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Abstract The ability to produce outer membrane projections in the form of tubular membrane 
extensions (MEs) and membrane vesicles (MVs) is a widespread phenomenon among diderm 
bacteria. Despite this, our knowledge of the ultrastructure of these extensions and their associated 
protein complexes remains limited. Here, we surveyed the ultrastructure and formation of MEs and 
MVs, and their associated protein complexes, in tens of thousands of electron cryo-tomograms 
of ~90 bacterial species that we have collected for various projects over the past 15 years (Jensen 
lab database), in addition to data generated in the Briegel lab. We identified outer MEs and MVs 
in 13 diderm bacterial species and classified several major ultrastructures: (1) tubes with a uniform 
diameter (with or without an internal scaffold), (2) tubes with irregular diameter, (3) tubes with a 
vesicular dilation at their tip, (4) pearling tubes, (5) connected chains of vesicles (with or without 
neck-like connectors), (6) budding vesicles and nanopods. We also identified several protein 
complexes associated with these MEs and MVs which were distributed either randomly or exclu-
sively at the tip. These complexes include a secretin-like structure and a novel crown-shaped 
structure observed primarily in vesicles from lysed cells. In total, this work helps to characterize 
the diversity of bacterial membrane projections and lays the groundwork for future research in this 
field.
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Introduction
Membrane extensions and vesicles (henceforth referred to as MEs and MVs) have been described 
in many types of bacteria. They are best characterized in diderms, where they stem mainly from 
the outer membrane (OM; we thus refer to OMEs and OMVs) and perform a variety of functions 
(Schwechheimer and Kuehn, 2015; Jan, 2017; D’Souza et al., 2018; Toyofuku et al., 2019). For 
example, the OMEs of Shewanella oneidensis (aka nanowires) are involved in extracellular electron 
transfer (Pirbadian et al., 2014; Subramanian et al., 2018). The OM tubes of Myxococcus xanthus 
are involved in the intra-species transfer of periplasmic and OM-associated material between different 
cells that is essential for the complex social behavior of this species (Ducret et al., 2013; Wei et al., 
2014; Remis et al., 2014). The OMVs of Vibrio cholerae act as a defense mechanism, helping the 
bacterium circumvent phage infection (Reyes-Robles et al., 2018). A marine Flavobacterium affili-
ated with the genus Formosa (strain Hel3_A1_48) extrudes membrane tubes and vesicles that contain 
the type IX secretion system and digestive enzymes (Fischer et al., 2019). OMVs often function in 
pathogenesis. The OM blebs and vesicles of Flavobacterium psychrophilum have proteolytic activities 
that help release nutrients from the environment and impede the host immune system (Møller et al., 
2005). The OMVs of Francisella novicida contain virulence factors, suggesting they are involved in 
pathogenesis (McCaig et al., 2013). Similarly, the virulence of Flavobacterium columnare is associated 
with the secretion of OMVs (Laanto et al., 2014), and membrane tubes and secreted vesicles have 
been observed in other, human pathogens like Helicobacter pylori and Vibrio vulnificus (Chang et al., 
2018; Hampton et al., 2017).

MEs and MVs are also produced by monoderm bacteria and archaea. MVs stemming from the cyto-
plasmic membrane of Gram-positive bacteria have been reported to encapsulate DNA (see Brown 
et al., 2015 and references therein). Membrane nanotubes were recently discovered in the Gram-
positive Bacillus subtilis, as well as the Gram-negative Escherichia coli. These nanotubes were found to 
connect two different bacterial cells and are involved in the transfer of cytoplasmic material between 
bacterial cells of the same and different species, and even to eukaryotic cells (Bhattacharya et al., 
2019; Dubey and Ben-Yehuda, 2011; Baidya et al., 2018; Pande et al., 2015; Benomar et al., 2015; 
Baidya et al., 2020; Pal et al., 2019). In addition, a recent study suggested that nanotubes assist the 
growth of Pseudomonas aeruginosa on periodic nano-pillar surfaces (Cao et al., 2020).

The structures of MEs and MVs are as varied as their functions. While S. oneidensis nanowires 
are chains of interconnected OMVs with variable diameter and decorated with cytochromes (Subra-
manian et al., 2018), OM tubes of H. pylori have a fixed diameter of ~40 nm and are characterized 
by an inner scaffold and lateral ports (Chang et al., 2018). V. vulnificus produces tubes from which 
vesicles ultimately pinch off by biopearling, forming a regular concentric pattern surrounding the cell 
(Hampton et al., 2017). Cells with an external surface layer (S-layer) can produce structures known 
as ‘nanopods’, which consist of MVs inside a sheath of S-layer. These have been reported in the soil-
residing bacterium Delftia sp. Cs1–4 (Shetty et al., 2011) and archaea of the order Thermococcales 
(Marguet et al., 2013). Finally, some diderms produce DNA-containing MVs consisting of both IM 
and OM (see Toyofuku et al., 2019 and references therein).

Different models have been proposed for how MEs and MVs form. In diderms, membrane bleb-
bing may occur due to changes in the periplasmic turgor pressure, lipopolysaccharide repulsion, or 
alterations in the contacts between the OM and the peptidoglycan cell wall (Toyofuku et al., 2019). 
Chains of interconnected vesicles are often observed, either as a result of direct vesicular budding 
from the OM or due to biopearling of membrane tubes (Subramanian et al., 2018; Fischer et al., 
2019). Formation of tubes is thought to be a stabilizing factor as it results in smaller vesicles, with tubes 
pearling into distal chains of vesicles that eventually disconnect (Bar-Ziv and Moses, 1994). Other 
extensions may be formed by dedicated machinery. Interestingly, nanotubes involved in cytoplasmic 
exchange have been reported to be dependent on a conserved set of proteins involved in assembly 
of the flagellar motor known as the type III secretion system core complex (CORE): FliP/O/Q/R and 
FlhA/B (Bhattacharya et al., 2019; Pal et al., 2019). Recently, it was also shown that the formation of 
bacterial nanotubes significantly increases under stress conditions or in dying cells, caused by biophys-
ical forces resulting from the action of the cell wall hydrolases LytE and LytF (Pospíšil et al., 2020).

Structural studies of MEs and MVs have relied mainly on scanning electron microscopy (SEM), 
conventional transmission electron microscopy (TEM), and light (fluorescence) microscopy. While 
these methods have significantly advanced our understanding, they are limited in terms of the 
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information they can provide. For instance, in SEM and conventional TEM, sample preparation such 
as fixation, dehydration, and staining disrupt membrane ultrastructure. While light microscopy can 
reveal important information about the dynamics and timescales on which MEs and MVs form (e.g. 
Bos et al., 2021), no ultrastructural details can be resolved; MEs and MVs of different morphology 
appear identical. Currently, only electron cryo-tomography (cryo-ET) allows visualization of structures 
in a near-native state inside intact (frozen-hydrated) cells with macromolecular (~5 nm) resolution. 
However, this capability is limited to thin samples (few hundred nanometers thick, like individual bacte-
rial cells of many species) while thicker samples like the central part of eukaryotic cells, thick bacterial 
cells, or clusters of bacterial cells are not amenable for direct cryo-ET imaging. Such thick samples can 
be rendered suitable for cryo-ET experiments by thinning them first using different methods including 
focused ion beam milling and cryosectioning (Kaplan et al., 2021a). Cryo-ET has already been invalu-
able in revealing the structures of several MEs, including S. oneidensis nanowires (Subramanian et al., 
2018), H. pylori tubes (Chang et al., 2018), Delftia acidovorans nanopods (Shetty et al., 2011), V. 
vulnificus OMV chains (Hampton et al., 2017), and more recently cell-cell bridges in the archaeon 
Haloferax volcanii (Sivabalasarma et al., 2020).

To understand what MEs exist in bacterial cells and how they might form, we undertook a survey 
of ~90 bacterial species, drawing on a database of tens of thousands of electron cryo-tomograms 
of intact cells collected by our group for various projects over the past 15 years (Ding et al., 2015; 
Ortega et al., 2019), in addition to data generated in the Briegel lab. Our survey revealed OM projec-
tions in 13 diderm bacterial species. These projections took various forms: (1) tubes with a uniform 
diameter and with an internal scaffold, (2) tubes with a uniform diameter and without a clear internal 
scaffold, (3) tubes with a vesicular dilation at their tip (teardrop-like extensions), (4) tubes with irregular 
diameter or pearling tubes, (5) interconnected chains of vesicles with uniform neck-like connectors, (6) 
budding or detached OMVs, and (7) nanopods. We also identified protein complexes associated with 
MEs and MVs in these species. These complexes were either seemingly randomly distributed on the 
MEs and MVs or exhibited a preferred localization at their tip.

Results
We examined tens of thousands of electron cryo-tomograms of ~90 bacterial species collected in 
the Jensen lab for various projects over the past 15 years together with tomograms collected in the 
Briegel lab. Most cells were intact, but some had naturally lysed. Note that we make this classification 
based on the cells’ appearance in tomograms; intact cells have an unbroken cell envelope, uniform 
periplasmic width, and consistently dense cytoplasm. In addition to cryo-tomograms of cells, this 
dataset also included naturally shed vesicles purified from S. oneidensis. In all, we identified OMEs 
and OMVs in 13 bacterial species (summarized in Table 1, Table 2).

I – The diverse forms of bacterial membrane structures
Based on their features, we classified membrane projections into the following categories: (1) tubular 
extensions with a uniform diameter and with an internal scaffold (Figure 1a and b and Figure 1—
figure supplements 1 and 2); (2) tubular extensions with a uniform diameter and without a clear 
internal scaffold (Figure  1c–g and Figure  1—figure supplement 3); (3) tubular extensions with a 
vesicular dilation at the tip (a teardrop-like structure) and irregular dark densities inside (Figure 1h); 
(4) tubular extensions with irregular diameter or pearling tubes (Figure  2a–g); (5) interconnected 
chains of vesicles with uniform neck-like connectors (Figure 2h & i); (6) budding or detached vesicles: 
budding vesicles were still attached to the membrane, while detached vesicles were observed near a 
cell and could have budded directly or from a tube that pearled (Figure 3a–d and Figure 3—figure 
supplement 1); (7) nanopods: tubes of S-layer containing OMVs (Figure  3e–i). See Table  1 for a 
summary of these observations.

Scaffolded membrane tubes were observed only in H. pylori and had a uniform diameter of 40 nm. 
The H. pylori strain imaged (fliP*) contains a naturally occurring point mutation that disrupts the 
function of FliP, the platform upon which other CORE proteins assemble (Fukumura et al., 2017; 
Fabiani et al., 2017; Minamino et al., 2019). In addition, the dataset contained other mutants in this 
fliP* background including additional CORE proteins (ΔfliO and ΔfliQ), flagellar basal body proteins 
(ΔfliM and ΔfliG), and the tyrosine kinase required for expression of the class II flagellar genes (ΔflgS) 
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(Lertsethtakarn et al., 2011; Figures 1a–b and 
4, Figure 1—figure supplement 1 and Table 3). 
This suggests that the H. pylori membrane tubes 
are unrelated to the CORE-dependent nanotubes 
that mediate cytoplasmic exchange in B. subtilis 
and other species (Bhattacharya et al., 2019; Pal 
et al., 2019).

Previously, H. pylori tubes were described 
as forming in the presence of eukaryotic host 
cells (Chang et  al., 2018). Here, however, we 
observed tubes in H. pylori grown on agar plates 
in the absence of eukaryotic cells, suggesting 
that they also form in the absence of host cells. 
We observed some differences, though, from 
the tubes formed in the presence of host cells: 
the tube ends were closed, no clear lateral ports 
were seen, and the tubes were usually straight. 
While some of these tubes extended more than 
0.5 μm, we never observed pearling. However, in 
some tubes, the internal scaffold did not extend 
all the way to the tip, and its absence caused the 
tube to dilate (from 40 nm in the presence of the 
scaffold to 66  nm in its absence, see Figure  4f 
and examples in Figure  1—figure supplement 
1b and d). In some cases we also observed tubes 
stemming from vesicles resulting from cell lysis 
(Figure 4f, Figure 1—figure supplement 1b and 
d, Figure  1—figure supplement 2), and dark 
densities could be seen at the base of many of 
these tubes associated with vesicles (Figure 1—
figure supplement 1d).

In Flavobacterium anhuiense and Chitino-
phaga pinensis, which are both endophytic 
species extracted from sugar beet roots, in addi-
tion to tubes with irregular diameter and OMVs 
(Figure  2g), tubular extensions with a uniform 
diameter, and a vesicular dilation (teardrop-like 
structure) were observed stemming from the 
sides of the cell in F. anhuiense (Figure 1h). Inter-
estingly, irregular dark densities were observed 

inside these teardrop-like extensions (Figure 1h). Chains of vesicles connected by neck-like bridges 
were similarly observed in a single species: Borrelia burgdorferi. The bridges were consistently ~14 nm 
in length and ~8 nm in width. Where chains were seen attached to the OM, a neck-like connection was 
present at the budding site (Figure 2h). Vesicles in each chain were of a uniform size, usually 35–40 nm 
wide (e.g. Figure 2i), but occasionally larger (e.g. Figure 2h).

When both tubes and vesicles were observed in the same species, the tubes generally had a 
more uniform diameter than the vesicles, which were of variable sizes and often had larger diameters 
than the tubes (Figure 3—figure supplement 1 and Figure 3—figure supplement 2). In addition, 
when a tube pearled into vesicles, there was no clear correlation between the length of the tube and 
the initiation point of pearling, with some tubes extending for many micrometers without pearling 
while other, shorter tubes were in the process of forming vesicles (Video 1, Video 2, Video 3, and 
Figure 2). As usually only one (or part of a) cell is present in the cryo-tomogram, we cannot exclude 
that differences in the extracellular environments, like the presence of a cluster of cells in the vicinity 
of the individual cells with pearling tubes, might play a role in this observation. Pearling tubes differ 
from tubes with irregular diameter by the presence of a deep constriction in some part of the tube, 

Table 2. The different bacterial strains used in 
this study.

Species Strain
Relevant 
references

Shewanella oneidensis MR-1 
211,586

Subramanian 
et al., 2018; 
Kaplan et al., 
2019a; Kaplan 
et al., 2019b

Pseudoaltermonas 
luteoviolacea

43,657 Shikuma et al., 
2014

Hylemonella gracilis ATCC 19624 
887,062

Kaplan et al., 
2020; Chen 
et al., 2011; 
Kaplan et al., 
2021b

Delftia acidovorans Cs1-4 
80,866

Shetty et al., 
2011

Magnetospirillum 
magneticum

AMB-1 
342,108

Cornejo et al., 
2016

Caulobacter 
crescentus

NA1000 Kaplan et al., 
2021c

Helicobacter 
hepaticus

ATCC 51449 
235,279

Chen et al., 
2011

Helicobacter pylori 26,695 Chang et al., 
2018

Myxococcus xanthus DK1622 Chang et al., 
2016

Borrelia burgdorferi B31 224,326 Briegel et al., 
2009; Chen 
et al., 2011

Flavobacterium 
johnsoniae

CJ2618 This study

Flavobacterium 
anhuiense

98 Carrión et al., 
2019

Chitinophaga pinensis 94 Carrión et al., 
2019

https://doi.org/10.7554/eLife.73099
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Figure 1. Membrane tubes with a uniform diameter, either with or without an internal scaffold. Slices through 
electron cryo-tomograms of the indicated bacterial species highlighting the presence of outer membrane 
extensions (OMEs) with uniform diameters and either with (a–b) or without (c–g) an internal scaffold, and teardrop-
like extensions (h). In this and all subsequent figures, red boxes indicate enlarged views of the same slice. Scale 
bars are 50 nm, except in main panel (h) 100 nm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Examples of membrane tubes stemming from intact, lysed or vesicles of Helicobacter pylori 
mutants.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.73099
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while chains of vesicles are entirely made up of semi-circular vesicles connected by thin constric-
tions suggesting different mechanisms are responsible for the formation of these different extensions. 
While most pearling was seen at the tips of tubes, pearling occasionally occurred simultaneously at 
both proximal and distal ends of the same tube (Video 3). With one exception, pearling was seen in 
all species with tubes of uniform diameter and no internal scaffold. The exception was lysed Pseu-
doalteromonas luteoviolacea, which had narrow tubes only 20  nm in diameter (Figure  1g). Some 
lysed P. luteoviolacea contained wider, pearling tubes (Figure 2c). Interestingly, the tubes of various 
M. xanthus strains (see Materials and methods) and P. luteoviolacea could bifurcate into branches, 
each of which had a uniform diameter similar to that of the main branch (Video 4 and Figure 1d and 
Figure 1—figure supplement 3).

In Caulobacter crescentus tomograms, we identified structures very similar to the ‘nanopod’ exten-
sions previously reported in D. acidovorans (Shetty et al., 2011). These structures consist of a tube 
made of the S-layer encasing equally spaced OMVs (Figure 3e–h and Video 5). The diameter of the 
S-layer tubes was ~45 nm and vesicles exhibited diameters ranging from ~13 to 25 nm. The nanopods 
were seen either detached from the cell (Figure 3e–g) or budding from the pole of C. crescentus 
(Figure 3h).

II – Protein complexes associated with membrane structures
Next, we examined protein complexes associated with OMEs and OMVs that we could identify in 
our cryo-tomograms. These complexes fell into three categories: (1) seemingly randomly located 
complexes found on OMEs, OMVs, and cells; (2) seemingly randomly located complexes observed 
only on OMEs and OMVs; and (3) complexes exclusively located at the tip of OMEs/OMVs.

In the first category, we observed what appeared to be the OM-associated portion of the empty 
basal body of the type IVa pilus (T4aP) machinery in OMEs of M. xanthus. These complexes, which 
were also found in the OM of intact cells, did not exhibit a preferred localization or regular arrange-
ment within the tube at least within the fields of view provided by our cryo-tomograms (Figure 5).

The second category of protein complexes, observed only on MEs and not on cells, contained 
two structures. The first was a trapezoidal structure observed on purified OMVs of S. oneidensis. 
The structure was ~11 nm wide at its base at the membrane and was seen sometimes on the outside 
(Figure 5c) and sometimes the inside of vesicles (Figure 5d). The second structure was a large crown-
like complex. We first observed these complexes on the outer surface of MVs associated with lysed 
M. xanthus cells (Figure 6a). Occasionally, they were also present on what appeared to be the inner 
leaflet of the inner membrane of lysed cells (Figure 6b). The exact topology is difficult to determine, 
however, since the arrangement of IM and OM can be confounded by cell lysis. The structure of this 
complex was consistent enough to produce a subtomogram average from nine examples, improving 
the signal-to-noise ratio and revealing greater detail (Figure  6c). These crown-like complexes 
are ~40 nm tall with a concave top and a base ~35 nm wide at the membrane (Figure 6c). No such 
complexes were seen on OMEs and OMVs associated with intact M. xanthus cells. We identified a 
morphologically similar crown-like complex on the outside of some tubes and vesicles purified from 
S. oneidensis (Figure 6d–f). However, this complex was smaller, ~15 nm tall and ~20 nm wide at its 
base. As these MEs/MVs from S. oneidensis were purified, we cannot know whether they stemmed 
from lysed or intact cells. Interestingly, we found a similar large crown-like structure associated with 
lysed cells of two other species in which we did not identify MEs, namely Pseudomonas flexibilis and 
P. aeruginosa (Figure 6g–j and Figure 6—figure supplement 1).

In the third category, we observed a secretin-like complex in many tubes and vesicles of F. john-
soniae. Secretins are proteins that form a pore in the OM and are associated with many secretion 
systems like type IV pili and type II secretion systems (T2SS) (Chang et al., 2016; Ghosal et al., 2019; 
Gold et al., 2015). In tubes attached to the cell, the complex was always located at the distal tip 
(Figure 7, Figure 7—figure supplement 1, and Video 6). From 35 membrane tubes seen attached 

Figure supplement 2. Slices through electron cryo-tomograms of lysed Helicobacter pylori fliP* ΔfliM cells 
illustrating the presence of outer membrane (OM) tubes in vesicles resulting from cell lysis (black arrows).

Figure supplement 3. A slice through an electron cryo-tomogram of a lysed Pseudoalteromonas luteoviolacea 
cell illustrating a bifurcated 20 nm wide membrane tube.

Figure 1 continued

https://doi.org/10.7554/eLife.73099
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Figure 2. Pearling tubes, tubes with irregular diameter, and vesicle chains with neck-like connections. Slices 
through electron cryo-tomograms of the indicated bacterial species highlighting the presence of pearling tubes 
(a–e), tubes with irregular diameter (f–g), or outer membrane vesicle (OMV) chains connected by neck-like bridges 
(h–i). White arrows in the enlargement in (h) and in panel (i) point to the 14 nm connectors in Borrelia burgdorferi. 
Scale bars are 50 nm, except in main panel (g) 100 nm.

https://doi.org/10.7554/eLife.73099
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Figure 3. Budding outer membrane vesicles (OMVs) and nanopods. Slices through electron cryo-tomograms of the indicated bacterial species 
highlighting the presence of budding vesicles (a–d) or nanopods (e– i). Scale bars are 50 nm in main panels and 20 nm in enlargements.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.73099
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to cells, we identified a secretin-like complex at the tip of 25 of them (~70%). In OMEs disconnected 
from the cell, the secretin-like complex was always located at one end (Figure 7b & e). In total, we 
identified 88 secretin-like particles in 198 tomograms, none of which were located in the middle of 
a tube. As the MEs are less crowded than cellular periplasm and usually thinner than intact cells, we 
could clearly distinguish an extracellular density and three periplasmic densities in side views (red and 
purple arrows, respectively, in Figure 7a). Top views showed a plug in the center of the upper part 
of the complex (yellow arrows in Figure 7g & h). Subtomogram averaging revealed details of the 
complex, including the plug and a distinct lower periplasmic ring (Figure 7i & j & Figure 7—figure 
supplement 2). While the upper two periplasmic rings were clearly distinguishable in many of the 
individual particles (e.g. Figure 7a), they did not resolve as individual densities in the subtomogram 
average (Figure 7i). The extracellular density was not resolved at all in the average, suggesting flexi-
bility in this part.

Previous studies showed that a species which belongs to the same phylum as F. johnsoniae, namely 
Cytophaga hutchinsonii, uses a putative T2SS to degrade cellulose (Wang et  al., 2017). Since F. 
johnsoniae also degrades polysaccharides and other polymers, we BLASTed the sequence of the well-
characterized V. cholerae T2SS secretin protein, GspD (UniProt ID P45779), against the genome of F. 
johnsoniae and found a hit, GspD-like T2SS secretin protein (A5FMB4), with an e-value of 1e–9. This 
result and the general morphological similarity of this secretin to the published structure of the T2SS 
(Ghosal et al., 2019) suggested that the complex we observed might be the secretin of a T2SS. We 
therefore compared our subtomogram average with the only available in situ structure of a T2SS, a 
recent subtomogram average of the Legionella pneumophila T2SS (Ghosal et al., 2019; Figure 7i–l). 
The two structures were generally similar in length and both had a plug in the upper part of the 
complex. However, we also observed differences between the two structures. In L. pneumophila, the 
widest part of the secretin (15 nm) is located near the plug close to the OM, and the lower end of the 
complex is narrower (12 nm). In F. johnsoniae, this topology is reversed, with the narrowest part near 
the plug and OM (Figure 7i–l). Additionally, the lowest domain of the L. pneumophila secretin did not 
resolve into a distinct ring as we saw in F. johnsoniae and no extracellular density was observed in L. 
pneumophila, either in the subtomogram average or single particles (Ghosal et al., 2019).

Discussion
Our results highlight the diversity of MEs’ and MVs’ structures that bacteria can form even within a 
single species (Figure 8). For example, we saw two types of membrane tubes in lysed P. luteoviolacea 
cells: one narrower with a uniform diameter of 20  nm which did not pearl into vesicles, and one 
wider with a variable diameter that did pearl into vesicles (Figures 1g and 2c), a distinction which 
suggests that these extensions play different roles. Similarly, interspecies differences likely reflect 
different functions. For instance, the tubes of M. xanthus were on average longer, more abundant, and 
more branched than the MEs of other species (Videos 1 and 4), which is likely related to their role in 
communication between cells of this highly social species. However, one interesting observation in all 
the species we investigated here is that there was no clear distinctive molecular machine at the base 
of the membrane projections, raising the question of what drives their formation. This observation is 
consistent with a recent study which showed that liquid-like assemblies of proteins in membranes can 
lead to the formation of tubular extensions without the need for solid scaffolds (Yuan et al., 2021). In 
addition, differences in the lipid compositions among the various species investigated here might also 
play a role in the formation of these different forms of projections.

The scaffolded uniform tubes of H. pylori that we observed were formed in samples not incu-
bated with eukaryotic cells, indicating that they can also form in their absence. However, the tubes 
we found had closed ends and no clear lateral ports, while some of the previously reported tubes 
(formed in the presence of eukaryotic host cells) had open ends and prominent ports (Chang et al., 
2018). It is possible that such features are formed only when H. pylori are in the vicinity of host 

Figure supplement 1. Outer membrane extensions and vesicles in S. oneidensis and M. xanthus.

Figure supplement 2. Violin plots of the sizes of outer membrane (OM) vesicles (OMVs) and OM tubes in Myxococcus xanthus (100 randomly picked 
examples of each) and Flavobacterium johnsoniae (45 randomly picked examples of each).

Figure 3 continued

https://doi.org/10.7554/eLife.73099
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Figure 4. The formation of outer membrane (OM) tubes persists in various Helicobacter pylori mutants, including 
CORE mutants. Slices through electron cryo-tomograms of the indicated H. pylori mutants (all in the fliP* 
background) showing the presence of membrane tubes. The enlargement in (f) highlights a dilation at the end of 
the tube (dark blue arrow) due to the absence of the scaffold (orange arrow). Light blue arrows indicate the end 
points of the scaffold. Scale bar is 100 nm.

https://doi.org/10.7554/eLife.73099


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Kaplan et al. eLife 2021;10:e73099. DOI: https://doi.org/10.7554/eLife.73099 � 12 of 24

cells. Moreover, while it was previously hypothe-
sized that the formation of membrane tubes in H. 
pylori (when they are in the vicinity of eukaryotic 
cells) is dependent on the cag T4SS (Chang et al., 
2018), we could not identify any clear correlation 
between the emanation of membrane tubes and 
cag T4SS particles in our samples where H. pylori was not incubated with host cells. We also show 
that the tubes of H. pylori are CORE-independent, indicating that they are different from the CORE-
dependent nanotubes described in other species.

A recent study showed that the formation of bacterial tubes significantly increases when cells are 
stressed or dying (Pospíšil et al., 2020). Consistent with this, in our cryo-tomograms we saw many 
MEs and MVs associated with lysed cells (such as in H. pylori, Helicobacter hepaticus, and P. luteov-
iolacea). We also saw tubes and vesicles stemming from intact cells. Given the nature of cryo-ET 
snapshots, we cannot tell whether a cell that appears intact is stressed, nor can we know whether 
MEs/MVs formed before or after a cell lysed. One observation which might be related to this issue 
comes from F. johnsoniae where tubes with regular diameters were seen stemming mainly from cells 
with a noticeably wavy OM (45 examples), while 
pearling tubes and OMVs stemmed primarily 
from cells with a smooth OM (>100 examples). 

Table 3. Numbers of tubes identified in different 
Helicobacter pylori mutants.
Note that the approximation symbol before 
the number of cells indicates that in many 
tomograms we only see a part of the cell(s).

Mutant
Number of 
cells

Number of 
tubes

H. pylori ∆fliG fliP* ~47 12

H. pylori ∆fliM fliP* ~265 88

H. pylori ∆fliO fliP* ~267 49

H. pylori ∆fliQ fliP* ~220 55

H. pylori ∆flgS fliP* ~84 15

Video 1. An electron cryo-tomogram of an 
Myxococcus xanthus cell with multiple outer membrane 
tubes stemming from the cell.

https://elifesciences.org/articles/73099/figures#video1

Video 2. An electron cryo-tomogram of an 
Flavobacterium johnsoniae cell with outer membrane 
tubes stemming from the cell. Note the wavy outer 
membrane of the cell.

https://elifesciences.org/articles/73099/figures#video2

Video 3. An electron cryo-tomogram of an 
Myxococcus xanthus cell with a pearling outer 
membrane tube stemming from the cell.

https://elifesciences.org/articles/73099/figures#video3

https://doi.org/10.7554/eLife.73099
https://elifesciences.org/articles/73099/figures#video1
https://elifesciences.org/articles/73099/figures#video2
https://elifesciences.org/articles/73099/figures#video3
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Compare, for example, the cells in Figure 1e and 
Figure  7—figure supplement 1 and Videos  2 
and 6 (wavy OM) to those in Figures 3d and 7a 
and f (smooth OM).

In C. crescentus, we observed for the first time 
‘nanopods’, a structure previously reported in D. 
acidovorans (Shetty et al., 2011). Both of these 
species are diderms with an S-layer, suggesting 
that nanopods may be a general form for OMVs 
in bacteria with this type of cell envelope. Nano-
pods were proposed to help disperse OMVs in 
the partially hydrated environment of the soil 
where D. acidovorans lives; it will be interesting 
to study their function in aquatic C. crescentus.

Examining protein complexes associated with 
OMEs and OMVs, some seemed to reflect a 
continuation of the same complexes found on the 
membrane from which the extensions stemmed, 
such as the T4aP basal body in M. xanthus 
(Chang et al., 2016). Others, however, were only 
observed on MEs and not on cells. This could be 
because the complexes are related to the forma-

tion of the MEs, or it might simply reflect the fact that these extensions are generally thinner and 
less crowded than the bacterial periplasm, making the complexes easier to see in cryo-tomograms. 
Interestingly, the crown-like complex we observed in M. xanthus, P. aeruginosa, and P. flexibilis was 
exclusively associated with the membranes of lysed cells; we never observed it on OMEs and OMVs 
stemming from intact cells in M. xanthus. We observed a morphologically similar crown-like structure 
with different dimensions in purified naturally shed MEs/MVs of S. oneidensis, where we cannot know 
whether they arose from intact or lysed cells. The crown-like structures are remarkably large and 
their function remains a mystery. Due to the disruption of membranes in lysed cells, the topology of 
these complexes is difficult to unravel. However, these structures share a morphological similarity to 
a membrane-associated dome protein complex recently described on the limiting membrane of the 
lamellar bodies inside alveolar cells (Klein et al., 2021).

Similarly, regarding the different, trapezoidal structure in S. oneidensis, the fact that it was seen on 
both the outside and inside of purified MVs suggests that some of the purified vesicles adopted an 
inside-out orientation during purification (a documented phenomenon; Kaplan et al., 2016). Interest-
ingly, the overall architecture and dimensions of this trapezoidal structure are reminiscent of those of 
a recently solved structure of the E. coli polysaccharide co-polymerase WzzB (Wiseman et al., 2021). 
We hope future investigation by methods like mass spectrometry will characterize these novel ME/
MV-associated protein complexes.

In F. johnsoniae, we observed secretin-like particles at the tip of ~70 % of tubes stemming from 
the OM. This strong spatial correlation suggests a role for the secretin-like complex in the formation 

of MEs in this species. Based on homology, the 
GspD-like T2SS secretin is a strong candidate for 
the complex. Interestingly, though, we did not 
identify any secretin-like (or full T2SS-like) parti-
cles in the main cell envelope of F. johnsoniae 
cells. While we could have missed them in the 
denser periplasm compared to the less-crowded 
OMEs and OMVs, it is possible that the structures 
are specifically associated with the formation of 
OMEs in this species. As these MEs stem only 
from the OM, there is no IM-embedded energy 
source for the complex, suggesting that they are 
not functional secretion systems and raising the 

Video 4. An electron cryo-tomogram of an 
Myxococcus xanthus cell with multiple branched outer 
membrane tubes stemming from the cell.

https://elifesciences.org/articles/73099/figures#video4

Video 5. An electron cryo-tomogram of a Caulobacter 
crescentus cell with a nanopod (black arrow) close to 
the cell.

https://elifesciences.org/articles/73099/figures#video5

https://doi.org/10.7554/eLife.73099
https://elifesciences.org/articles/73099/figures#video4
https://elifesciences.org/articles/73099/figures#video5
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question of what function they may serve. It is possible that the OMVs and OMEs form to dispense 
of the secretin.

These complexes also indicate that MEs/MVs may provide an ideal system to investigate membrane-
embedded structures in their native environment at higher resolution. For example, it remains unclear 
how secretins of various secretion systems are situated within the OM. All high-resolution structures 
were detergent-solubilized, and most in situ structures have low resolution due to cell thickness 
(Weaver et al., 2020). Purifying F. johnsoniae OMVs and performing high-resolution subtomogram 
averaging on the secretin-like complex might shed light on this question.

Early in the history of life, lipid vesicles and elementary protocells likely experienced destabilizing 
conditions such as repeated cycles of dehydration and rehydration (Damer and Deamer, 2015). The 
binding of prebiotic amino acids to lipid vesicles can help stabilize them in such conditions (Cornell 

Figure 5. Seemingly randomly located protein complexes on outer membrane extensions (OMEs) of Myxococcus xanthus and purified membrane 
vesicles (MVs) of Shewanella oneidensis. (a and b) Slices through electron cryo-tomograms of M. xanthus indicating the presence of pearling tubes 
with top (a) and side (b) views of type IVa pilus basal bodies (T4aP). Scale bar is 50 nm. (c and d) Slices through electron cryo-tomograms of purified 
S. oneidensis naturally shed MEs and MVs highlighting the presence of trapezoidal structures on the outside (c) and inside (d) of vesicles. Scale bar is 
10 nm.

https://doi.org/10.7554/eLife.73099
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Figure 6. Seemingly randomly located protein complexes associated with lysed cells. Slices through electron cryo-tomograms of lysed cells (a, b, g, h, 
and j) or purified membrane extensions (MEs) and membrane vesicles (MVs) (d and e) showing the presence of MVs and lysed membranes with a crown-
like complex (red arrows and red boxed enlargements). Scale bars: 50 nm (a, b, h, and j), 100 nm (g), 10 nm (d and e). (c, f, and i) Central slices through 
subtomogram averages (with twofold symmetry along the Y-axis applied) of nine particles (c), four particles, (f), or three particles (i) of the crown-like 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.73099
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et al., 2019) and it is conceivable that with billions of years of evolution, variations of these stabi-
lized lipid structures acquired roles that conferred fitness advantages on bacterial species in various 
environments. Today, the ability of bacteria to extend their membranes to form tubes or vesicles is 
a widespread phenomenon with many important biological functions. We hope that the structural 
classification we present here will serve as a helpful reference for future studies in this growing field.

Materials and methods
Strains and growth conditions
Hylemonella gracilis cells were grown as described in Kaplan et  al., 2020. P. luteoviolacea were 
grown as described in Shikuma et al., 2014. Magnetospirillum magneticum were grown as described 
in Cornejo et  al., 2016. P. flexibilis 706570 were grown in lactose growth medium. S. oneidensis 
MR-1 cells were grown, as detailed in Phillips et al., 2020, in Luria Bertani (LB) media under aerobic 
conditions at 30 °C with shaking at 200 rpm until they reached OD600 of ~3. M. xanthus PilY1.3-sfGFP, 
M. xanthus ΔtsaP, and M. xanthus SA6892 strains were grown as described in Chang et al., 2016. B. 
burgdorferi B31 ATCC 35210 and H. hepaticus ATCC 51,449 cells were grown in standard media (see 
Briegel et al., 2009 and references therein).

C. crescentus was cultured in M2G and M2 media (prepared as described in Schrader and 
Shapiro, 2015); 5 mL of M2G were inoculated with a frozen stock of C. crescentus NA 1000 (wild-
type and DpleD mutant cells; see Kaplan et al., 2021c) and grown overnight at 28°C; and 5 mL of 
the overnight culture was diluted in 15 mL M2G and grown at 28°C with a shaking speed of 200 rpm 
for ~2  hr until mid-log phase (OD600 0.4–0.5). The sample was then centrifuged at 5200 × g for 6 min 
at 4°C (same temperature for all subsequent centrifugation steps) and the pellet was resuspended 
in 1 mL M2 solution. The resuspended cells were transferred into a 2 mL microcentrifuge tube and 
centrifuged at 5200 × g for 5 min. All but ~250 μL of supernatant was removed, 650 μL M2 was 
added and the pellet was resuspended, and 900 μL cold Percoll (Sigma Aldrich) was added and the 
sample was centrifuged at 15,000 × g for 20 min. Samples were taken from the bottom of the tube 
to select swarmer cells.

Cells of F. johnsoniae strain CJ2618 (a wild-type strain overexpressing FtsZ, ATCC 17061) were 
taken from a glycerol stock, streaked onto a CYE plate with 10 µg/mL tetracycline and grown at 25 °C. 
Subsequently, 5 mL of motility medium (MM) was inoculated with colonies from the plate and the 
culture was incubated at 25 °C with 80 rpm shaking overnight. Then another 5 mL MM was inoculated 
with 80 µL of starter culture and placed at 25 °C with no shaking until the next day when the cells were 
harvested and prepared for plunge-freezing.

H. pylori mutants (ΔfliM fliP*, ΔfliO fliP*, ΔflgS fliP*, ΔfliG fliP*, ΔfliQ fliP*) were grown from glycerol 
stocks on sheep blood agar at 37 °C with 5 % CO2 for 48  hr and then either plunge-frozen directly or 
the cells were spread on another plate and left to grow for 24  hr before plunge-freezing. No differ-
ence could be discerned between the two samples by cryo-ET.

F. anhuiense (strain 98, see Carrión et al., 2019) and C. pinensis (strain 94, see Carrión et al., 
2019) cells were grown overnight in 1/10 TSB at 25 °C and 300 rpm shaking in 50 mL cultures. For 
sample preparation, cells were first concentrated by centrifugation; 3 μL aliquots of the cell suspension 
were applied to glow-discharged R2/2, 200 mesh copper Quantifoil grids (Quantifoil Micro Tools), the 
sample was pre-blotted for 30 s, and then blotted for 2.5 s (F. anhuiense) and 1 s (C. pinensis). Grids 
were pre-blotted and blotted at 20 °C and at 95 % humidity. Subsequently, the grids were plunge-
frozen in liquid ethane using an automated Leica EM GP system (Leica Microsystems) and stored in 
liquid nitrogen.

complex in the indicated species. Scale bar is 20 nm. OL = outer leaflet, IL = inner leaflet.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Slices through electron cryo-tomograms of lysed Pseudomonas aeruginosa cells indicating the presence of crown-like structures 
in side views (a and b) and top view (c, dashed yellow ellipses).

Figure 6 continued

https://doi.org/10.7554/eLife.73099
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Figure 7. Secretin-like complexes located at the tip of outer membrane extensions (OMEs) and outer membrane vesicles (OMVs) in Flavobacterium 
johnsoniae. Slices through electron cryo-tomograms of F. johnsoniae illustrating the presence of secretin-like complexes (side views in a–f), top views 
in (g and h) with yellow arrows pointing to the plug in OMEs and OMVs of F. johnsoniae. Red arrows point to the extracellular part of the complex. 
Purple arrows in the enlargement in (a) point to the three periplasmic densities. Scale bars are 50 nm in main panels and 20 nm in enlargements. (i) A 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.73099
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Purification of S. oneidensis OMVs
S. oneidensis OMVs were purified as described in Phillips et al., 2020. First, S. oneidensis were grown 
in LB media until they reached OD600 of 3. Subsequently, the cells were centrifuged at 5000 × g for 
20 min at 4 °C; the pellet contained whole cells while the supernatant contained the OMVs. To remove 
any cells present in the supernatant, it was filtered through a 0.45 µm filter. Subsequently, the super-
natant was centrifuged at 38,400 × g for 1 hr at 4 °C; the OMVs were in the resultant pellet. The pellet 
was resuspended in 20 mL of 50 mM HEPES pH 6.8 buffer, filtered through a 0.22 µm filter, spun again 
as described above, and ultimately resuspended in 50 mM HEPES pH 6.8.

Cryo-ET sample preparation and imaging
For cellular samples, 10 nm gold beads were first coated with BSA (bovine serum albumin) and then 
mixed with the cells. Subsequently, 4  µL of this mixture was applied to a glow-discharged, thick 
carbon-coated, R2/2, 200 mesh copper Quantifoil grid (Quantifoil Micro Tools) in an FEI Vitrobot 
chamber with 100 % humidity. Excess fluid was blotted away with filter paper and the grid was plunge-
frozen in a mixture of ethane/propane. For the purified OMVs of S. oneidensis, the sample was first 
diluted to a 0.4 mg/mL concentration before it was applied to the grid (Phillips et al., 2020). Cryo-ET 
imaging of the samples was done either on an FEI Polara 300 keV field emission gun transmission 
electron microscope equipped with a Gatan imaging filter and a K2 Summit direct electron detector 
in counting mode, or a Thermo Fisher Titan Krios 300 keV field emission gun transmission electron 
microscope equipped with a Gatan imaging filter and a K2 Summit counting electron detector. For 
data collection, either the UCSF Tomography (Zheng et al., 2007) or SerialEM (Mastronarde, 2005) 
software was used. For OMVs, tilt series spanned –60° to 60° with an increment of 3°, an underfocus of 
1–5 µm, and a cumulative electron dose of 121 e/Å2. For F. johnsoniae, tilt series spanned –55° to 55° 
with 1° increment, an underfocus of 4 µm, a cumulative electron dose of 100 e/Å2, and a 3.9 Å pixel 
size. For M. xanthus, tilt-series spanned –60° to 60° with an increment of 1°, an underfocus of 6 µm, 
and a cumulative electron dose of 180 e/Å2. For B. burgdorferi, tilt series spanned –60° to 60° with 1° 
increment, an underfocus of 10 µm, and a cumulative electron dose of 160 e/Å2. For H. hepaticus, tilt 
series spanned –60° to 60° with increments of 1°, an underfocus of 12 µm, and a cumulative electron 
dose of 165 e/Å2.

F. anhuiense and C. pinensis images were 
recorded with a Gatan K3 Summit direct electron 
detector equipped with a Gatan GIF Quantum 
energy filter with a slit width of 20  eV. Images 
were taken at magnification corresponding to 
a pixel size of 3.28  Å (C.pinensis) and 4.4  Å (F. 
anhuiense). Tilt series were collected using Seri-
alEM with a bidirectional dose-symmetric tilt 
scheme (–60° to 60°, starting from 0°) with a 2° 
increment. The defocus was set to – 8 to 10 μm 
and the cumulative exposure per tilt series was 
100 e−/A2. Images were reconstructed with the 
IMOD software package.

central slice through the subtomogram average of 88 particles of the secretin-like complex (with twofold symmetry along the Y-axis applied). Scale bar is 
10 nm. (j) A schematic representation of the STA shown in (i). (k) A central slice through the subtomogram average of the secretin of the type II secretion 
systems (T2SS) of Legionella pneumophila (EMD 20713, see Ghosal et al., 2019). Scale bar is 10 nm. (l) A schematic representation of the STA shown in 
(k).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Slices through electron cryo-tomograms of Flavobacterium johnsoniae (with wavy outer membrane [OM]) illustrating tubes 
stemming from cells with secretin-like complexes at their tips, as highlighted in the enlargements on the right (white circles).

Figure supplement 2. FSC curves of the subtomogram average of the secretin-like complex.

Figure 7 continued

Video 6. An electron cryo-tomogram of an 
Flavobacterium johnsoniae cell highlighting the 
presence of secretin-like particles at the tips of outer 
membrane tubes.

https://elifesciences.org/articles/73099/figures#video6

https://doi.org/10.7554/eLife.73099
https://elifesciences.org/articles/73099/figures#video6
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Image processing and subtomogram averaging
Reconstruction of tomograms of cellular samples was done using the automatic RAPTOR pipeline 
implemented in the Jensen lab at Caltech (Ding et al., 2015). Tomograms of purified S. oneidensis 
OMVs were reconstructed using a combination of ctffind4 (Rohou and Grigorieff, 2015) and the 
IMOD software package (Kremer et al., 1996). Subtomogram averaging was done using the PEET 
program (Nicastro, 2006), with twofold symmetry applied along the particle Y-axis.
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