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Abstract Tumour spheroids are common in vitro experimental models of avascular tumour 
growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic 
the avascular tumour microenvironment where spatial differences in nutrient availability strongly 
influence growth. We show that spheroids initiated using significantly different numbers of cells grow 
to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement 
with untested predictions of classical mathematical models of tumour spheroids. We develop a novel 
mathematical and statistical framework to study the structure of tumour spheroids seeded from cells 
transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and 
cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure 
is independent of initial spheroid size, and the limiting structure can be independent of seeding 
density. Standard experimental protocols compare spheroid size as a function of time; however, our 
analysis suggests that comparing spheroid structure as a function of overall size produces results 
that are relatively insensitive to variability in spheroid size. Our experimental observations are made 
using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid 
culture conditions and cell lines.

Editor's evaluation
In this work, the authors test the hypothesis that tumor spheroids initiated with different numbers of 
cells grow to similar limiting sizes. The authors use a combination of experimental and mathematical 
techniques to examine this hypothesis with two melanoma cell lines. The authors find that spheroid 
structure and size are relatively insensitive to variations in initial number of cells, and suggest this 
finding may generalize to other cell lines.

Introduction
Three-dimensional tumour spheroids provide an accessible and biologically realistic in vitro model of 
early avascular tumour growth (Hirschhaeuser et al., 2010; Cui et al., 2017). Spheroids play a vital 
role in cancer therapy development, where the effect of a putative drug on spheroid growth is an indi-
cator of efficacy (Smalley et al., 2008; Santiago-Walker et al., 2009; Alexander and Friedl, 2012; 
LaBarbera et al., 2012; Loessner et al., 2013; Beaumont et al., 2015; Langhans, 2018; Theard 
et al., 2020). In this context, reproducibility and uniformity in spheroid sizes is paramount (Ivascu and 
Kubbies, 2006; Friedrich et al., 2009; Eilenberger et al., 2021), yet variability in the initial and final 
spheroid size is rarely accounted for, meaning subtle differences go undetected. We address this by 
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developing a mathematical and statistical framework to study spheroid structure as a function of size, 
allowing us to ascertain whether initial spheroid size significantly affects growth dynamics.

Compared with traditional two-dimensional cell culture, spheroids closely mimic an avascular 
tumour microenvironment where spatial differences in the availability of nutrients strongly influence 
growth (Mark et al., 2020). We observe that spheroids grow to a limiting size that is independent 
of the number of cells used to initiate the experiment (Figure 1a–f), leading us to hypothesise that 
spheroids have a limiting structure (Folkman and Hochberg, 1973). This behaviour is consistent with 
untested predictions of mathematical models of tumour progression (Greenspan, 1972; Adam and 
Maggelakis, 1990; Groebe and Mueller-Klieser, 1996; Byrne and Chaplain, 1998; Ward and King, 
1999; Araujo and McElwain, 2004; Wallace and Guo, 2013; Sarapata and de Pillis, 2014; Flegg and 
Nataraj, 2019; Murphy et al., 2021; Figure 1g). Many mathematical models assume that spheroid 
growth eventually ceases due to a balance between growth at the spheroid periphery and mass loss at 
the spheroid centre, driven by the spatial distribution of nutrients and metabolites (Figure 1h; Green-
span, 1972; Gomes et al., 2016). We analyse highly detailed experimental data from a large number 
of spheroids to answer fundamental biological and theoretical questions. Firstly, we study the effect 
of initial spheroid size on the transient and limiting spheroid structure. The initial size of spheroids is 
often highly variable (Mark et al., 2020), yet is rarely accounted for in statistical analysis. Secondly, we 
study the relationship between spheroid size and structure using a mathematical model that describes 
growth inhibition due to the spatial distribution of nutrients and metabolites.

We study spheroids grown at three seeding densities from human melanoma cells (Herlyn et al., 
1985; Herlyn, 1990) transduced with the fluorescent ubiquitination cell cycle indicator (FUCCI) 
(Sakaue-Sawano et al., 2008; Haass et al., 2014; Kienzle et al., 2017; Spoerri et al., 2021). FUCCI 
technology discriminates between cells in different stages of the cell cycle, namely gap 1 (before 
synthesis) and gap 2 (after DNA replication), allowing us to identify regions containing actively cycling 
cells, and regions where the majority of the cells are viable but in cell cycle arrest. We grow spheroids 
for up to 24 days to allow sufficient time to observe growth inhibition. We summarise experimental 
images using three measurements of spheroid structure: (1) the overall size of each spheroid; (2) the 
size of the inhibited region (which we define as the region where the majority of cells are in gap 1); 
and, (3) the size of the necrotic core.

It is widely accepted that the eventual inhibition of spheroid growth arises through three phases 
(Figure 1g and i; Wallace and Guo, 2013; Spoerri et al., 2017; Flegg and Nataraj, 2019). During 
phase 1, for spheroids that are sufficiently small, we observe cycling cells throughout. In phase 2, 
spheroids develop to a size where cells in the spheroid centre remain viable but enter cell cycle arrest, 
potentially due to a higher concentration of metabolites in the spheroid centre (Weiswald et  al., 
2015; Masuda et al., 2016). Finally, during phase 3 the spheroid develops a necrotic core. Eventually, 
the loss of cells within the spheroid balances growth at the spheroid periphery, stalling net overall 
growth.

Whether spheroids reach the size required for necrosis to develop relates to experimental design 
choices such as the experimental duration and initial seeding density, among many other factors. Our 
hypothesis is that, provided the availability of nutrients is maintained in the cell culture, the structure 
of a spheroid is eventually a function of spheroid size, independent of the initial seeding density. 
This presents us with a technical challenge and a biological opportunity for protocol refinement. For 
example, we find that the initial aggregation of cells into spheroids occurs over several days (Spoerri 
et al., 2017), a timescale similar to that of cell proliferation. Therefore, the growth of spheroids over 
a short experimental duration may be significantly influenced by differences in initial seeding density, 
potentially confounding differences due to variations in cell behaviour between experimental condi-
tions and limiting the reproducibility of experiments. Our analysis of late-time spheroid structure 
circumvents this by studying structure as function of overall size instead of time. The primary benefit 
of this approach is that inferences are insensitive to variations in the initial seeding density.

We take a likelihood-based approach to estimating parameters (Lehmann et al., 1998) employ 
profile likelihood analysis to produce approximate confidence intervals (Raue et al., 2009; Pawitan, 
2013; Browning et  al., 2021a) and develop a likelihood-ratio-based hypothesis test to assess 
consistency in results between seeding densities. Firstly, we work solely with a statistical model that 
describes the average sizes of the spheroid, inhibited region and necrotic core at each observation 
time. Secondly, we apply a simple mechanistic model that describes spheroid progression due to a 
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Figure 1. Experimental data and mathematical model. (a–f) Growth of WM983b and WM793b spheroids over three weeks, initiated using approximately 
2500, 5000 and 10,000 cells. The solid curve represents average outer radius and the coloured region corresponds to a 95% prediction interval (mean 
± 1.96 std). (c–f) Size distribution of WM983b spheroids at days 10, 14, 18, and 21 for each initial seeding density. (g–h) Dynamics of the Greenspan, 
1972 model, which describes three phases of growth and the development of a stable spheroid structure under assumptions of nutrient and waste 
diffusion. We denote by ‍R‍ the spheroid radius, ‍ϕ‍ the relative radius of the arrested region and ‍η‍ the relative radius of the necrotic core. (i) Optical 
sections showing three phases of growth in the experimental data (WM983b spheroids initiated with 2500 cells at days 3, 7, and 14). Colouring indicates 
cell nuclei positive for mKO2 (magenta), which indicates cells in gap 1; cell nuclei positive for mAG (green), which indicates cells in gap 2; and cell nuclei 
stained with DRAQ7 (blue), which indicates necrosis.
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balance between growth at the spheroid periphery and mass loss due to necrosis in the spheroid 
centre. Following the seminal work of Greenspan, 1972, we assume that nutrients and wastes from 
living cells are at diffusive equilibrium, leading to a functional relationship between spheroid size 
and inner structure. Comparing model predictions to experimental observations allows us to assess 
whether the underlying assumptions of the Greenspan model are appropriate, providing valuable 
information for model refinement. As we are primarily interested in spheroid structure and model vali-
dation, we focus our analysis on comparing the structure at different observation times and seeding 
densities rather than a more typical approach that calibrates the mathematical to all data simultane-
ously (Murphy et al., 2021).

We are motivated to work with a simple mathematical model instead of a more complex (and 
potentially more biologically realistic) alternative (Ward and King, 1997; Ward and King, 1999; Roose 
et al., 2007; Byrne, 2010; Bull et al., 2020) for two reasons. Firstly, complex models are often highly 
parameterised (Gutenkunst et al., 2007; Gábor and Banga, 2015; Raman et al., 2017). Given the 
practical difficulties in extracting detailed measurements from spheroids, we do not expect to be able 
to reliably estimate parameters in many complex models; that is, we expect parameters to be practi-
cally non-identifiable (Raue et al., 2009). Working with a simple model avoids over-parameterisation 
allowing for a better comparison between experimental conditions. Secondly, Greenspan’s model 
encapsulates our central hypothesis that spheroid structure is purely a function of spheroid size, and 
captures the key features of spheroid growth seen in the experimental data with a low-dimensional, 
interpretable, parameter space.

Materials and methods
Experimental methods
The human melanoma cell lines WM793b (Herlyn et al., 1985) and WM983b (Herlyn, 1990) were 
genotypically characterised (Hoek et  al., 2006; Smalley et  al., 2007a; Smalley et  al., 2007b), 
grown as described in Spoerri et  al., 2017 supplemented with 1 % penicillin-streptomycin (Ther-
moFisher, Massachusetts, United States), and authenticated by short tandem repeat fingerprinting 
(QIMR Berghofer Medical Research Institute, Herston, Australia). All cell lines were transduced with 
fluorescent ubiquitination-based cell cycle indicator (FUCCI) constructs as described in Haass et al., 
2014; Spoerri et al., 2017. Wells within a flat-bottomed 96-well plate were prepared with 50 µL non-
adherent 1.5% agarose to prevent cell-to-substrate attachment and promote the formation of a single 
centrally located spheroid (Spoerri et al., 2021). Cells were seeded into each well at a density of 
approximately 2500, 5000, and 10,000 cells in 200 µL of medium. A medium change was performed 
every 2–4 days.

Spheroids were harvested and fixed with 4 % paraformaldehyde at day 3, 4, 5, 7, 10, 12, 14, 16, 18, 
21, and 24; mounted in 2 % low melting agarose; placed in a refractive-index-matched clearing solu-
tion Spoerri et al., 2021; and imaged using fluorescent confocal microscopy to obtain high-resolution 
images at the equator of each spheroid (Olympus FV3000, Olympus, Tokyo, Japan). To minimise vari-
ability due to the vertical position of each image, spheroids are fixed in place using an agarose gel, 
and equatorial images are defined as the cross-section with the largest cross-sectional area. To obtain 
the result in Figure  1i, we selectively stain spheroids with DRAQ7 (ThermoFisher, Massachusetts, 
United States), which indicates necrosis (Kienzle et al., 2017; Spoerri et al., 2021). Staining, fixation, 
and microscopy are repeated to obtain at least 20 WM983b spheroids at day 18 (spheroids initially 
seeded with 5000 and 10,000 cells) and day 21 (spheroids seeded with 2500 cells); and at least 10 
spheroids for all other conditions. Data are then randomly subsampled to obtain exactly 10 and 20 
spheroids for each initial condition and observation day where possible. Time-lapse phase-contrast 
and fluorescent channel images are obtained at 6 hr intervals for up to 24 spheroids for each initial 
condition using an Incucyte S3 (Sartorius, Goettingen, Germany).

Data processing
We apply a semi-automated data processing algorithm to summarise experimental images with three 
measurements (Figure 1h; Browning and Murphy, 2021b). Firstly, we calculate the outer radius, ‍R‍, 
based on a sphere with the same cross-sectional area as the image obtained. Secondly, the radius of 
the inhibited region, ‍Ri‍. We calculate the radius of the inhibited region by determining the average 

https://doi.org/10.7554/eLife.73020
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distance from the spheroid periphery where the signal from mAG (FUCCI green), which indicates cells 
in gap 2, falls below a threshold value, taken to be 20% of the maximum area-averaged green signal. 
We find this choice leads to accurate results (Figure 2). Finally, the radius of the necrotic core, ‍Rn‍, 
which is identified using texture recognition (stdfilt, Mathworks, 2021). The regions identified using 
the algorithm are shown in Figure 2. Full details of the image processing algorithms are available in 
Browning and Murphy, 2021b and additional images are available as supplementary material.

Mathematical model
Following Greenspan, 1972, we make two minimal assumptions regarding growth inhibition and 
necrosis (Figure 1h). Firstly, that growth inhibition, or cell cycle arrest, is a result of a chemical inhibitor 
that originates from the metabolic waste of living cells (Laurent et al., 2013). This inhibitor is produced 
by living cells at rate ‍βprod [mol/d]‍ and diffuses with diffusivity ‍βdiff[µm2/d]‍. At the outer boundary of 
the spheroid, we assume that the concentration of inhibitor is zero. Cells enter arrest in regions where 
the inhibitor concentration is greater than ‍βcrit [mol/µm3]‍. Secondly, cycling cells require nutrients 
that are plentifully available in the surrounding medium at concentration ‍ω∞ [mol/µm3]‍. The nutrient 
is consumed by cycling cells at a constant rate ‍ωcons [mol/d]‍ and diffuses with diffusivity ‍ωdiff [µm2/d]‍. 
Cells die in regions where the nutrient concentration is less than ‍ωcrit [mol/µm3]‍.

In regions where the nutrient concentration is sufficiently high and the inhibitor concentration suffi-
ciently low, we assume that cells proliferate exponentially at the per-volume rate ‍s [ /d]‍. Furthermore, 
we assume that cell debris is lost from the necrotic core at the per-volume rate ‍λ [ /d]‍.

It is convenient to define two non-dimensional parameters

25
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50
00

10
00

0
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Figure 2. Late-time progression of WM983b spheroids, randomly sampled from the 10 spheroids imaged from each condition (additional images in 
Supplementary file 2). Overlaid are the three boundaries identified by the image processing algorithm: the entire spheroid, the inhibited region and 
the necrotic region. Each image shows a 800 × 800 µm field of view. Colouring indicates cell nuclei positive for mKO2 (magenta), which indicates cells in 
gap 1; and cell nuclei positive for mAG (green), which indicates cells in gap 2.
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	﻿‍
Q2 = ωcons

ωdiff(ω∞ − ωcrit)
× βcritβdiff

βprod
< 1,

‍�
(1)

and

	﻿‍
γ = λ

s
> 0.

‍�
(2)

The parameter ‍Q‍ quantifies the balance between nutrient and inhibitor concentration and ‍γ‍ quantifies 
the balance between cell growth and the loss due to necrosis. The restriction ‍Q < 1‍ arises since we 
observe an inhibited region form before the necrotic region (Greenspan, 1972). Since the resultant 
equations depend only on ‍Q‍ and ‍γ‍, the constituents of ‍Q‍, namely ‍βprod‍, ‍βdiff ‍, ‍βcrit‍, ‍ωcons‍, ‍ωdiff ‍, ‍ω∞‍, 
and ‍ωcrit‍, cannot be uniquely identified unless prior knowledge from other experiments is considered 
(Murphy et al., 2017), perhaps in a Bayesian framework (Browning et al., 2019). In contrast, the 
constituents of ‍γ‍, namely ‍λ‍ and ‍s‍, can be identified if information relating to the per-volume cell 
proliferation rate ‍s‍ is available, perhaps from phase one spheroid growth data.

We take the standard approach and model the spheroid as a single spherical mass (Greenspan, 
1972; Araujo and McElwain, 2004). We denote by ‍R‍ the radius of the spheroid, ‍ϕ = Ri/R‍ the relative 
radius of the inhibited region, and ‍η = Rn/R‍ the relative radius of the necrotic core (Figure 1h). We 
note that ‍R > 0‍ and ‍0 ≤ η ≤ ϕ < 1‍. Noting that nutrient and inhibitor diffusion occurs much faster than 
cell proliferation, we assume that the chemical species are in diffusive equilibrium, leading to

	﻿‍

dR
dt = s

3
(1 − ϕ3)R

︸ ︷︷ ︸
Growth in cycling region

− s
3
γη3R.

︸ ︷︷ ︸
Mass loss from necrotic core‍�

(3)

A distinguishing feature of Greenspan’s model is that the inner structure of the spheroid, quantified by 

‍(ϕ, η)‍, is determined solely by the spheroid radius, and not by time. We denote

	﻿‍ 0 = fs(ϕ, η; R, Q, Rc),‍� (4)

as a function describing this relationship, and refer to the relationship between the spheroid radius, 
‍R‍, and the inner structure, ‍(ϕ, η)‍, as the structural model. Here, we define ‍Rc‍ as the radius at which 
necrosis first occurs. For ‍Rc‍, nutrient is available throughout the spheroid above the critical concen-
tration ‍ωcrit‍.

During phases 1 and 2, there is no necrotic core (‍η = 0‍) and the solution to Equation 4 is given by

	﻿‍
ϕ2 = max

(
0, 1 − Q2R2

c
R2

)
, R < Rc.

‍�
(5)

During phase 3, ‍Rc‍ and ‍fs‍ is given by

	﻿‍

fs(ϕ, η; R, Q, Rc) =


 2R2η3 − 3R2η2 + R2 − R2

c ,

R2ϕ3 +
(
Q2R2

c − R2(1 + 2η3)
)
ϕ + 2η3R2


 .

‍�
(6)

To investigate the limiting structure of spheroids, we consider the solution to the mathematical model 
where the outer radius is no longer increasing: the dynamics have reached a steady-state. Experi-
mental observations suggest that this occurs during phase 3. We denote 

‍
R̄ = lim

t→∞
R(t)

‍
 the limiting 

radius and ‍(ϕ̄, η̄)‍ the associated limiting structure. The steady-state model is the solution of

	﻿‍




0 = 1 − ϕ̄3 − γη̄3,

0 = fs(ϕ̄, η̄; R̄, Q, Rc),‍�
(7)

subject to ‍Rc‍. By defining ‍ρ = η̄/ϕ̄ ∈ (0, 1)‍, we find a semi-analytical solution to the steady-state model 
(Appendix 1).

The behaviour in the steady-state model is characterised by three parameters, ‍θ = (Q, Rc, γ)‍. We 
denote the solution to Equation 7 (i.e. the steady-state model) as

https://doi.org/10.7554/eLife.73020
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	﻿‍ m(θ) : (Q, Rc, γ) → (R̄, ϕ̄, η̄).‍� (8)

Equation 8 can be thought of as a map from the parameter space to the limiting structure of the 
spheroid. This demonstrates that the parameters are identifiable only when all three variables, ‍(R̄, ϕ̄, η̄)‍, 
are observed, since the two-dimensional observation space ‍(R, η)‍ cannot uniquely map to the entire 
three-dimensional parameter space ‍(Q, Rc, γ)‍. As a consequence, the model parameters cannot be 
uniquely identified from steady-state information unless phase 3 information that includes measure-
ments of the inhibited region—using FUCCI or another marker of cell cycle arrest—is considered 
alongside measurements of necrotic core and overall spheroid size.

Statistical model
While the mathematical model is deterministic, experimental observations of spheroid structure can 
be highly variable. To account for this, we take the standard approach and assume that the mathemat-
ical model describes the expected behaviour and experimental observations are multivariate normally 
distributed (Lehmann et al., 1998). Aside from accounting for biological variability, the observation 
process captures variability introduced during imaging and image processing.

Denoting ‍xi = (Ri,ϕi, ηi)‍ as experimental observation i of the spheroid size and structure, we 
assume that

	﻿‍ xi ∼ f(x;µ,Σ) = N (µ,Σ),‍� (9)

where ‍µ = (R,ϕ, η)‍ is the mean of each component of ‍x‍, ‍N (µ,Σ)‍ denotes a multivariate normal 
distribution with mean μ and covariance ‍Σ‍. To account for increased variability at later time points 
(Figure 1a–b), we estimate ‍Σ‍ as the sample covariance associated with experimental observations 
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Figure 3. We calculate approximate confidence intervals (CI) using profile likelihood and confidence regions 
(CR) using contours of the normalised likelihood function. Results demonstrate estimates of ‍Q‍ and ‍Rc‍ using 
the structural model, Equation 6, and data from WM983b spheroids at day 14 initiated using 5000 cells. Point 
estimates are calculated using the maximum likelihood estimate (white marker). The boundaries of regions are 
defined as contours of the log-likelihood function. Univariate confidence intervals are constructed by profiling the 
log-likelihood and using a threshold of approximately −1.92 for a 95% confidence interval.
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of ‍xi‍ at each time, ‍t‍. For steady-state analysis, we calculate the covariance using the pooled sample 
covariance from all seeding densities.

We refer to Equation 9 as the statistical model. To connect experimental observations to the math-
ematical model, we substitute ‍µ = m(θ)‍ in Equation 9.

Inference
We take a likelihood-based approach to parameter inference and sensitivity analysis. Given a set of 
observations ‍X = {xi}n

i=1‍, the log-likelihood function is

	﻿‍
ℓ(θ;X ) =

∑
i log f

(
xi; m(θ),Σ

)
,
‍�

(10)

where ‍f(x;µ,Σ)‍ is the multivariate normal probability density function (Equation 9). Although we take 
a purely likelihood-based approach to inference, we note that our implementation is equivalent to a 
Bayesian approach where uniform priors encode existing knowledge about parameters, a common 
choice (Hines et al., 2014; Simpson et al., 2020).

We apply maximum likelihood estimation to obtain point estimates of the parameters for a given 
set of experimental observations. The maximum likelihood estimate (MLE) is given by

	﻿‍
θ̂ = argmax

θ
ℓ(θ;X ).

‍� (11)

We solve Equation 11 numerically to within machine precision using a local optimisation routine 
(Powell, 2009; Johnson, 2021). In Figure 3, we show point estimates obtained for a bivariate problem 
using maximum likelihood estimation.

Confidence regions and hypothesis tests
We take a log-likelihood based approach to compute confidence regions and marginal univariate 
confidence intervals for model parameters (Pawitan, 2013). In a large sample limit, Wilks’ Theorem 
provides a limiting distribution for the log-likelihood ratio statistic, such that

	﻿‍ 2
[
ℓ(θ̂) − ℓ(θ)

]
∼ χ2(ν)‍� (12)

where ‍ν = dim(θ)‍ and ‍χ
2(ν)‍ Is the ‍χ

2
‍ Distribution with ‍ν‍ degrees of freedom. Therefore, an approxi-

mate ‍α‍ level confidence region is given by

	﻿‍
θ : ℓ(θ) ≥ ℓ(θ̂) − ∆ν,α

2
,
‍�

(13)

where ‍∆ν,α‍ is the ‍α‍ level quantile of the ‍χ
2(ν)‍ distribution.

Hypothesis tests
To compare parameters between initial conditions, we perform likelihood-ratio-based hypothesis 
test based on the distribution provided in Equation 13 (Pawitan, 2013). We denote by ‍̂θ∗‍ the MLE 
computed using data from all initial seeding densities, ‍X∗‍, simultaneously. Similarly, to compare param-
eter estimates from spheroids initially seeded with 2500 and 5000 cells, we denote by ‍̂θN ‍ the MLE 
using a subset of data from spheroids seeded using ‍N ∈ {2500, 5000}‍ cells. The test statistic is given by

	﻿‍
T = 2

(
−ℓ(θ̂∗) +

∑
N ℓ(θ̂N)

)
∼ χ2(ν)

‍� (14)

where ‍ν‍ is number of additional parameters in the case where a different parameter combination is 
used to describe each initial condition. An approximate p-value is therefore given by ‍1 − Fχ2(ν)(T)‍, 
where ‍Fχ2(ν)‍ is the cumulative distribution function for the ‍χ

2(ν)‍ distribution.

Marginal confidence intervals
The profile likelihood method (Raue et  al., 2009; Boiger, 2016) allows for the construction of 
univariate confidence interval of each parameter. Firstly, we partition the parameter space such that 

‍θ = (ψ,λ)‍ where ‍ψ‍ is the parameter of interest and ‍λ‍ is a vector containing the remaining parameters. 

https://doi.org/10.7554/eLife.73020
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Taking the supremum of the log-likelihood function over ‍λ‍ and normalising using the MLE gives the 
normalised profile log-likelihood

	﻿‍ ℓ̂p(ψ;X ) = supλ ℓ(ψ,λ;X ) − ℓ(θ̂;X ), ℓ̂p ≤ 0.‍� (15)

An approximate 95% confidence interval is given by Equation 13 as the region where 

‍ℓ̂p(ψ;X ) ≥ −∆1,0.95/2 ≈ −1.92‍ (Pawitan, 2013). We compute the profile log-likelihood numerically 
using a local optimisation routine (Powell, 2009) with either the MLE, or the nearest profiled point 
(Boiger, 2016) as an initial guess. In Figure 3, we show profile likelihoods for a bivariate problem.

Confidence regions
We construct two-dimensional confidence regions using Equation 13 (we construct three-dimensional 
confidence regions using a sequence of two-dimensional slices). First, we find a point on the boundary 
of the region, denoted ‍θ0‍ such that ‍ℓ(θ0) = ℓ(θ̂) −∆ν,α/2‍, using bisection to machine precision. Next, 
we integrate along the likelihood annihilating field; that is, we move in a direction perpendicular to the 
gradient of the likelihood to obtain a set of points on the level set ‍ℓ(θ) = ℓ(θ0)‍, given by

	﻿‍

dθ
dt

=


0 −1

1 0


∇θℓ(θ), θ(0) = θ0.

‍�
(16)

This calculation is demonstrated for a bivariate problem in Figure 3.
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Figure 4. Estimates of parameters using the structural model with data from various time points. In (a–c), parameters are the mean of each observation: 

‍(R,ϕ, η)‍. In (d–e), parameters are those in the structural model: ‍(R, Q, Rc)‍. In (f), estimates of ‍γ ‍ are obtained by calibrating observations to the steady-
state model. As estimates ‍Q‍ and ‍Rc‍ can be derived from the structural model (Equation 6), which applies at any time during phase 3, we expect to 
see similar parameter estimates across observation times. As estimates of ‍γ ‍ can only be obtained from the steady-state model, which assumes the 
outer radius is no longer increasing, we do not expect to see similar parameter estimates across observation times. Bars indicate an approximate 95% 
confidence interval.
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The gradient for the statistical model, ‍∇µℓ(µ)‍, can be calculated to within machine precision using 
automatic differentiation (Revels et al., 2016). For the mathematical model, we apply the identity

	﻿‍ ∇θℓ(θ) = Jm(θ)∇µℓ(m(θ)),‍� (17)

where ‍Jm(θ)‍ is calculated analytically (Appendix 1).

Results
To assess the limiting structure of spheroids and the effect of initial seeding density, we analyse 
confocal sections of a large number of spheroids across three seeding densities using the WM983b 
cell line. We show a subset of these images in Figure 2 and summarise images with three concentric 
annular measurements: the spheroid radius, ‍R‍; the relative radius of the inhibited region, ‍ϕ‍; and the 
relative radius of the necrotic core, ‍η‍ (Figure 1h). In addition to spheroids from different initial condi-
tions tending towards a similar overall size (as seen from time-lapse data in Figure 1a–f), these results 
show that spheroids develop similar structures by day 21.

First, we fit the statistical model to the experimental data by estimating the mean of each measure-
ment, denoted ‍µ = (R,ϕ, η)‍. We obtain a maximum likelihood estimate and an approximate 95% 
confidence interval for each initial condition at observation days 12–21 (Figure 4a–c). On average, 
spheroids of all seeding densities increase in size from day 12 to day 18. In agreement with earlier 
observations from time-lapse data in Figure 1e–h, we see that spheroids initiated at different seeding 
densities tend toward similar limiting sizes. Between days 18 and 21, spheroids seeded with 5000 and 
10,000 cells decrease in average size, potentially indicating a period of decay after a limiting size is 
reached.

Figure 4b and c show estimates relating to the sizes of the inhibited region, ‍ϕ‍, and necrotic core, 

‍η‍. We see remarkable consistency in ‍ϕ‍ across seeding densities, tending toward a value of 90% in 
all cases: this corresponds to an actively cycling region with volume approximately 27% of the total 
spheroid volume. The necrotic core increases significantly in size from days 12 to 21, and late time 
estimates of ‍η‍ are quantitively similar between seeding densities.

Next, we calibrate the mathematical model to identify any mechanistic differences between seeding 
densities. Parameters ‍Q‍ and ‍Rc‍ can be estimated using the structural model (Equation 6) at any time 
point. To estimate ‍γ‍ we must invoke the steady-state model (Equation 7), which assumes that the 
overall growth of the spheroid has ceased. Therefore, we expect to see consistency in estimates of ‍Q‍ 
and ‍Rc‍ between observation days but do not expect the same for estimates of ‍γ‍.

Results in Figure 4d show remarkable consistency in estimates of ‍Q‍ across seeding densities until 
day 18, suggesting that the balance between nutrient availability and waste concentration (Equation 
1) is maintained throughout the experiment and is similar between seeding densities. Between days 
18 and 21, estimates of ‍Q‍ for spheroids initially seeded with 5000 and 10,000 cells increase signifi-
cantly, suggesting a behavioural change during this time; we attribute this to a final period of decay. 
Estimates of ‍Rc‍ do not show the consistency between observation days we might expect if ‍fs‍ (Equa-
tion 6) holds for the experimental data. Rather, estimates of ‍Rc‍ decrease between days 12 and 21, 
indicating ‍fs‍ may be misspecified. Results in Figure 4f show that estimates of ‍γ‍ decrease with time 
to a similar value for all seeding densities. We interpret this asymptotic decrease as an indication that 
spheroids approach a limiting structure since estimates of ‍γ‍ are strictly only valid when growth has 
ceased. Closer inspection of results in Figure 4f show a delay in estimates of ‍γ‍ between spheroids 
seeded with 2500 cells and the other seeding densities. Whereas the larger spheroids reach a limiting 
size by day 18, the smaller spheroids are still growing. It is not until day 21 that estimates of ‍γ‍ are 
comparable across all seeding densities.

Next, we analyse the limiting structure of spheroids across each initial seeding density. As spher-
oids initially seeded with 5000 and 10,000 cells decrease in average size from day 18 to day 21, we 
compare day 18 data from these high densities to day 21 data from spheroids initially seeded with 
2500 cells. Results in Figure 5 show profile log-likelihoods for each parameter in the mathematical 
model. In Figure 5, we show 3D confidence regions for parameters in the statistical and mathematical 
models, respectively. We see that both profile log-likelihoods and 3D confidence regions overlap, 
indicating that parameter estimates are consistent between seeding densities.

https://doi.org/10.7554/eLife.73020
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To compare quantitatively parameter estimates between seeding densities, we tabulate maximum 
likelihood estimates, approximate 95% confidence intervals, and results of a likelihood-ratio-based 
hypothesis test for both models in Table 1. The late-time sizes of spheroids initiated with 5,000 and 
10,000 cells are statistically consistent (p=0.62), as is their structure (p=0.69). We find evidence to 
suggest that spheroids seeded with 2500 cells, even at day 21, are smaller (p=0.04); however, the 
overall size and structure of the spheroids seeded with 2500 and 5000 cells are statistically consistent 
(p=0.20). We find no significant differences in model parameters between seeding densities and note 
that the conclusion of overall statistical consistency between seeding densities is identical for the 
mathematical model.

Next, we investigate the relationship between spheroid structure and spheroid size from day 3 to 
day 21 (Figure 6). We again see evidence of a period of eventual decay that occurs after a limiting 
size has been reached in our experiments. To validate the structural relationship suggested by Green-
span’s model, we plot the solution to the structural model (Equation 6) using parameters estimated 
using the steady-state model (Table 1). The overall trend throughout all three phases of growth in the 
mathematical model—made only using information from days 18 and 21—is remarkably consistent 
with experimental measurements Figure 6. We find an explanation for the inconsistent estimates of 
‍Rc‍ observed in Figure 4e. During phase 3, the mathematical model predicts a non-linear relationship 
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(2500). (a–c) Profile likelihoods for each parameter, which are used to compute approximate confidence intervals (Table 1). (d) 95% confidence region for 
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between ‍R‍, ‍ϕ‍ and ‍η‍ (Equation 6). In contrast, the trend in the data is close to linear. We confirm this 
in Figure 6 by calibrating a linear model of the form

	﻿‍ (R(τ ),ϕ(τ ), η(τ )) = (Rc,ϕc, 0) + τ q̂,‍� (18)

to phase 3 data using a total least squares approach that accounts for uncertainty in the independent 
variable ‍τ ‍ (Appendix 2). Here, ‍τ = 0‍ at the start of phase 3. Performing an approximate likelihood-
ratio-based hypothesis test confirms that the behaviour in spheroids of all initial conditions is statisti-
cally consistent (p=0.56). That is, the spheroid structure where necrosis first occurs (at ‍τ = 0‍), ‍(Rc,ϕc, 0)‍, 
and the direction in which it develops, ‍̂q‍, do not appear to depend on the initial seeding density.

In Figure  6, we perform a similar analysis on spheroids grown from WM793b cells. Whereas 
WM983b spheroids approach a limiting size by the conclusion of the experiment (Figure 1a), spher-
oids grown from the WM793b do not (Figure 1b). Results in Appendix 3 examine parameter estimates 
from the mathematical and statistical models through time for the WM793b spheroids, demonstrating 
that the outer radius increases monotonically until day 24 for all initial conditions. These results also 
suggest consistency in estimates of ‍Q‍ across observation days and seeding densities. Performing a 
likelihood-ratio-based hypothesis test indicates that phase 3 is independent of the initial seeding 
density (p=0.36).

Discussion
Time-lapse measurements of WM983b spheroids over a 21-day experiment show a cessation in overall 
growth as the spheroids reach a limiting size. Consistent with largely untested predictions of classical 
mathematical models (Greenspan, 1972; Ward and King, 1999; Araujo and McElwain, 2004), these 
limiting sizes appear to be independent of the initial seeding density. Motivated by these observa-
tions, we develop a quantitative framework to study spheroid structure as a function of overall size. 
We aim to answer two fundamental questions: Do these spheroids have a limiting structure? Is the 
late-time behaviour independent of the initial seeding density?

We find compelling evidence that WM983b spheroids have a limiting structure that is independent 
of the initial seeding density. This assumption is routinely invoked in mathematical models of tumour 
structure but is yet to be experimentally verified. Given that we observe spheroids to eventually 
reduce in size, we compare structural measurements at days when the average outer radius for each 
initial seeding density is largest. First, we establish that spheroids seeded with 5000 and 10,000 cells 
have similar limiting sizes (353 µm and 356 µm, respectively; p=0.62) and that spheroids seeded with 
2500 cells are slightly smaller at late time (340 µm). This result highlights one of the challenges in 
determining the limiting structure of spheroids: it is unclear whether there is a difference or whether 
the smaller spheroids would continue to grow given additional time. Despite this discrepancy, we 
find a statistically consistent limiting structure, with a necrotic core of 73 % of the outer radius and an 

Table 1. Parameter estimates and approximate confidence intervals for each initial conditions.
Also shown are p-values for likelihood-ratio-based hypothesis tests for parameter equivalence 
between seeding densities.

Parameter θ2500 θ5000 θ10000 p 2500,5000 p 5000,10000

‍R‍ 340.0 (331.0, 349.0) 353.0 (344.0, 361.0) 356.0 (347.0, 365.0) 0.0420 0.617

‍ϕ‍ 0.899 (0.889, 0.908) 0.895 (0.886, 0.905) 0.901 (0.891, 0.911) 0.617 0.406

‍η‍ 0.719 (0.674, 0.764) 0.716 (0.671, 0.761) 0.742 (0.696, 0.788) 0.940 0.438

μ 0.202 0.687

‍Q‍ 0.75 (0.696, 0.811) 0.758 (0.704, 0.818) 0.771 (0.711, 0.838) 0.854 0.767

‍Rc‍ 149.0 (127.0, 171.0) 156.0 (133.0, 178.0) 145.0 (121.0, 168.0) 0.672 0.503

‍γ ‍ 0.737 (0.598, 0.916) 0.768 (0.624, 0.953) 0.657 (0.532, 0.816) 0.792 0.308

‍θ‍ 0.202 0.687

https://doi.org/10.7554/eLife.73020
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inhibited region of 90% of the outer radius, indicating a proliferative periphery approximately 35 µm 
(two to three cell diameters) thick.

By examining spheroid structure throughout the entire experiment (Figure 6), we establish a rela-
tionship between spheroid structure and size that is independent of initial seeding density. This result 
is significant as it suggests that variability in size and structure may be primarily attributable to time. 
For example, spheroids that are smaller than average on a given observation day may have been 
seeded at a lower density. Statistical techniques, such as ODE-constrained mixed effects models, can 
be applied to elucidate sources of intrinsic variability, such as variability in the initial seeding density 
(Wang et al., 2012; Hasenauer et al., 2014). It is common in the literature to compare spheroids 
with and without a putative drug after a fixed number of days (Friedrich et al., 2009). However, our 
analysis suggests that comparing the structure of spheroids of a fixed size may be more insightful; this 
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approach obviates variability due to initial seeding density, increasing the sensitivity of statistical tests 
to small effects. A corollary is that since inferences relating to spheroid structure are independent of 
spheroid size, experiments can be initiated with a larger number of cells to decrease the time until 
spheroids reach phase 3.

Given our observations of WM983b spheroids across seeding densities, an apparent conclusion of 
our analysis is that statistically consistent phase 3 behaviour implies a statistically consistent limiting 
structure. If true, this suggests that an experimentalist only has to investigate phase 3 behaviour to 
reach a conclusion relating to the limiting structure. Analysis of both the mathematical model and 
experimental results for WM793b spheroids indicate that this is not the case. In the mathematical 
model, ‍fs‍ (Equation 6) characterises the structure solely in terms of parameters ‍Q‍ and ‍Rc‍, whereas ‍γ‍—
which relates to the ratio of cell proliferation and loss due to necrosis (Equation 2)—determines the 
steady-state. We see this for WM793b spheroids, as phase 3 behaviour is independent of the initial 
seeding density (Figure 6), but time-lapse data of the overall growth (Figure 1b) gives no indication 
that spheroids of different densities will tend toward the same limiting size.

As ‍fs‍ determines the relationship between spheroid size and structure at any time point, we expect 
estimates of ‍Q‍ and ‍Rc‍ to be similar when calibrated to data from different days. This is the case for 
estimates of ‍Q‍ (Figure 4d), but estimates of ‍Rc‍ decrease with time (Figure 4e). While the mathemat-
ical model captures the same overall behaviour observed in the experiments, it is evident from the 
discrepancy observed during phase 3 (Figure 6) that ‍fs‍ is misspecified. Our assumptions of nutrient 
and waste at diffusive equilibrium and a hard threshold for growth inhibition and necrosis give rise 
to ‍fs‍ that is cubic in ‍ϕ‍ and ‍η‍. Since the empirical relationship for the cell lines we investigate is 
approximately linear, the model underestimates the radius at which phase 3 begins, ‍Rc‍. At the loss of 
mechanistic insight, one approach to rectify this discrepancy is to construct a purely phenomenolog-
ical relationship where ‍fs‍ is piecewise linear. A second approach is to revisit fundamental modelling 
assumptions to develop a mechanistic description of the relationship between spheroid structure and 
overall size that is consistent with our experimental observations for these cell lines.

Our observations for WM983b and WM793b melanoma cell lines do not preclude a form of ‍fs‍ that 
is cubic for other cell lines or experimental conditions. In our framework, the behaviour of spheroids 
is characterised by the empirical relationship between spheroid size and structure. Therefore, despite 
misspecification in parameter estimates of ‍Rc‍, we can compare spheroids grown with WM793b and 
WM983b cell lines by comparing the structural relationship observed in the experimental data (Figure 
6). In this case, we observe that radius at which the necrotic core develops is much smaller in WM983b 
spheroids than for WM793b spheroids. While we cannot elucidate the biological factors that lead 
to this difference from our analysis, we postulate that differences in the diffusion or consumption of 
nutrients by cells of each cell line may contribute.

We have restricted our analysis of spheroid structure to three measurements that quantify the 
sizes of the spheroid, inhibited region and necrotic core. While the spheroid and necrotic core sizes 
are objective measurements, the boundary of the inhibited region is not. Our approach is to iden-
tify the distance from the spheroid periphery where the density of cells in gap 2 falls below 20% of 
the maximum. We find this semi-automated approach produces excellent results and enables high-
throughput analysis of hundreds of spheroids; however, it does not take advantage of all the infor-
mation available in the experimental images. Mathematical models that explicitly include variation in 
cell density through space (Ward and King, 1999; Jin et al., 2021) may be appropriate, however are 
typically heavily parameterised, limiting the insight obtainable from typical experimental data. The 
mass-balance model coupled to a model describing the relationship between spheroid size and struc-
ture avoids these issues and, despite model simplicity, we are still able to gain useful biological insight.

Conclusion
Reproducibility and size uniformity are paramount in practical applications of spheroid models. Yet, 
the effect of intentional or unintentional variability in spheroid size on the inner structure that develops 
is not well understood. We present a quantitative framework to analyse spheroid structure as a func-
tion of overall size, finding that the outer radius characterises the inner structure of spheroids grown 
from two melanoma cell lines. Further, we find that the initial seeding density has little effect on the 
structure that develops. These results attest to the reproducibility of spheroids as an in vitro research 
tool. While we analyse data from two melanoma cell lines, our focus on commonly reported spheroid 

https://doi.org/10.7554/eLife.73020
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measurements allows our framework to be applied more generally to a other cell lines and culture 
conditions. It is routine to compare spheroid size and structure of spheroids at a pre-determined time, 
our results suggest a refined protocol that compares the structure of spheroids at a pre-determined 
overall size.

Given the prominence of spheroids in experimental research, there is a surprising scarcity of experi-
mentally validated mathematical models that can be applied to interpret data from these experiments. 
We find that one of the earliest and simplest models of tumour progression—the seminal model of 
Greenspan, 1972—can give valuable insights with a parameter space that matches the level of detail 
available from spheroid structure data. Given that we establish an empirical relationship between 
spheroid size and structure independent of both time and the initial spheroid size, we suggest future 
theoretical work to identify mechanisms that give rise to this relationship, perhaps through equation 
learning (Lagergren et al., 2020). To aid in validating theoretical models of spheroid growth, we make 
our highly detailed experimental data freely available.

Data availability
Code, data, and interactive figures are available as a Julia module on GitHub at github.com/ap-​
browning/Spheroids (Browning, 2021c; copy archived at swh:1:rev:27f9e32bb702cb56a62ba-
caae1e49746a3c4342d). Code used to process the experimental images is available on Zenodo 
(Browning and Murphy, 2021b).
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Appendix 1
Steady-state model solution
The steady-state, denoted ‍(R̄, ϕ̄, η̄)‍ is given by setting ‍dR/dt = 0‍ (Equation 3 in the main text) 
yielding the non-linear system of equations

	﻿‍

0 = 1 − ϕ̄3 − γη̄3,

0 = 2R̄2η̄3 − 3R̄2η̄2 + R̄2 − R̄2
c ,

0 = R̄2ϕ̄3 +
(
Q2R̄2

c − R̄2(1 + 2η̄3)
)
ϕ̄ + 2η̄3R̄2.‍�

(19)

Applying the substitution ‍ρ = η̄/ϕ̄‍, where 0 ≤ ρ ≤ 1, and algebraic manipulation allows the solution 
to Equations 19 to be expressed as the root of ‍f(ρ; Q, γ)‍, where

	﻿‍
f(ρ; Q, γ) =

12∑
m=0

cmρ
m,

‍�
(20)

and where

	﻿‍

c0 = 3Q2 − 3Q4 + Q6,

c1 = 0,

c2 = −9Q2,

c3 = 18Q2 − 18Q4 + 6Q6 − 2γ + 9Q2γ − 9Q4γ + 3Q6γ,

c4 = 27Q4,

c5 = −36Q2 − 9Q2γ,

c6 = 36Q2 − 36Q4 − 15Q6 − 6γ + 36Q2γ − 36Q4γ

+12Q6γ − 3γ2 + 9Q2γ2 − 9Q4γ2 + 3Q6γ2,

c7 = 54Q4 + 27Q4γ,

c8 = −36Q2 − 36Q2γ,

c9 = 24Q2 − 24Q4 + 8Q6 + 36Q2γ − 36Q4γ − 15Q6γ − 6γ2 + 18Q2γ2

−18Q4γ2 + 6Q6γ2 − γ3 + 3Q2γ3 − 3Q4γ3 + Q6γ3,

c10 = 54Q4γ,

c11 = −36Q2γ,

c12 = 8γ. ‍�

Since ‍ρ‍ is subject to the constraint ‍0 ≤ ρ ≤ 1‍, we solve ‍0 = f(ρ; Q, γ)‍ using bisection (Implemented 
to within machine precision using ​Roots.​jl), which is guaranteed to converge provided there exists 
only one root in the interval ‍0 ≤ ρ ≤ 1‍. In Figure 1a, we demonstrate that in the parameter region 
of interest (‍0 < 1‍, ‍γ > 0‍) there exists only a single solution to Equation 20. We do this by finding all 
12 roots of Equation 20 (Implemented by finding the eigenvalues of the characteristic matrix using ​
Polynomials.​jl) and counting the number of real roots where (‍0 ≤ ρ ≤ 1‍).

The solution to Equation 19 is then given by

	﻿‍
R̄ = fR(ρ, ϕ̄, θ) = Rc

(1 − ρϕ)
√

1 + 2ρϕ
,
‍�

(21a)

	﻿‍
ϕ̄ = fϕ(ρ, θ) = 1

(1 + γρ3)1/3 ,
‍� (21b)

	﻿‍ η̄ = fη(ρ, ϕ̄) = ρϕ,‍� ( 21c)

where ‍θ = (Q, Rc, γ)‍.

https://doi.org/10.7554/eLife.73020
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In Appendix 1—figure 1b, we compare a numerical solution to the transient model to the semi-
analytical solution for the steady state showing an excellent match. All algorithms used to produce 
the results relating to the mathematical model are available on Github in Module/​Greenspan.​jl.
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Appendix 1—figure 1. Number of solutions of Equation 20. 
 (a) Number of solutions to Equation 20 subject to the constraint 0 ≤ ρ ≤ 1. Dashed line indicates the 
region of interest, where γ > 0 and 0 < Q < 1. (b) Comparison between a long-term solution to the 
transient model and the semi-analytical solution to the steady state, where Q = 0.8, γ = 1, Rc = 150, s 
= 1 and R0 = 100.

Jacobian of the steady-state model
In the main document, we denote the solution to Equation 19 as ‍m(θ)‍. Here, we demonstrate how 
given a value ‍(R̄, ϕ̄, η̄) = m(θ)‍, we can obtain an analytical expression for the model Jacobian,

	﻿‍
Jm(θ) = ∂m

∂θ
.
‍�

(22)

Given ‍ρ‍, we can form an analytical expression for Equation 22. Noting that the coefficients of 
Equation 20 are functions of ‍θ‍, we consider

	﻿‍

∂

∂ci
(0) = 0 =

12∑
m=0

∂

∂ci

(
cmρ

m) = ∂

∂ci

(
ciρ

i) +
12∑

m=0
m ̸=i

∂

∂ci

(
cmρ

m),

= ρi + ciiρi−1 ∂ρ

∂ci
+

12∑
m=0
m̸=i

cmmρm−1 ∂ρ

∂ci
,

= ρi + ∂ρ

∂ci

12∑
m=0

cmmρm−1,
‍�

which yields

	﻿‍

∂ρ

∂ci
= −ρi

∑12
m=0 mcmρm−1

= −ρi
(

∂f
∂ρ

)−1
.
‍�

(23)

Therefore,

	﻿‍
∂ρ

dθ
= ∂ρ

∂c
∂c
∂θ

,
‍�

where ‍c = (c0, c1, ..., c12); ∂ρ/∂c = (∂ρ/∂c0, ..., ∂ρ/∂c12)‍ and ‍∂c/∂θ‍ is the Jacobian of c with respect 
to θ.

Therefore, we have that

	﻿‍

dϕ̄
dθ

=
∂fϕ
∂ϕ̄

+
∂fϕ
∂ρ

dρ
dθ

,
‍� (24)

https://doi.org/10.7554/eLife.73020
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and it follows that

	﻿‍

dη̄
dθ

= ∂fη
∂ϕ̄

∂ϕ̄

dθ
+ ∂fη

∂ρ

dρ
dθ

,
‍�

(25)

	﻿‍

dR̄
dθ

= ∂fR
∂ϕ̄

dϕ̄
dθ

+ ∂fR
∂ρ

dρ
dθ

+ ∂fR
∂θ

.
‍� (26)

Therefore, an analytical expression for ‍Jm(θ)‍ (Equation 22) is given by

	﻿‍
Jm(θ) =

(
dR̄
dθ

, dϕ̄
dθ

, dη̄
dθ

)
.
‍� (27)

https://doi.org/10.7554/eLife.73020
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Appendix 2
Total squares regression
In typical least-squares estimation we fit a model of the form

	﻿‍ yi = a + bxi + εy,i,‍� (28)

where ‍εy,i ∼ N (0,σy)‍ is assumed to be a normally distributed error component in ‍y‍ component 
(Markovsky and Van Huffel, 2007), and ‍(a, b)‍ are model parameters. Least-squares and maximum 
likelihood estimates ‍(â, b̂)‍ can then be found by minimising the sum-square error

	﻿‍
(â, b̂) = argmin

(a,b)

∑
i(yi − (a + bxi))2.

‍�
(29)

We demonstrate this in Appendix 2—figure 1. In typical least squares estimation, we minimise the 
vertical distance between the data points and the regression line (blue dashed).

In the main document, we fit a linear model to data of the form ‍(R,ϕ, η)‍, where each component 
contains an error term. In two-dimensions, this is akin to a model of the form

	﻿‍ yi = a + bxi + εy,i + bεx,i.‍� (30)

where we have included an additional error term ‍εx,i ∼ N (0,σx)‍, assumed to be a normally 
distributed error component in xi. In this case, the least squares estimate is given by minimising the 
total perpendicular distance between the data points and the regression line (Appendix 2—figure 
1, blue solid) (Markovsky and Van Huffel, 2007).

In the main paper, we fit a linear model of the form

	﻿‍ (R(τ ),ϕ(τ ), η(τ )) = (Rc,ϕc, 0) + τ q̂,‍� (31)

parameterised by ‍Rc,ϕc‍ and a unit vector ‍̂q‍.
If we denote ‍y0 = (Rc,ϕc, 0)‍ and ‍y1 = (Rc,ϕc, 0) + q̂‍, then the shortest distance between 

observation ‍xi = (Ri,ϕi, ηi)‍ is given by

	﻿‍
d(xi; Rc,ϕc, q̂) = ∥(xi − y0) × (xi − y1)∥

∥y0 − y1∥
,
‍�

(32)

where ‍∥ · ∥‍ denotes the Frobenius norm, and × denotes the vector cross product.
Therefore, least-squares estimates of the parameters can then be found by minimising the sum-

square error

	﻿‍
min

(Rc,ϕc,q̂)

∑
i

d(Xi; Rc, ϕc, q̂).
‍� (33)

Approximating the likelihood
To implement a log-likelihood-ratio based hypothesis test, we must approximate the likelihood at 
the parameter estimates. To do this, we note that the total square error, denoted ‍ε

2
i ‍, is of the form

	﻿‍ ε2
i = c1ε

2
x,i + c2ε

2
y,i + c3ε

2
z,i,‍� (34)

where ‍εx,i‍, ‍εy,i‍, and ‍εz,i‍ are normally distributed with variances ‍σ
2
x ‍, ‍σ

2
y ‍ and ‍σ

2
z ‍, respectively. If 

‍σ
2
x = σ2

y = σ2
z ‍, ‍ε

2
i ‍ would have an approximate chi-squared distribution by the Welch-Satterthwaite 

equation (Welch, 1947), a special case of the gamma distribution. Therefore, we approximate the 
distribution of ‍ε

2
i ‍ by fitting a gamma-distribution to the observed square error when a total squares 

estimate is fit to the combined data (Figure 1b).
Therefore, the approximate log-likelihood is given by

	﻿‍
ℓ(Rc,ϕc, q̂) =

∑
i log fΓ

(
d2(xi; Rc,ϕc, q̂)

)
,
‍� (35)

where ‍fΓ(·)‍ is the probability density function of the fitted gamma function.

https://doi.org/10.7554/eLife.73020
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Appendix 2—figure 1. Fitting experimental data to linear model. (a) Comparison between typical 
least-squares error (blue dashed), and total-least-squares error (blue solid). (b) Square error observed 
in the data and fitted gamma distribution.

Log-likelihood-ratio based test
We denote ‍̂θ0 = (Rc,ϕc, q̂)‍ the maximum likelihood estimate when the data from all 
initial conditions is pooled, and ‍̂θN = (Rc,ϕc, q̂)‍ the estimates from initial condition 
‍N ∈ {2500, 5000, 10000}‍. As the models must be nested for the likelihood-ratio test, we estimate the 
noise model, ‍fΓ(·)‍, using the estimates from the pooled data.

The test-statistic is given by

	﻿‍ λ = ℓ(θ̂2500) + ℓ(θ̂5000) + ℓ(θ̂10000) − ℓ(θ̂0),‍� (36)

where ‍λ ∼ χ2
ν‍, and

	﻿‍ ν = dim(θ̂2500) + dim(θ̂5000) + dim(θ̂10000) − dim(θ̂0) = 8.‍� (37)

Our implementation of this test is provided on GitHub in Module/Inference in the function lm_
orthogonal_test.

https://doi.org/10.7554/eLife.73020
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Appendix 3
Results for WM793b
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Appendix 3—figure 1. Estimates of parameters using the structural model with data from various 
time points. In (a–c), parameters are the mean of each observation: ‍(R,ϕ, η)‍. In (d–e), parameters are 
those in the structural model: ‍(R, Q, Rc)‍. In (f), estimates of ‍γ‍ are obtained by calibrating observations 
to the steady-state model. As estimates ‍Q‍ and ‍Rc‍ can be derived from the structural model, which 
applies at any time during phase 3, we expect to see consistent estimates across observation times. 
Given that WM793b spheroids initiated with 2500 cells do not reach phase 3 until day 14, we exclude 
day 12 for these spheroids from the mathematical analysis. As estimates of ‍γ‍ can only be derived 
from the steady-state model, which assumes the outer radius is no longer increasing, we only expect 
consistency for later observation days. Bars indicate an approximate 95% confidence interval.
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