviz-app;visit=swh:1:snp:70e2db995b8f63e9bdcb233217089d22000d2147;anchor=swh:1:rev:021fff9a48b26f2d07bbb4b3fb92cd5202418905
https://elifesciences.org/articles/72904/figures#video1
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volume). While this can precisely quantify brain growth and aging this does not provide the ability to 
generate individualized fingerprints or to stratify clinical cohorts. In contrast, in this work, we focus on 
providing spatially specific estimates (188 different brain regions) across the post- natal lifespan which 
provides fine- grained anatomical estimates of deviation, offering an individualized perspective that 
can be used for clinical stratification. We demonstrate the transdiagnostic clinical value of our models 
(Figure 2) by showing how clinical variation is widespread in a fine- grain manner (e.g., not all individ-
uals deviate in the same regions and not all disorders have the same characteristic patterns) and we 
facilitate clinical applications of our models by sharing tutorial code notebooks with sample data that 
can be run locally or online in a web browser.

We also identify the limitations of this work. We view the word ‘normative’ as problematic. This 
language implies that there are normal and abnormal brains, a potentially problematic assumption. 
As indicated in Figure 2, there is considerable individual variability and heterogeneity among trajec-
tories. We encourage the use of the phrase ‘reference cohort’ over ‘normative model’. In order to 
provide coverage of the lifespan the curated data set is based on aggregating existing data, meaning 
there is unavoidable sampling bias. Race, education, and socioeconomic variables were not fully avail-
able for all included data sets, however, given that data were compiled from research studies, they 
are likely samples drawn predominantly from Western, Educated, Industrialized, Rich, and Demo-
cratic (WEIRD) societies (Henrich et  al., 2010) and future work should account for these factors. 
The sampling bias of UKBiobank (Fry et al., 2017) is especially important for users to consider as 
UKBiobank data contributes 59% of the full sample. By sampling both healthy population samples 
and case- control studies, we achieve a reasonable estimate of variation across individuals, however, 
downstream analyses should consider the nature of the reference cohort and whether it is appropriate 
for the target sample. Second, we have relied on semi- automated quality control (QC) for the full 
sample which—despite a conservative choice of inclusion threshold—does not guarantee either that 
low- quality data were excluded or that the data were excluded are definitively excluded because of 
artifacts. We addressed this by comparing our full test set to a manually quality check data set and 
observed similar model performance. Also, Freesurfer was not adjusted for the very young age ranges 
(2–7 yo) thus caution should be used when interpreting the model on new data in this age range. 
Finally, although the models presented in this study are comprehensive, they are only the first step, 
and we will augment our repository with more diverse data, different features, and modeling advances 
as these become available.

Materials and methods
Data from 82 sites were combined to create the initial full sample. These sites are described in detail 
in Supplementary files 1- 2, including the sample size, age (mean and standard deviation), and sex 
distribution of each site. Many sites were pulled from publicly available data sets including ABCD, 
ABIDE, ADHD200, CAMCAN, CMI-HBN, HCP-Aging, HCP-Development, HCP-Early Psychosis, 
HCP-Young Adult, IXI, NKI-RS, Oasis, OpenNeuro, PNC, SRPBS, and UKBiobank. For data sets that 
include repeated visits (i.e., ABCD and UKBiobank), only the first visit was included. Other included 
data come from studies conducted at the University of Michigan (Duval et al., 2018; Rutherford 
et al., 2020; Tomlinson et al., 2020; Tso et al., 2021; Weigard et al., 2021; Zucker et al., 2009), 
University of California Davis (Nordahl et al., 2020), University of Oslo (Nesvåg et al., 2017), King’s 
College London (Green et al., 2012; Lythe et al., 2015), and Amsterdam University Medical Center 
(Mocking et  al., 2016). Full details regarding sample characteristics, diagnostic procedures, and 
acquisition protocols can be found in the publications associated with each of the studies. Equal sized 
training and testing data sets (split half) were created using scikit- learn’s train_test_split function, strat-
ifying on the site variable. It is important to stratify based on site, not only study (Bethlehem et al., 
2021), as many of the public studies (i.e., ABCD) include several sites, thus modeling study does not 
adequately address MRI scanner confounds. To test stability of the model performance, the full test 
set was randomly resampled 10 times and evaluation metrics were re- calculated on each split of the 
full test set (Figure 3—figure supplement 2). To show generalizability of the models to new data not 
included in training, we leveraged data from OpenNeuro.org (Markiewicz et al., 2021) to create a 
transfer data set (six sites, N=546, Supplementary file 3). This data are provided along with the code 
for transferring to walk users through how to apply these models to their own data.

https://doi.org/10.7554/eLife.72904
https://github.com/predictive-clinical-neuroscience/braincharts/models
https://abcdstudy.org/
http://fcon_1000.projects.nitrc.org/indi/abide/
https://fcon_1000.projects.nitrc.org/indi/adhd200/
https://www.cam-can.org/index.php?content=dataset
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
https://www.humanconnectome.org/study/hcp-lifespan-aging
https://www.humanconnectome.org/study/hcp-lifespan-development
https://www.humanconnectome.org/study/human-connectome-project-for-early-psychosis
https://www.humanconnectome.org/study/hcp-young-adult
https://brain-development.org/ixi-dataset/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
https://www.oasis-brains.org/
https://openneuro.org/
https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html
https://bicr-resource.atr.jp/srpbsopen/
https://www.ukbiobank.ac.uk/
https://openneuro.org/
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The clinical validation sample consisted of a subset of the full data set (described in detail in 
Figure 1A, Figure 2A and Supplementary file 1). Studies (sites) contributing clinical data included: 
Autism Brain Imaging Database Exchange (ABIDE GU, KKI, NYU, USM), ADHD200 (KKI, NYU), CNP, 
SRPBS (CIN, COI, KTT, KUT, HKH, HRC, HUH, SWA, UTO), Delta (AmsterdamUMC), Human Connec-
tome Project Early Psychosis (HCP- EP BWH, IU, McL, MGH), KCL, University of Michigan Children 
Who Stutter (UMich_CWS), University of Michigan Social Anxiety Disorder (UMich_SAD), University of 
Michigan Schizophrenia Gaze Processing (UMich_SZG), and TOP (University of Oslo).

In addition to the sample- specific inclusion criteria, inclusion criteria for the full sample were based 
on participants having basic demographic information (age and sex), a T1- weighted MRI volume, 
and Freesurfer output directories that include summary files that represent left and right hemisphere 
cortical thickness values of the Destrieux parcellation and subcortical volumetric values ( aseg. stats,  lh. 
aparc. a2009s. stats, and  rh. aparc. a2009s. stats). Freesurfer image analysis suite (version 6.0) was used 
for cortical reconstruction and volumetric segmentation for all studies. The technical details of these 
procedures are described in prior publications (Dale et al., 1999; Fischl et al., 2002; Fischl and Dale, 
2000). UK Biobank was the only study for which Freesurfer was not run by the authors. Freesurfer func-
tions aparcstats2table and asegstats2table were run to extract cortical thickness from the Destrieux 
parcellation (Destrieux et al., 2010) and subcortical volume for all participants into CSV files. These 
files were inner merged with the demographic files, using Pandas, and NaN rows were dropped.

QC is an important consideration for large samples and is an active research area (Alfaro- 
Almagro et  al., 2018; Klapwijk et  al., 2019; Rosen et  al., 2018). We consider manual quality 
checking of images both prior to and after preprocessing to be the gold standard. However, this is 
labor intensive and prohibitive for very large samples. Therefore, in this work, we adopt a pragmatic 
and multi- pronged approach to QC. First, a subset of the full data set underwent manual quality 
checking (mQC) by author S.R. Papaya, a JavaScript- based image viewer. Manual quality checking 
was performed during December 2020 when the Netherlands was in full lockdown due to COVID- 19 
and S.R. was living alone in a new country with a lot of free time. Data included in this manual QC 
step was based on what was available at the time (Supplementary file 2). Later data sets that 
were included were not manually QC’d due to resource and time constraints. Scripts were used to 
initialize a manual QC session and track progress and organize ratings. All images (T1w volume and 
Freesurfer brain.finalsurfs) were put into JSON files that the mQC script would call when loading 
Papaya. Images were rated using a ‘pass/fail/flag’ scale and the rating was tracked in an automated 
manner using keyboard inputs (up arrow=pass, down arrow=fail, F key=flag, and left/right arrows 
were used to move through subjects). Each subject’s T1w volume was viewed in 3D volumetric 
space, with the Freesurfer brain.finalsurfs file as an overlay, to check for obvious quality issues such 
as excessive motion, ghosting or ringing artifacts. Example scripts used for quality checking and 
further instructions for using the manual QC environment can be found on GitHub(Rutherford, 
2022c copy archived at swh:1:rev:70894691c74febe2a4d40ab0c84c50094b9e99ce). We relied on 
ABCD consortium QC procedures for the QC for this sample. The ABCD study data distributes a 
variable ( freesqc01. txt; fsqc_qc = = 1/0) that represents manual quality checking (pass/fail) of the 
T1w volume and Freesurfer data, thus this data set was added into our manual quality checked data 
set bringing the sample size to 24,354 individuals passing manual quality checks. Note that QC was 
performed on the data prior to splitting of the data to assess generalizability. Although this has a 
reduced sample, we consider this to be a gold- standard sample in that every single scan has been 
checked manually. All inferences reported in this manuscript were validated against this sample. 
Second, for the full sample, we adopted an automated QC procedure that quantifies image quality 
based on the Freesurfer Euler Characteristic (EC), which has been shown to be an excellent proxy 
for manual labeling of scan quality (Monereo- Sánchez et al., 2021; Rosen et al., 2018) and is the 
most important feature in automated scan quality classifiers (Klapwijk et al., 2019). Since the distri-
bution of the EC varies across sites, we adopt a simple approach that involves scaling and centering 
the distribution over the EC across sites and removing samples in the tail of the distribution (see Kia 
et al., 2021 for details). While any automated QC heuristic is by definition imperfect, we note that 
this is based on a conservative inclusion threshold such that only samples well into the tail of the 
EC distribution are excluded, which are likely to be caused by true topological defects rather than 
abnormalities due to any underlying pathology. We separated the evaluation metrics into full test 
set (relying on automated QC) and mQC test set in order to compare model performance between 

https://doi.org/10.7554/eLife.72904
https://rii-mango.github.io/Papaya/
https://github.com/saigerutherford/lifespan_qc_scripts
https://archive.softwareheritage.org/swh:1:dir:9c98ca93b3fb3b463607286eec7dfc9c4c3e97db;origin=https://github.com/saigerutherford/lifespan_qc_scripts;visit=swh:1:snp:84918033541e80549e91c96e85a29d191321d0a3;anchor=swh:1:rev:70894691c74febe2a4d40ab0c84c50094b9e99ce
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the two QC approaches and were pleased to notice that the evaluation metrics were nearly identical 
across the two methods.

Normative modeling was run using python 3.8 and the PCNtoolkit package (version 0.20). Bayesian 
Linear Regression (BLR) with likelihood warping was used to predict cortical thickness and subcortical 
volume from a vector of covariates (age, sex, and site). For a complete mathematical description and 
explanation of this implementation, see Fraza et al., 2021. Briefly, for each brain region of interest 
(cortical thickness or subcortical volume),  y  is predicted as:

 y = wTϕ
(
x
)

+ ϵ  (1)

where  wT   is the estimated weight vector,  ϕ
(
x
)
  is a basis expansion of the of covariate vector x, 

consisting of a B- spline basis expansion (cubic spline with five evenly spaced knots) to model non- 
linear effects of age, and  ϵ = η

(
0,β

)
  a Gaussian noise distribution with mean zero and noise precision 

term β (the inverse variance). A likelihood warping approach (Rios and Tobar, 2019; Snelson et al., 
2003) was used to model non- Gaussian effects. This involves applying a bijective non- linear warping 
function to the non- Gaussian response variables to map them to a Gaussian latent space where infer-
ence can be performed in closed form. We employed a ‘sinarcsinsh’ warping function, which is equiv-
alent to the SHASH distribution commonly used in the generalized additive modeling literature (Jones 
and Pewsey, 2009) and which we have found to perform well in prior work (Dinga et al., 2021; Fraza 
et  al., 2021). Site variation was modeled using fixed effects, which we have shown in prior work 
provides relatively good performance (Kia et al., 2021), although random effects for site may provide 
additional flexibility at higher computational cost. A fast numerical optimization algorithm was used to 
optimize hyperparameters (L- BFGS). Computational complexity of hyperparameter optimization was 
controlled by minimizing the negative log- likelihood. Deviation scores (Z- scores) are calculated for the 
n- th subject, and d- th brain area, in the test set as:

 
Znd = ynd−ŷnd√

σ2
d +(σ2

∗)d   (2)

Where  ynd  is the true response,  ̂ynd  is the predicted mean,  σ
2
d  is the estimated noise variance 

(reflecting uncertainty in the data), and 
 

(
σ2

)
d 
 is the variance attributed to modeling uncertainty. 

Model fit for each brain region was evaluated by calculating the explained variance (which measures 
central tendency), the mean squared log- loss (MSLL, central tendency, and variance) plus skew and 
kurtosis of the deviation scores (2) which measures how well the shape of the regression function 
matches the data (Dinga et al., 2021). Note that for all models, we report out of sample metrics.

To provide a summary of individual variation within each clinical group, deviation scores were 
summarized for each clinical group (Figure 2B–C) by first separating them into positive and negative 
deviations, counting how many subjects had an extreme deviation (positive extreme deviation defined 
as Z>2, negative extreme deviation as Z<−2) at a given ROI, and then dividing by the group size to 
show the percentage of individuals with extreme deviations at that brain area. Controls from the same 
sites as the patient groups were summarized in the same manner for comparison. We also performed 
classical case versus control group difference testing on the true data and on the deviation scores 
(Figure 2D) and thresholded results at a Benjamini- Hochberg false discovery rate of p<0.05. Note that 
in both cases, we directly contrast each patient group to their matched controls to avoid nuisance vari-
ation confounding any reported effects (e.g., sampling characteristics and demographic differences).

All pretrained models and code are shared online with straightforward directions for transferring to 
new sites and including an example transfer data set derived from several OpenNeuro.org data sets. 
Given a new set of data (e.g., sites not present in the training set), this is done by first applying the 
warp parameters estimating on the training data to the new data set, adjusting the mean and variance 
in the latent Gaussian space, then (if necessary) warping the adjusted data back to the original space, 
which is similar to the approach outlined in Dinga et al., 2021. Note that to remain unbiased, this 
should be done on a held- out calibration data set. To illustrate this procedure, we apply this approach 
to predicting a subset of data that was not used during the model estimation step. We leveraged data 
from OpenNeuro.org (Markiewicz et al., 2021) to create a transfer data set (six sites, N=546, Supple-
mentary file 3). This data are provided along with the code for transferring to walk users through 
how to apply these models to their own data. These results are reported in Figure 3 (transfer) and 
Supplementary file 3. We also distribute scripts for this purpose in the GitHub Repository associated 

https://doi.org/10.7554/eLife.72904
https://pcntoolkit.readthedocs.io/
https://openneuro.org/
https://openneuro.org/
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with this manuscript. Furthermore, to promote the use of these models and remove barriers to using 
them, we have set up access to the pretrained models and code for transferring to users’ own data, 
using Google Colab, a free, cloud- based platform for running python notebooks. This eliminates the 
need to install python/manage package versions and only requires users to have a personal computer 
with stable internet connection.
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